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Abstract
Soft material robots are uniquely suited to address engineering challenges in extreme environments in new ways 
that traditional rigid robot embodiments cannot. Soft robot material flexibility, resistance to brittle fracture, low 
thermal conductivity, biostability, and self-healing capabilities present new solutions advantageous to specific 
environmental conditions. In this review, we examine the requirements for building and operating soft robots in 
various extreme environments, including within the human body, underwater, outer space, search and rescue sites, 
and confined spaces. We analyze the implementations of soft robotic devices, including actuators and sensors, 
which meet these requirements. Besides the structure of these devices, we explore ways to expand the use of soft 
robots in extreme environments with design optimization, control systems, and their future applications in 
educational and commercial products. We further discuss the current limitations of soft robots recognizing 
challenges to compliance, strength, and control. With this in mind, we present arguments for the future of robotics 
in which hybrid (rigid and soft) structures meet complex environmental needs.
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INTRODUCTION
Robotic systems are widely used in industrial settings such as manufacturing[1], construction[2], retail[3], 
agriculture[4], and healthcare[5]. Robots can improve product quality, reduce labor costs, and, most 
importantly, increase human safety in hazardous industrial settings[6]. Robotic systems can carry out 
inspection and monitoring on job sites as they allow for terrain navigation, automated detection of defects, 
and data acquisition[7]. These systems reduce the risk of human injury caused by heavy equipment or 
hazardous materials, including chemicals or industrial waste[8]. Robotic devices can improve healthcare via 
efficient drug delivery[9], minimally invasive surgeries[10], and rehabilitation wearables[11]. Robots can reduce 
risks to humans and improve performance in complex or otherwise unsafe environments. In this paper, we 
explore the advantages of considering the material composition of robots, specifically soft materials, when 
designing for tasks in extreme environments.

The field of soft robotics research has rapidly evolved in the last decades after pioneering works in the 1990s 
through the early 2010s[12]. However, pneumatic soft actuators were first introduced in 1950 when 
McKibben developed a soft braided actuator for an orthotic appliance[13]. McKibbens muscles[14], otherwise 
called pneumatic artificial muscle (PAM) actuators, consist of a mesh-constrained elastomeric bladder that 
increases longitudinal stiffness to expand radially and contract linearly[15]. More generally, soft robots are 
composed of low-modulus materials including polymers, elastomers, or gels[16]. These materials provide 
flexibility[17], resistance to brittle fracture[18], biostability[19], and self-healing capabilities[19]. These properties 
allow soft robot structures to withstand highly variable conditions and may fill performance gaps that 
traditional machines cannot accommodate.

In this paper, we aim to compare the utility of soft robots in specific environments to more traditional, rigid 
robots (Section “COMPARING RIGID AND SOFT ROBOT PROPERTIES”). This review will outline 
current state-of-the-art soft robotic actuators, accompanying sensors, and control methods for operation 
specifically within challenging environments [Figure 1]. These environments include the human body 
(Section “SOFT ROBOTS INSIDE THE HUMAN BODY”), marine environments (Section “SOFT 
ROBOTS FOR MARINE ENVIRONMENTS”), space exploration (Section “SOFT ROBOTS FOR SPACE 
EXPLORATION”), and search and rescue sites including confined spaces (Section “SOFT ROBOTS FOR 
SEARCH, RESCUE, AND CONFINED SPACES”). Design methods using topology optimization, control 
system strategies, and considerations for end users of potential commercial and educational products 
represent areas of growth in soft robotics research (Section “EXPANDING THE USE OF SOFT ROBOTS 
IN EXTREME ENVIRONMENTS”). Altogether, this review presents strategies for developing robotic 
devices in extreme environments and opportunities for the future of this field.

