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Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the third most lethal cancer in the United States, with a 5-year life 
expectancy of 11%. Most symptoms manifest at an advanced stage of the disease when surgery is no longer 
appropriate. The dire prognosis of PDAC warrants new strategies to improve the outcomes of patients, and early 
detection has garnered significant attention. However, early detection of PDAC is most often incidental, 
emphasizing the importance of developing new early detection screening strategies. Due to the low incidence of 
the disease in the general population, much of the focus for screening has turned to individuals at high risk of 
PDAC. This enriches the screening population and balances the risks associated with pancreas interventions. The 
cancers that are found in these high-risk individuals by MRI and/or EUS screening show favorable 73% 5-year 
overall survival. Even with the emphasis on screening in enriched high-risk populations, only a minority of incident 
cancers are detected this way. One strategy to improve early detection outcomes is to integrate artificial 
intelligence (AI) into biomarker discovery and risk models. This expert review summarizes recent publications that 
have developed AI algorithms for the applications of risk stratification of PDAC using radiomics and electronic 
health records. Furthermore, this review illustrates the current uses of radiomics and biomarkers in AI for early 
detection of PDAC. Finally, various challenges and potential solutions are highlighted regarding the use of AI in 
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medicine for early detection purposes.

Keywords: Pancreatic cancer, artificial intelligence, early detection, risk prediction

INTRODUCTION
Pancreatic ductal adenocarcinoma carcinoma (PDAC) is a relatively rare disease, with approximately 62,000 
people diagnosed each year in the United States[1]. Although PDAC accounts for only 3% of all cancers, it 
causes 7% of all cancer-related deaths and is projected to become the second leading cause of cancer-related 
deaths by 2030[2,3]. Surgery, in conjunction with chemotherapy (with or without radiation therapy), is the 
only curative treatment but is appropriate only for 15%-20% of patients[4]. Indeed, the high mortality rate of 
PDAC is attributed to 80%-85% of patients receiving a diagnosis at advanced stages that are not eligible for 
potentially curative treatments[5]. The idea of detecting PDAC at early stages that could be cured using 
biomarkers and screening methods is an area of intense investigation [Figure 1] and well recognized for the 
potential to significantly improve the currently dismal 5-year survival rate of 11%[14].

Reports indicate that when PDAC is detected early at a localized stage that is eligible for potentially curative 
therapies, the 5-year survival rate is as high as 60 to 73%[15,16].

A challenge in detecting PDAC early is the lack of effective screening in  the general population. With an 
estimated incidence of 12.9 cases per 100,000 person-years and low prevalence in the general population, 
PDAC imposes constraints on traditional metrics of biomarker or model performance for early detection 
and risk prediction. Key considerations of the performance of any biomarker test or model are positive 
predictive value, negative predictive value, sensitivity, specificity, accuracy, and area under the receiver 
operating characteristic curve (AUC). The positive predictive value of a biomarker test poses a particularly 
daunting challenge for performance with PDAC. For example, while it would seem that a hypothetical 
diagnostic screening test with 95% sensitivity and 95% specificity for early detection of PDAC in the general 
population would be desirable, the low incidence of PDAC would lead to an extremely high number of false 
positive results, giving this hypothetical test a very low positive predictive value of approximately 1.4% 
(Table 1, adapted from[5] with updated statistics from[17]).

Biomarker performance for PDAC screening is especially important considering the potential harms of a 
definitive diagnosis with tissue. To diagnose PDAC, a biopsy of the pancreas must be done using 
endoscopic ultrasound with fine needle aspiration (EUS-FNA), biopsy under computed tomography (CT) 
image guidance, or tissue acquisition from pancreatectomy. The invasiveness of these procedures and their 
costs remain strong considerations against general screening and any potential benefits of early detection in 
the general population. Indeed, the US Preventive Services Task Force reaffirmed against screening for 
PDAC in asymptomatic individuals[18].