COMPARING RIGID AND SOFT ROBOT PROPERTIES
Rigid and soft robots have properties that make them effective in different environments. Traditional 
robotic systems have decades of development to support their application in many fields. Control systems 
for rigid robots can be programmed to perform multiple actions and can be accurately modeled through 
kinematic and dynamic models[24]. Soft robots have been developed for impact resistance which makes them 
advantageous for more unpredictable environments[25]. However, most soft robotic actuators require 
changes to the structure of the actuator to perform different actions[26]. This is because soft actuators usually 
perform a single action and need to be constructed with multiple parts to perform more than one type of 
motion[26]. The control and modeling of soft robots are challenging as these structures consist of nonlinear 
systems that are challenging to represent mathematically due to material nonlinearities[27]. In terms of 
physical strength, soft robots are prone to buckling due to their soft material composition which may 
prevent them from carrying heavy loads[26]. Thus, rigid robots may be more advantageous when precise 
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Figure 1. This review focuses on the challenges and opportunities of engineering soft actuators and soft sensors in extreme 
environments including inside the human body[20], marine exploration[21], space exploration[22], and search, rescue, and confined 
spaces[23]. [Images are licensed under CC BY 4.0. http://creativecommons.org/licenses/by/4.0/].

motions or the ability to lift heavy loads are required. Soft robots also have limitations regarding actuation 
speed and accuracy depending on the material and actuator type. Despite these limitations, soft robotics 
research is rapidly evolving, and new structures continually improve upon these shortcomings. Table 1 
summarizes these benefits by comparing the advantages of soft and rigid materials for applications 
requiring flexibility, resistance to brittle failure, thermal insulation, biocompatibility, and self-healing 
capabilities in extreme environments.

Pneumatic and hydraulic-driven soft actuators composed of elastomeric materials can withstand 
compressive loads and enable impact absorption due to their deformable structure[25]. Durability and 
puncture resistance can be further enhanced in elastomeric composites with fiber or fabric 
reinforcements[43]. Fabric-reinforced composite materials allow for tunable mechanical properties including 
improved tear and puncture resistance in pneumatic networks[43]. Flexible and deformable material 
compositions enable bending, torsion, expansion, and contraction motions in soft robots[44]. Soft robotic 
systems are commonly fabricated from materials with an elastic modulus, E, ranging from 104 to 109 Pa, 
providing flexibility compared to rigid robots, which comprise materials with elastic moduli within 109 to 
1012 Pa[28].

Soft robots also offer unique qualities including extrinsic or intrinsic self-healing properties, making them 
beneficial for operations in unpredictable environments. Extrinsic self-healing materials consist of healing 
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Table 1. Summary of benefits of properties of soft materials over traditional rigid materials in devices for certain applications in 
extreme environments

Property and 
desired quality Soft materials Rigid materials

Flexibility and 
elasticity: Low 
Young’s modulus

(Silicone elastomer, PDMS, rubber, low-density polyethylene) 
E = 104 to 109 Pa[28]

Metals or hard plastics 
E = 109 to 1012 Pa[28]

Resistance to brittle 
failure: high ductility

Silicone rubber: 80% to 530%[29] Al: 65%, Fe: 43%[30]

Lightweight: low 
density

SR-1610, Douglas and Sturgess 1.15 g/cm3; Dragon skin, Smooth-On 1.08 
g/cm3; Ecoflex 00-10, Smooth-On 1.03 g/cm3; HS-IV, Dow Corning 1.11 
g/cm3; Candle Gel, Endless Possibilities 0.98 g/cm3; Tin-Sil, US 
Composites 1.07 g/cm3; Semicosil 921, Wacker Solution 1.10 g/cm3; 
8116SS plastic, M-F Manufacturing 0.99 g/cm3; CF11, Nusil Technologies 
1.04 g/cm3[31]

Steel 7.8 g/cm3, iron 7.9 g/cm3, aluminum 2.7 
g/cm3, copper 8.9 g/cm3, brass 8.5 g/cm3[32]

Thermal insulation: 
low conductivity

Silicone rubber: 0.06 to 6.5 W/mK[33] Al: 210 W/mK, Fe: 76.2 W/mK, high carbon 
steel: 19-52 W/mK, low carbon steel: 25.3-93 
W/mK, stainless steel: 10-34.3 W/mK[34-38]

Biocompatibility Natural protein-based materials such as gelatin can help with 
biointegration and are absorbable[39]. Coating surfaces with polymeric 
biomaterials can enhance cellular attachment[40]. Silicone rubber has 
excellent biocompatibility[41]

Ti alloys can be biocompatible[42]. Generally, 
corrosion of metallic implants may jeopardize 
the mechanical stability of the device and the 
integrity of surrounding tissue. Metal traces 
can disturb homeostasis[42]