To overcome the significant challenge of screening in the general population, researchers have focused 
surveillance methods for high-risk populations, including patients with multiple first-degree relatives with a 
history of PDAC diagnosis and high-risk germline mutations, although the frequency and modality(ies) of 
surveillance of these individuals remains an open research question. Furthermore, another major clinical 
conundrum is the surveillance of patients who have incidental findings of mucinous cysts such as 
intraductal papillary mucinous neoplasms (IPMNs) or mucinous cystic neoplasms (MCNs) in the pancreas. 
Only a small proportion of IPMNs and MCNs undergo malignant transformation, but a high proportion 
are overdiagnosed and subsequently overtreated[19,20].
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Table 1. Hypothetical results of a biomarker screening test of the general population with sensitivity of 95% and specificity of 95%, 
giving a PPV of 1.4%

Patients with PDAC Patients without PDAC

Positive biomarker test 40,159 (95%) 2,797,502 (5%)

Negative biomarker test 2,114 (5%) 53,152,535 (95%)

All patients 42,273 55,950,037

This hypothetical scenario assumes a U.S. population of 333,287,557 people (based on U.S. Census Bureau data) and applies the biomarker 
screening test to 16.8% of the population aged 65 years or older. About 2/3 of patients with PDAC are at least 65 years old, with an average age 
of diagnosis of 70 years (cancer.org). The American Cancer Society estimates that 64,050 people will be diagnosed with PDAC in 2023. PDAC: 
Pancreatic ductal adenocarcinoma carcinoma.

Figure 1. Timeline of the major events and milestones in AI development and its use in diagnostic imaging[6-13].

In developing new methods to identify PDAC at an early, curable stage, a major focus of PDAC early 
detection research has been on identifying serum or plasma biomarkers that are specific and sensitive 
enough for accurate cancer identification. Currently, carbohydrate antigen 19-9 (CA19-9) is the only tumor 
marker used in monitoring treatment response to chemotherapy[21]. However, because of its low sensitivity 
in the general population, CA19-9 is not recommended as a serum screening test due to the risk of 
overdiagnosis[22]. Multiple other blood-based markers have been described, but none have been adopted as 
standard clinical tests yet.

Artificial intelligence (AI) is another general strategy that is gaining significant attention for early detection 
of PDAC and other cancers. Indeed, predictive AI models have been used to assess the risk of developing 
different malignancies, including oral, breast, and lung cancers[23-26]. In these different diseases, AI has been 
deployed widely, including the use of ANN on health data records and clinical-pathological features[24], 
development of a CNN model with electronic health records[25], and utilization of ML with imaging[26]. In 
the past four years, there has been a rapid increase in the publications of using AI in pancreatic cancer 
diagnosis, imaging, treatment, and risk prediction using similar approaches as other disease sites, along with 
the development of novel methods and algorithms[27].
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Broadly speaking, AI techniques include machine learning (ML), convolutional neural networks (CNN), 
and deep learning (DL), and these methods work by interpreting and analyzing big data [Table 2]. For 
PDAC early detection, AI has illustrated promise in several domains. One of the principal points of interest 
involves finding predictors using health records to create predictive models to identify those with a higher 
risk of developing PDAC. Another focus of AI research investigates the ways that models detect the cancer 
at a localized, potentially curable stage using biomarkers or imaging.

This expert literature review highlights recent developments of models created to stratify high-risk 
individuals (HRI) using patient data, including new-onset diabetes mellitus and hyperglycemia, and 
radiomics, which can identify image features and patient anatomy that are predictive of future malignancy. 
Also, this review summarizes studies utilizing radiomics for the classification of high-grade IPMNs and 
tumor detection using CT images, and the classification of cell clusters and microbiota for early detection. 
Furthermore, the ethical and privacy concerns researchers must consider when training models using 
patient data, as well as the steps needed to develop a transparent and ethical model that can be clinically 
adopted, are discussed.

RISK PREDICTION MODELS
One strategy to reduce the unacceptably high false positive results that stem from the low prevalence of 
PDAC in the general population is to focus on higher-risk populations. The “sequential sieve” model has 
been widely adopted for PDAC to enrich screening populations[33]. In this model, a first sieve is used to filter 
the general population to enrich high-risk individuals based on a common phenotype, while a second sieve 
then filters this enriched cohort to find a blood-based or an imaging-based marker among these high-risk 
individuals predicted to develop PDAC[33]. One of the risk factors is familial risk and germline mutations, 
representing about 10% of PDAC patients[34]. Other risk factors include cystic lesions and new-onset 
diabetes[35]. To better understand the natural history of PDAC in the setting of new-onset diabetes (NOD), a 
prospective trial is recruiting participants to investigate the incident rate of PDAC in those with new-onset 
hyperglycemia and diabetes, wherein patients considered to be at the highest risk of harboring an occult 
(asymptomatic) PDAC will undergo abdominal imaging[36]. Another example of a large cohort of patients 
who are being followed for incident PDAC and treatment outcomes includes the Florida Pancreas 
Collaborative, which has created biorepositories, including blood, CT scans, and tissue samples from 15 
institutions in Florida to address PDAC disparities[37]. These cohort-building efforts, aligned with risk 
prediction models [Table 3], are aimed at improving risk assessment, as well as biomarker discovery and 
validation.

Models using health records to assess risk
About 50% of PDAC patients are diagnosed with NOD and 85% are hyperglycemic, both believed to be 
induced by the tumor[54]. Importantly, hyperglycemia can start manifesting on laboratory testing several 
months to 2 years prior to the clinical appearance of “classic” PDAC-associated symptoms (jaundice, weight 
loss)[55]. In 2017, Boursi et al. used health records to create a model to predict PDAC-induced diabetes 
mellitus amongst a cohort of all new-onset diabetes mellitus patients. Using a study cohort of approximately 
180,000 patients with new-onset diabetes mellitus, the trained model analyzed predictors, such as age, 
smoking, body mass index, as well as blood serum levels within three years of the diabetes diagnosis for 
stratification (AUC, 0.82)[38]. For further stratification, Boursi et al. created a model using a study cohort of 
138,232 patients with impaired fasting glucose, or prediabetes. The model analyzed those with impaired 
fasting glucose (IFG), including predictors such as age, body mass index (BMI), and blood serum levels, to 
train the model to identify high-risk patients (AUC, 0.71)[39].
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Table 2. Artificial Intelligence definitions

AI ML ANN DL CNN

A family of 
computational 
methods designed 
to mimic human 
intelligence and 
decision-making

Subset of AI that learns 
to convert input data 
into a desired output 
based on analysis of 
training data[28]. 
Common ML methods 
include support vector 
machines, decision trees, 
and Bayesian networks

Subset of ML designed to 
mimic biological neural 
networks. ANNs include 
computational neurons 
composed of an input 
layer, at least one hidden 
layer, and an output 
layer[29]

Subset of ANNs that contain 
multiple neural layers between 
the input and output layers. 
These networks may contain 
billions of parameters (e.g, GPT-
3 at 175B[30]) that form complex 
representations of patterns from 
training datasets[31]

A class of ANN that uses 
mathematical convolution - 
application of a pattern filter to 
small fields within the data in a 
manner similar to the human 
visual cortex - to interpret 
imaging or audio data[32]. There 
is overlap between CNN and DL 
networks

AI: Artificial Intelligence; ANN: artificial neural network; CNN: convolutional neural network; DL: deep learning neural network; ML: machine 
learning.

Table 3. Summary of recent AI models utilized in PDAC research

Authors Year Model description AI algorithm Results

Risk prediction:

Boursi et al.[38] 2017 Early-onset diabetes, health data Multivariable logistic regression AUC, 0.82

Boursi et al.[39] 2022 Impaired fasting glucose 
diagnosis, health data

Multivariable model AUC, 0.71

Muhammad et al.[40] 2019 Health data, 18 features ANN Training test AUC, 0.86 
Test set AUC, 0.85

Qureshi et al.[41] 2022 Risk prediction using radiomics Bayes classifier 86% accuracy

Chen et al.[42] 2020 Pancreatic ductal dilation Multi-state model AUC, 0.825-0.833 

Early detection:

Mukherjee et al.[43] 2022 Early detection using radiomics ML AUC, 0.98

Permuth et al.[44] 2016 IPMN classification, CT and 
miRNA

Logistic regression AUC, 0.92

Polk et al.[45] 2020 IPMN classification, CT Multivariate model AUC, 0.93

Tobaly et al.[46] 2020 IPMN classification, CT Multivariate model AUC, 0.84

Kuwahara et al.[47] 2019 IPMN classification, EUS DL AUC, 0.98

Hanania et al.[48] 2016 IPMN classification, CT Logistic regression AUC, 0.96

Momeni-Boroujeni 
et al.[49]

2017 FNA biopsy malignancy MNN Stratification of atypical cases as benign or 
malignant, 77% accuracy

Chen et al.[50] 2022 Detection of tumors (< 2cm) 
using radiomics

CNN Internal test, AUC 0.96 
Test set, AUC 0.95

Zhang et al.[51] 2022 Detection of cancer clusters, EUS-
FNA

DCNN Internal test, AUC 0.958 
External test, AUC 0.948-0.976

Kartal et al.[52] 2022 Fecal microbiome Classifier AUC, 0.94

Zaid et al.[53] 2020 Classification of tumors as high 
delta or low delta

Logistic regression-based binary 
classification

AUC, 0.84

ANN: Artificial neural network; CNN: convolutional neural network; CT: computed tomography; DCNN: deep convoluted neural network; DL: deep 
learning; EUS-FNA: endoscopy ultrasonography-fine-needle aspiration; ML: machine learning; MNN: multilayer perceptron neural network; PDAC: 
pancreatic ductal adenocarcinoma carcinoma.

Using data from nearly 800,000 patients, an ANN was developed by incorporating 18 personal health 
features from datasets. These variables included data that are ubiquitous in health records, such as the 
presence of diabetes, race, and family history. The model stratified patients as low-, medium-, and high-risk 
and performed with an AUC of 0.86[40].

Image-based risk models
The term “radiomics” refers to a family of image analysis techniques that convert image data into sets of 
quantitative feature measurements that represent key features like brightness, shape, and texture. The 
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coupling of organ-specific radiomics, which requires organs to be identified within the images for analysis, 
and AI [Table 2], which can provide both organ labels and integrated analysis of the radiomics features, may 
be a powerful tool for analyzing routine clinical images alongside a radiologist to provide new clinical 
insights such as a prediction of malignancy [Figure 1][56,57].

Several methods utilized in recent research have incorporated image features seen in multiple image 
modalities, such as computed tomography (CT) and magnetic resonance imaging (MRI), to create models 
to detect those with a higher chance of malignancy. Qureshi et al. conducted a retrospective study of 72 
subjects to analyze images to find precursor indicators of PDAC present in pre-diagnostic CT scans, which 
were taken 3-6 months prior to PDAC diagnosis when indicated as normal by a pathologist. Their Bayes 
classifier model detected image features able to categorize scans as ‘healthy’ or ‘pre-diagnostic’ with an 
accuracy of 86%[41].

Chen et al. investigated the use of a multi-state model of abnormal pancreatic morphological features from 
CT and MRI in combination with patient demographics, clinical features, and lab measurements for risk 
prediction. Out of the PDAC abnormalities evaluated, the most prevalent were pancreatic parenchymal 
atrophy reported in 21.4% of patients and calcification in 12.6% of patients. Among these morphological 
features, pancreatic duct dilatation was determined as an additional indicator of PDAC. The model found 
that those with a calculated risk of more than 5% represented 90% of their total PDAC study population 
(AUC 0.825-0.833)[42].

EARLY DETECTION MODELS
Radiomics-based AI models
Signs of pancreatic cancer have previously been estimated to be detectable 3-36 months before diagnosis[55]. 
Mukherjee et al. trained a ML model to detect PDAC at a stage not visible on CT imaging by radiologists. 
Using a pre-diagnostic cohort of 155 patients and a control cohort of 265 patients, CT scans were manually 
segmented, then radiomic CT features were extracted and selected. Four ML classifiers were trained, with 
Support Vector Machine performing the best in classifying CT scans as ‘pre-diagnostic’ or ‘normal’ when 
evaluating specificity, sensitivity, AUC, and accuracy (AUC, 0.98). All four ML models performed better 
than the radiologists, who performed with an AUC of 0.66[43]. This indicates the promising potential to use 
AI in conjunction with normal imaging to aid radiologists in detecting potential malignancy. Comparably, 
another study sought to increase pancreatic detection in tumors smaller than 2 cm, which are often missed 
by radiologists[58]. Using a CNN-trained model, the pancreas and tumor were segmented from contrast-
enhanced CT scans. This DL-based computer detection model was used in 546 patients with pancreatic 
cancer and a control group of 733 in Taiwan[50].