Self-healing ability Self-healing damages that occur during operation can extend service life 
by (a) creating reversible crosslinks in thermoplastics and (b) introducing 
healing agents into cracks

-

PDMS: Polydimethylsiloxane.

agents added to a base material while intrinsic self-healing materials have inherent healing capabilities. 
Materials with intrinsic healing characteristics have dynamic covalent interactions where covalent bonds 
can break and reform[45]. These covalent bonds are strong (150-550 kilojoules per mole). Due to high bond 
strengths, these self-healing materials usually require external stimuli (heat or light) to activate their healing 
characteristics[45]. Self-healing polymers with mechano-reversible bonds can form after breakage by the 
rebinding reactive functional groups[45]. Other self-healing soft robots have been implemented using 
polymer networks that employ a thermoreversible Diers-Alder reaction to re-form after damage due to 
sharp objects or overloading[45]. Cheng et al. proposed a self-healing dielectric elastomer actuator (DEA)-
driven soft robot that operates on land and in water[46]. The ion-to-dipole interactions between the charge 
carriers and the fluorinated polymer matrix within the ionic electrode of the DEA allow the electrode to 
self-heal from damage in aqueous or dry land environments. Kashef Tabrizian et al. propose a soft actuator 
that comprises shape memory alloy (SMA) wire reinforcements within a castor oil-based self-healing 
polymer able to heal large incisions. Diers-Alder covalent bonds and weak hydrogen interactions relink and 
enable the restoration of damaged material surfaces[47]. The ability of soft robots to withstand impact from 
external forces provides advantages that increase their operational life.

Soft robots can not only operate despite external disturbances but also use these conditions to their 
advantage. The integration of soft materials to build robotic systems has enabled the development of new 
actuation and sensing techniques that leverage environmental conditions to function. Environmental inputs 
for soft robots range from pressure[48], chemical[49], electrical[50], and magnet-driven systems[51] to 
temperature[52], acoustics[53], and light[54] [Table 2].

Recent developments in soft robotics have focused on design techniques that prioritize optimization and 
efficiency. Several soft robot designs are implemented through bio-inspiration and bio-mimicry[95] including 
locomotion, such as crawling, jumping, aerial motion, and swimming. These actuation mechanisms are 
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Table 2. Summary of soft robot actuation mechanisms and their application examples in extreme environments

Actuation 
mechanism Description Examples in extreme 

environments

Magnetics Uses variations in magnetic fields to actuate. Materials: ferrogels, ferromagnetic 
particles, iron-based alloys, nickel-based alloys, and iron-oxide nanoparticles 
(magnetite)[55]

Body: magnetic hydrogels for tissue 
engineering[56] and drug delivery[56] 
Marine: untethered swimming soft 
bots composed of magnetic sheets[57] 
Space: a growing robot for antenna 
applications[58] 
Search, rescue, and confined spaces: 
magnetics-driven jumping soft 
robot[59]

Uses variations in electric fields to actuate. Materials: DEAs[60], hydrogels, liquid 
metals, conductive polymers, IPMC, SMP, dielectric fluids, and nanoparticles[61]

Body: DEAs for artificial muscles[62] 
Marine: DEA-based soft fish robot[63], 
hydrogel stingray bot[64], and IPMC 
manta ray[65] 
Space: DEA soft robotic arm[66] 
Search, rescue, and confined spaces: 
micro IPMC actuators for pipe 
applications[67]

Uses different sources of light to actuate or perform different motions. Materials: 
photoactive LCP and hydrogels[68]

Body: PDMS in drug delivery[69] 
Marine: PDMS composite fish bot with 
nIR light irradiation stimulation[69], UV-
driven LCP bots[70] 
Space: crawl, squeeze, and jump 
bots[71] 
Search, rescue, and confined spaces: 
climbing light-driven soft robot[72]

Uses chemicals to actuate or perform different motions. Include variations in pH levels 
as well as combustion reactions. Materials: pH-responsive hydrogels[73], pH-
responsive polymers[74], pH-responsive nanoparticles[75], nitrous oxide, propane, 
methane, and butane for combustion reactions[76]

Body: pH-responsive hydrogel for drug 
delivery[75], pH-responsive polymers 
for cancer imaging and therapy[77] 
Marine: combustion-driven underwater 
jumping robot[78] 
Space: combustion-driven robot that 
can jump using butane and oxygen[22] 
Search, rescue, and confined spaces: 
combustion-driven jumping bot using 
butane and oxygen[79]