One area of interest is the ability of radiomics to predict malignancy risk in patients with cystic IPMNs, 
which can transform to PDAC. IPMNs arise from the pancreatic duct and side branches and are estimated 
to account for approximately 10% of PDAC patients. Notably, 3% of the general population is estimated to 
have an IPMN, indicating that many of these lesions are benign[59]. Predicting whether these neoplasms are 
malignant on imaging can be a valuable tool in early detection; however, current imaging assessment is 
challenging and not accurate in predicting malignancy risk. Still, the current Fukuoka International 
Consensus Guidelines (ICG) (and other guidelines) use morphological imaging features to guide the 
decision to proceed with surgical resection[60]. This carries a risk of overtreatment, since pancreatectomy is 
associated with the highest rates of morbidity (40%) and mortality (up to 2%) among abdominal 
surgeries[61]. Hanania et al. previously showed the correlation between radiomic features and 
histopathological grade of IPMNs. In their logistic regression model, an AUC of 0.96 was achieved in 
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distinguishing cancer or high-grade dysplasia from low-grade dysplasia in IPMNs[48], demonstrating 
radiomics-based AI models [Table 3] may be developed as an alternative method of diagnosis that is 
noninvasive, time efficient, and cost-effective. Similarly, Permuth et al. extracted 14 radiomic features for a 
logistic regression model along with miRNA expression data and clinical factors, resulting in an AUC of 
0.93[44]. Polk et al. built a model to predict IPMN malignancy using CT radiomics. In this multivariable 
model, both venous and arterial phase scans from patients with histologically confirmed IPMNs were 
utilized. All scans were separated into two cohorts, “malignant” and “benign”, for model building, with the 
major image feature differences being pancreatic duct diameter, cyst wall width, and enhancing solid 
component. Their model achieved an AUC of 0.93 using ICG and radiomic features[45]. Similarly, Tobaly et 
al. validated and trained logistic regression models to predict IPMN malignancy using radiomic features, 
obtaining an AUC of 0.84. Further models were created to predict between the several subtypes of IPMNs, 
with the best performing model discriminating between the high-grade dysplasia and invasive pancreatic 
IPMNs (AUC, 0.92)[46].

In addition to CT and MRI imaging, AI models have been applied to endoscopic ultrasound (EUS) images 
to assess IPMN malignant potential. A study published in 2019 investigated AI usefulness in diagnosing 
IPMN-associated PDAC using preoperative EUS imaging. Using 3,970 images, the DL algorithm was 
trained to output the probability of malignancy, performing with an AUC of 0.98 and an accuracy of 0.94. 
In comparison with human diagnosis accuracy measured as 0.56 at a preoperative stage, the AI model was 
more accurate[47].

Detection models
With a specificity of 96% and a sensitivity of 92%, endoscopic ultrasound-guided fine needle aspirations 
(EUS-FNA) biopsy of solid pancreatic lesions is highly accurate in diagnosing pancreatic cancer using rapid 
on-site cytopathology evaluation (ROSE)[62,63]. Nevertheless, FNA often results in the ambiguous diagnosis of 
“atypical cells”. In such cases, diagnosis is difficult, and the underlying pathology can be varied, including 
chronic pancreatitis and benign and malignant lesions[64]. To shorten time and effort in detection, AI can 
assist cytopathologists in diagnosing these difficult cases. Momeni-Boroujeni et al. created a multilayer 
perceptron neural network to better distinguish between benign and malignant cell clusters by segmenting 
and extracting the cytology features from the 277 images of benign, malignant, and atypical cases. The 
model performed with an accuracy of 90.6% to categorize the images as benign or malignant when 
including all three types of cases[49]. To increase efficiency and speed of ROSE, Zhang et al. used deep 
convolutional neural network models to segment stained cell clusters and distinguish malignant cells from 
benign cells. Their cancer identification model performed with an AUC of 0.958 in the internal test and 
0.948-0.976 in the external test and achieved a sensitivity of 0.94[51], similar to that of cytopathologists and 
higher than trained endoscopists[65].