 Uses variations in temperature levels to perform different motions. Materials: 
supramolecular hydrogels[80] and thermoresponsive polymers[81] such as SMP

Body: temperature-responsive 
hydrogels for drug delivery 
applications[82] 
Marine: SMA octopus robotic arm 
bending[83] 
Space: SMP planetary exploration 
bot[84] 
Search, rescue, and confined spaces: 
programmable thermal actuator 
crawling bot[85]

Uses variations in sound frequencies to actuate[53] Body: ultrasound robots navigate 
mouse brain[53] 
Marine: fish bot for underwater 
exploration[86] 
Search, rescue, and confined spaces: 
ultrasound actuators for ultrasound 
imaging applications[87]

Uses variations in pressure to actuate or perform different motions. These systems 
include pneumatically driven and hydraulically driven systems. Materials: elastomeric 
polymers (silicone, PDMS)[88]

Body: PAM cardiac sleeve[89], hydraulic 
endoscope[90] 
Marine: underwater fauna collection 
bellows-type grippers[91] 
Space: deployable and storable 
pneumatic arm[92] 
Search, rescue, and confined spaces: 
soft vine robot[93] and growing soft 
robot[94]

DEAs: Dielectric elastomer actuators; IPMC: ionic polymer metal composites; SMP: shape memory polymers; LCP: liquid crystal polymers; PDMS: 
polydimethylsiloxane; SMA: shape memory alloy; PAM: pneumatic artificial muscle.

Electrics 

Light 

Chemical 

Temperature

Acoustics 

Pressure 
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inspired by biological organisms including worms, aquatic creatures, and animals that can perform these 
motions.

New soft robot design developments that increase sustainability have also been explored. For example, using 
sustainable materials and resources such as biomaterial elastomers and solar power may help reduce the 
ecological footprint of soft robots[96]. Biodegradable materials can be used in implantable devices or seawater 
applications. These materials include biodegradable polyurethanes, polyesters, hydrogels, and gelatin-based 
gels[96]. Fabrication techniques including additive manufacturing also reduce waste. Three-dimensional (3D) 
printing methods including fused deposition modeling, direct ink writing, selective laser sintering, inkjet, 
and digital light processing[97] have been explored. These techniques enable the design of complex multi-
material structures with limited material waste[97].

Sensing mechanisms have recently been demonstrated to monitor and detect the shape and position of soft 
robots and the surrounding environment[98]. These methods range from adding resistive, capacitive, and 
optical sensors[98] to triboelectric nanogenerators[99]. Hegde et al. describe multimodal sensor systems created 
for soft robotic applications such as temperature sensing and tactile force sensing networks[98]. The modeling 
and control of soft robots have also seen new developments. Several models including continuum 
mechanics models, using finite element method (FEM) techniques for 3D continuum models, geometric 
models, and discrete models, have been implemented to mathematically represent the structure and 
motions of soft robots[100]. Other soft robot control system implementations include bistable systems, which 
create soft logic modules eliminating the need for external rigid components[101]. These new advances in 
design, sensing, and control allow soft robots to become more efficient for use in extreme environments.

Each environment discussed in this paper presents unique design challenges and opportunities. For 
example, the human body is a complex mechanochemical environment as tissues and organs have physical 
characteristics such as viscoelastic properties, stiffnesses, and structures that vary widely[102]. Even the 
development of wearable devices, worn outside the body, presents challenges such as comfort and safety, 
which are discussed at length in another review paper[103]. The benefit of using soft materials in implantable 
devices is that mechanical properties can be tuned to compliance-match human tissues. This can prevent 
immune responses and rejection internally with the potential to biodegrade after use[104]. Engineering in 
marine environments is challenging because of the need to withstand high pressure and salinized fluids 
during deep ocean exploration[105]. Soft robots are beneficial in underwater environments due to their soft 
structures which reduce disruptions to marine life. Hydraulic actuation mechanisms can reduce the 
pressure differential in devices and aid in underwater locomotion[106]. Space is a challenging ultrahigh 
vacuum environment with high-energy particles and radiation. Significant pressure differences in space 
compared to the atmospheric pressure on Earth can influence the structural integrity of robots[22]. Soft 
robots may be useful for space exploration due to their durability in extreme temperatures and their ability 
to deploy from a small size. Finally, confined spaces that necessitate navigation through narrow areas and 
obstructions such as debris, and collapsed structures pose a danger to humans conducting search, rescue, 
and inspections[107]. Soft robots allow for increased mobility and adaptability on obstructed surfaces and 
enclosed spaces due to their size, flexibility, and unique locomotion techniques [108]. For these reasons, the 
use of soft robots in these environments is explored.