Another area of research has been in the use of the microbiome as a potential early detection biomarker of 
pancreatic cancer. Bacterial microbiomes within individuals are similar across multiple organs, including 
the pancreas, duodenum, and oral cavity. Additionally, there is an observable difference in the composition 
of bacterial species between those with and without pancreatic cancer[66]. Kartal et al. used shotgun 
metagenomics and 16S RNA sequencing to distinguish pancreatic cancer cases from controls. Samples were 
collected from saliva, feces, pancreatic parenchyma, and pancreatic tumor in the Spanish and German 
cohorts. Although certain bacterial species were found in abundance in the gut in those with PDAC, such as 
Veillonella atypica, other species had reduced in number. Using the 27 species found in the fecal 
microbiome, they trained a LASSO logistic regression model to distinguish those with and without PDAC 
with an AUC of 0.84. Notably, no microbiome populations were associated with other clinical variables, 
suggesting the unique microbiome seen in PDAC patients is due to the tumor growth and is a valid 
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biomarker. With the addition of CA 19-9 serum marker to the model, accuracy in predicting PDAC 
improved, performing with an AUC of 0.94. Future development of AI and microbiome populations may 
provide an accessible and noninvasive population-wide method of detecting PDAC during a curable 
stage[52].

FUTURE DIRECTIONS AND CLINICAL ADOPTION
Federated learning
Research collaborations between different institutes can provide more meaningful data for model training, 
especially when studying rare diseases such as PDAC. The federated learning approach to collaboration 
involves sending computer models from one institution to another without sending or exchanging patient 
data[67]. In the standard development of models, concerns over patient privacy remain a large barrier to the 
collaboration and expansion of data sets. Federated learning is beneficial in that the patient's information 
stays locally within the institution[68]. The use of federated learning in pancreatic cancer early detection 
remains in a nascent phase. As PDAC is a heterogeneous and relatively rare cancer, utilization of more data 
that spans institutions and demographics is expected to strengthen the ability of AI to predict the risk of 
malignancy or detect early, potentially curable stages of disease with wider applicability. Indeed, bias is a 
significant challenge to overcome with AI model building efforts, including the inclusion of 
underrepresented minorities, rare conditions, and disadvantaged socioeconomic groups. Some examples of 
successful federated learning in medical literature include its use in predicting future hospitalizations of 
patients with heart diseases using EHR and in COVID-19 diagnosis using X-Ray and ultrasound 
images[69,70]. Ongoing efforts through NIH will apply this form of collaboration to PDAC early detection[71].

Beyond risk stratification: subtyping PDAC biology for personalized screening
Several elements may be implemented in future AI model building to ensure optimum performance, 
accuracy, and personalization. PDAC is a heterogeneous disease where treatment response, tumor growth 
rate, and clinical outcomes vary. Thus, having a customized screening plan for each patient would make 
detection at an early stage more likely. In aggressive subtypes, such as high delta tumors[72], doubling time of 
tumor growth was observed to be faster than those of the less aggressive low delta subtype. Moreover, in 
comparison to the patients with low delta tumors at diagnosis, the patients with high delta tumors at 
diagnosis were associated with higher blood glucose levels in the pre-diagnostic period, faster wasting of 
muscle and fat, and more advanced, incurable stages at diagnosis. Creating an AI model that predicts 
whether a patient will have an aggressive or indolent form of the cancer may help form scheduled 
surveillance better suited to detect signs of malignancy before metastasis[53].