SOFT ROBOTS INSIDE THE HUMAN BODY
The human body is a dynamic environment of systems responsible for coordinated biological functions. 
About 55%-60% of human body weight consists of fluid including water[109] blood, interstitial fluids, and 
gastric acid[110]. These fluids have viscosities, densities, and pH levels that must be maintained for 
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homeostasis[111]. Contamination of body fluids upon contact with heavy metals or other harmful materials 
can result in infections and illnesses such as heavy metal poisoning[112]. Additionally, the internal 
temperature of the human body must be regulated at 36.1 to 37.8 °C[113]. The gut microenvironment consists 
of microbiomes and bacteria used for digestion and preventing diseases[114]. Gut bacteria help digest dietary 
fiber and cellulose, provide vitamins, and destroy toxins[115]. However, unwanted bacteria can cause disease 
due to dysbiosis after antibiotic treatment or surgery[115]. Maintaining the biological microenvironment 
surrounding implanted devices helps prevent negative impacts on homeostasis.

Implantable robotic devices include assistive devices[116], minimally invasive surgical tools[117], and drug 
delivery vehicles[118]. They are designed to (1) avoid inflammatory responses due to contact between the 
device and biological fluids, which can lead to thromboembolism; (2) leverage biocompatible and 
biodegradable materials; and (3) have a high safety factor by being reliable and durable for long periods[104]. 
Soft robots can largely meet these requirements as they are often designed to mimic biological functions 
using biocompatible materials with stiffnesses similar to human tissues[104]. While the human body is a 
highly complex environment, we see (1) infection reduction; (2) compliance matching; and (3) 
biocompatibility as ways in which soft robots can address engineering challenges in the body.

Embodiments of soft actuators in vivo
Shifting material composition from metals to soft elastomers and hydrogels is the most distinct difference 
between traditional rigid and soft robots. Silicone rubbers are commonly used to build soft robots given 
their robust elastomeric material properties[119]. Silicone is stable at low and high operating temperatures (> 
150 °C[120]), in different oxidation states, in water and chemicals, and is an electrical insulator[121]. Silicone 
elastomers have similar mechanical properties to human muscles[122]. However, silicone can elicit a harmful 
immune response when implanted for long periods[123]. Biocompatibility and biodegradability of soft 
material chemistry are vital for the long-term stability of implantable devices.

Hydrogel actuators are widely used for building biomedical devices[124]. Hydrogels have high water content 
leading to swelling and deswelling responses which is useful for soft actuator function[125]. Hydrogel 
materials can be stimulated by various inputs including environmental parameters such as pH, temperature, 
light, humidity, and electricity[126]. These materials have low thermal conductivities and can be used for 
devices where thermal insulation and regulation of body temperatures are required[127]. For instance, 
polyacrylamide hydrogels composed of 88 wt% water have a thermal conductivity of 0.57 ± 0.04 Wm-1·K-1[128]. 
Hydrogel-based actuators can be biodegradable[19] or have biocompatible properties that may be ideal for 
some applications inside the human body[125]. Material chemistry can be tuned to achieve stiffnesses[129] and 
degradation rates[130] to enhance biocompatibility. The properties of elastomer and hydrogel materials make 
them good candidates for engineering actuators to build medical devices in vivo.

Silicone fluid pressure-driven soft actuators have long been used in implantable assistive devices and 
wearables[131]. Movements induced by pneumatic actuation, such as bending, twisting, and expansion, can be 
achieved by mechanical programming using fiber reinforcements[132]. PAM actuators have a large specific 
power of about 10 kW/kg[133] and similar energy efficiency to human muscle[133]. Specifically, muscles have 
an efficiency of about 40% while PAMs have an efficiency of about 49%. PAMs can be used to mimic the 
contractile motion of the heart[89] in indirect cardiac compression [134] [Figure 2A] and ventricular assistive 
devices[135] [Figure 2B]. Hu et al. designed a PAM-based device to support diaphragm function using 
biocompatible polyurethane composites [Figure 2C][136]. As a pneumatic actuator, PAMs usually have high 
payloads but may suffer from noise and poor power consumption performance[137]. However, they can 
recapitulate biological functions allowing soft robotic devices to safely integrate with the body by 
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Figure 2. Use of PAMs in implantable soft robots. (A) Soft pneumatic cardiac sleeve to aid with cardiac compression for heart 
failure[134]; (B) Soft ventricular assist device composed of McKibbens actuators to aid in left ventricle contraction[135]; (C) PAM 
diaphragm to help the contraction of the diaphragm for respiratory issues[136]. [Images (A-C) are licensed under CC BY 4.0. http://
creativecommons.org/licenses/by/4.0/.] PAMs: Pneumatic artificial muscles.

conforming to organ surfaces and preventing disturbances to other biological processes.

Hydraulic actuators use fluid pressure[138] and mechanical programming to perform similar movements to 
PAMs[138] but can generate higher output forces[139]. Hydraulic actuators can be seamlessly added to 
endoscopes that typically have fluid lines attached[140]. Traditional endoscopes require frequent maintenance 
and complex sterilization processes. Hydraulic-based actuators may reduce these issues with low-cost 
material composition[90]. A hydraulically actuated endoscope for gastric screening includes water-jet 
actuators to enhance the bending motion for improved imaging[90]. Thus, hydraulic actuators used in 
endoscopes can facilitate better imaging, earlier disease detection, and safer endoscopy for patients[90].

In addition to implantable devices, research into drug delivery vehicles and minimally invasive surgical tools 
using soft materials devices has been sustained because of the promise of early detection and treatment of 
disease. Soft material microtools can be actuated by temperature gradients[52], magnetic fields[51], chemical 
reactions[49], acoustic fields[53], or electrical signals[50]. Untethered microrobot designs can navigate through 
vascular systems, adhere to soft tissues, and deliver site-specific drugs[141]. These can be fabricated from 
thermally responsive materials such as poly(N-isopropyl acrylamide) and its derivatives. Untethered, 
ultrasound-actuated bubble-driven microrobots facilitate slow drug release via hydrogel tissue adhesion[141] 
or flow through the bloodstream[53] [Figure 3A]. Magnetically-driven soft actuators composed of 
biodegradable silk proteins and magnetite nanoparticles[142] can navigate through narrow regions within the 
human body[143]. Targeted drug delivery devices, such as one made from biodegradable poly(aspartic acid) 
and a zinc and iron core[20], can be magnetically guided to specific locations, such as the stomach where 
gastric acids trigger propulsion and drug release [Figure 3B].

Free-floating microdevices sense and respond to the body’s environment by performing medical tasks with 
minimal disruption to the biological microenvironment. Hu et al. propose a soft millirobot for targeted 
drug delivery applications composed of a bilayer adhesive body, a mussel-inspired hydrogel layer, and an 
octopus-inspired magnetic structural layer enabling the robot to adhere to a catheter and travel to the 
targeted area using an external magnetic field[144]. In another study, Yang et al. propose a millipede-inspired 
soft drug delivery robot that can release drugs at a targeted area in the stomach[145]. The robot employs 
Helmholtz coils which allow magnetic fields to be generated to perform precisely controllable movements. 
The millipede-inspired legs of the robot reduce contact between the robot and the ground, reducing friction 
and enabling movement across wet surfaces[145], such as tissue and organs.

http://creativecommons.org/licenses/by/4.0/.
http://creativecommons.org/licenses/by/4.0/.
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Figure 3. Soft robotic microtools designed for use in vivo. (A) Untethered acoustically driven bubble bots controlled by ultrasound into a 
mouse brain[53]; (B) Untethered magnetically driven targeted drug delivery devices that are propelled by gastric acid[20]; (C) Tethered 
stiff-soft photothermal microgripper at the tip of an optical fiber controlled by a light polymerized gel that can swell or shrink either due 
to temperature or pH[146]. [Images (A-C) are licensed under CC BY 4.0. http://creativecommons.org/licenses/by/4.0/.]