Clinical application of AI models
Multiple challenges remain with clinical implementation of AI for early detection of PDAC. Awareness of 
the ethical and privacy concerns involved in examining patient data at population scales is essential to 
creating a trustworthy model. Privacy underprotection and overprotection of patient information is a major 
concern when using big data. While underprotecting data can lead to breaches in privacy, overprotecting 
can inhibit or block innovation[73]. In the context of PDAC, new developments that balance data protection 
concerns are needed as early detection strategies are integrated into health systems. In addition, there are 
ethical pitfalls in implementing AI models in a healthcare setting. For example, there may be instances when 
the AI and physician disagree on a diagnosis, where the physician can explain their reasoning in their 
judgment, whereas AI cannot provide an explanation. Without a clear justification, the patient may not be 
given enough information to make the best decision for his or her own health. The physician may keep their 
original diagnosis, but in the case that it is wrong, it will appear as if they were disregarding crucial 
evidence. They may also be pressured into agreeing with the model, trusting its accuracy more than their 
clinical judgement[74].
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Figure 2. Summary of the development and implementation of AI in medicine[67,73,75,77].

The start of every model building begins with thinking of its purpose and reviewing literature on the 
appropriate material and current models for the development of a clinically useful model. An appropriate 
AI algorithm is chosen with consideration of its desired purpose and the maintenance of patient privacy and 
consent. External evaluation will provide the most accurate analysis of the model's reproducibility, which is 
important for further clinical trials[75].

With the growing complexity of AI used and its influence in medicine, there is a need to provide 
transparent reporting in its trials. In a study evaluating image-based diagnostic AI study design, only 6% of 
papers examined included external validation in their methodology, an essential component for thorough 
clinical evaluation[76]. The minimum information about clinical artificial intelligence modeling (MI-CLAIM) 
checklist was intended to provide transparency in the documentation of the development of these 
algorithms, including an evaluation of bias and instructions for external reproducibility. In each clinical 
trial, MI-CLAIM starts with describing the study design, where the researcher answers: 1. What will the 
algorithm be answering, and how would this fit in a real-world scenario? 2. How is the performance 
measured and how is it used to evaluate its performance in a clinical setting? 3. Is the cohort representative 
of a real-world population? 4. Is the testing model performing better than the current models?

Next, the MI-CLAIM has the researcher document each step in the model testing and training, highlighting 
the methods by which groups were separated to ensure the testing model is representative of the clinical 
population. The model’s type is then selected, describing which were the best parameters found and how the 
data was picked, cleaned, and formatted. Statistical performance will be listed, as well as clinical 
performance evaluators, such as specificity and sensitivity. An examination of the model will provide 
readers and evaluators with information on the model’s performance, reliability, and significance in the 
field. To implement the AI in the clinical setting, the researcher's ultimate goal, the code, computer 
requirements, notes, or any factors needed for the model building are provided or externally evaluated for 
reproducibility and accuracy[77].

After conducting the clinical study, each model must receive approval from the governing health institution 
for its clinical adoption. The Food and Drug Administration (FDA) is the governing institution in the 
United States regulating the clinical implementation of medical technology and treatments. Furthermore, 
AI models utilized in hospitals need to be monitored and regulated in their practice, considering the ethical 
and privacy concerns involved, including the requirement of patient consent. Physicians can consider its 
use and how much influence the AI will have in decision-making [Figure 2][75].

CONCLUSION
This review summarizes the recent developments in which AI has the potential to aid early detection efforts. 
Risk prediction models have been developed by focusing on factors associated with PDAC, such as new-
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onset diabetes, to identify those who may benefit from surveillance imaging. With proper validation and 
development, AI may be used as an aid for clinicians to detect cancer growth at a curable stage by using 
blood-based markers, radiomics and analyzing fecal microbiome composition. In the development of AI 
models, ethical and privacy concerns should be carefully addressed before full implementation, including 
data protection and discordant conclusions between AI and physicians. Future studies incorporating 
federated learning may advance these efforts by assembling large and diverse data while ensuring patient 
data privacy. In building AI models for clinical implementation, considerations of transparency about the 
model application and in what settings AI should be deployed are critical to ensure proper use for PDAC 
early detection and other AI applications.
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