In minimally invasive procedures, tethered devices can leverage endoscopes for signaling capabilities and 
power sources from the fiber[54]. Hydrogels grown on optical fibers can be stimulated by either pH[146] 
[Figure 3C] or temperature[147] and interact with 3D-printed tools[146]. In this way, microtools can act as 
grippers[146], clamps[146], and pliers[147]. These tethered tools can pass through surgical needles or steerable 
catheter-like robots for minimally invasive procedures with environmental or external movement 
control[54]. Leber et al. describe the development of soft robotic fibers comprising electrical wires, 
microfluidic channels, and optical guides that can deliver fluids and mechanical tools within the human 
body[148]. Minimally invasive surgical options using tethered and untethered microrobots are effective 
methods to reduce recovery time, increase procedural accuracy, and reduce infection rate in the body[146]. 
Song et al. describe the development of a soft robot for deployable electrocorticography (ECoG) grids for 
neuroscience applications, including brain function monitoring, recovery, pain modulation, and speech 
recognition[149]. The device can help implant the EcoG on the cortex using eversion as the actuation 
mechanism allowing the thin-walled sleeves of the cylindrical structure to flip inside out once pressurized. 
As the brain is one of the softest organs in the body, device implantation must be precisely controlled to 
prevent any insertions into the surface that can impact brain function. Due to the soft elastomeric structure 
with Young’s modulus of less than 1 MPa and the efficient eversion actuation mechanism in the subdural 
space, the soft robot could operate in vivo and was successfully deployed[149].

Soft sensors for biomedical applications
Sensors can monitor biological functions to report on health and disease[150]. Silicon-based technologies have 
been crucial for advancing biomedical sensing as constructs are small and not susceptible to noise[151]. 
However, due to the rigidity of silicon, constructs can be difficult to conform to tissue or attach to organ 

http://creativecommons.org/licenses/by/4.0/.
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surfaces, causing discomfort to patients[152]. Additionally, common circuit components may result in poor 
transduction (i.e., signal mismatch) between the device and biological tissues[153]. There exists a need to 
explore soft, flexible sensors for monitoring body conditions to gather accurate data while preventing harm 
or discomfort to patients.

Hydrogel-based materials have been investigated in biomedical sensor design because of their soft structure 
and response to external stimuli[124]. Hydrogels consist of polymer chain networks that can swell in aqueous 
conditions. Environmentally responsive hydrogels can detect glucose levels and can be used for touch, 
stress, stretch, and pH level sensing[124]. Zhai et al. propose a glucose sensor comprising platinum 
nanoparticles/polyaniline hydrogel hetero-structured electrodes which allow for physiologically relevant 
sensitivity and rapid response when detecting changes in glucose levels[154]. Noninvasive methods of glucose 
monitoring have been developed for diabetic patients to avoid anxiety and pain from traditional, invasive 
fingerstick procedures[155]. For instance, Lin et al. demonstrated how hydrogel-based patches with 
electrochemical glucose sensing can be safely placed on a skin surface to detect changes in glucose levels 
from sweat[155]. This hydrogel strategy allows for accurate noninvasive sensing in a wearable sensor design. 
Such sensors can be paired with actuating devices to deliver therapeutics in response to illness or disease.

Tactile sensors have also been developed for soft robotic biomedical applications. Qiu et al. describe the 
application of force, pressure, and tactile sensors including haptic feedback for robot-assisted minimally 
invasive surgery (RMIS)[156] [Figure 4A]. Tactile sensing can detect tissue palpation to identify tumors, 
lumps, vessels, or other abnormalities within the human body[156]. Qasaimeh et al. describe the development 
of a tactile sensor made of polyvinylidene fluoride (PVDF) for minimally invasive surgery applications to 
sense the pulses of arteries[157]. The PVDF material was used as it is a piezoelectric material and can be used 
to sense a wide range of frequencies. Thus, the sensor can detect different loads by varying voltage levels 
from the PVDF sensing elements. The sensor also features a tooth-like structure, enabling it to grasp and 
hold soft tissues[157]. Li et al. propose an implantable and degradable tactile soft sensor for intracranial 
pressure detection[158] [Figure 4B]. The sensor is made of silk fibroin protein and is unaffected by 
temperature changes or tissue environments[158].

Soft electronic sensors, or electronic skin sensors, are made from biocompatible and biodegradable 
polymers to mimic the properties of human skin and can sense changes in strain, pressure, shear force, 
temperature, and humidity[159]. Elastomers integrated with inorganic, conductive fillers can be used as 
resistive strain sensors measuring signal changes with stretching to monitor cardiac rhythm, tendon 
rehabilitation, and physiological data[160]. Kim et al. have developed silicone rubber cantilever sensors to 
measure cardiac tissue contractility by detecting strain changes in cardiomyocytes cultured on the 
cantilever[161] [Figure 4C]. Polydimethylsiloxane (PDMS)-based soft sensors have been used as a dielectric 
layer for capacitive-based pressure sensors[162]. A tissue-adhesive piezoelectric soft sensor was developed to 
adhere to the surface of the biological tissue and monitor vitals including blood pressure, heart rate, and 
respiratory signals during surgery[163]. However, soft electronic skin sensors usually rely on external power 
sources which increases power consumption and design complexity. These examples demonstrate the wide 
variety of biological signals that can be detected by soft material sensors to further enhance the performance 
of implantable soft robots.

SOFT ROBOTS FOR MARINE ENVIRONMENTS
Robotic devices are being investigated for ocean exploration applications including inspection, offshore 
operations, and biological sampling[164]. Robots designed to perform operations in marine environments 
must withstand extreme conditions such as high hydrostatic pressure[105], and rough, uneven, and delicate 
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Figure 4. Soft sensors for biomedical applications within the human body. (A) Force and pressure sensors for surgical procedures[156]; 
(B) Composition and application of an implantable and biodegradable tactile sensor to detect intracranial pressure[158]; (C) Silicone-
composed crack sensor cantilever to measure the cardiac contractility[161]. [Images (A-C) are licensed under CC BY 4.0. http://
creativecommons.org/licenses/by/4.0/.]

terrains[165]. Hydrodynamic perturbations in underwater environments create challenges when traveling to 
the pelagic and benthic regions of the ocean[21]. In addition to swimming, marine robots must also be 
capable of capturing and investigating delicate materials and objects without damaging them and the 
surrounding environments (i.e., coral reefs)[21]. Examples of traditional underwater robotic systems include 
autonomous underwater vehicles and remotely operated underwater vehicles[166]. To offer new utility to 
these vehicles and address some shortcomings of current end effectors, soft robots have been developed for 
applications in marine environments[21]. These efforts aim to offer greater mobility, resistance to high 
pressure, impact-bearing capabilities, and reduced disruptions to marine life.

Soft actuators for marine environments
Since terrain in marine environments can be unstructured and delicate, soft robots need to deform 
according to the environment, bear impact loads, and absorb energy in collision cases. Actuation 
mechanisms for marine environments allow for different motion speeds underwater. Pneumatic actuation 
mechanisms for underwater soft robot applications have been widely implemented as pneumatic actuators 
enable close-to-neutral buoyancy and large deformations[167]. Hydraulic actuators usually have faster 
response speeds than other actuators for underwater applications as the environment in which they operate 
is a liquid medium. This allows hydraulic underwater soft actuators to generate a large thrust force. They 
also have better incompressibility than pneumatic actuators as they involve high-pressurized fluid. This 
increases impact durability and actuation efficiency[168]. Chemical reaction mechanisms have also been used 
in underwater soft robots. For example, decomposition, redox, catalytic, combustion, and hypergolic 
chemical reactions can be implemented to propel soft robots by generating gas or heat. However, chemical 
actuation usually has long reaction times and cannot operate for long periods due to the need for replacing 
reaction materials[167]. The speeds of underwater soft robots also depend on the pressure level within the 
region of water the soft robot is traveling in, the material composition, and the structure of the soft robot. 
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The biomimetic structural designs of soft robots have been extensively explored to allow for higher-
performance locomotion underwater[169]. This includes soft robotic biomimetic fish[170], jellyfish[171], and 
octopus[172]. These soft systems can also travel underwater easily and prevent disruptions to biological life 
while performing ecological monitoring and data collection[173].

Galloway et al. developed a bellows-type soft gripper that can deform and retrieve delicate samples of 
benthic fauna[91]. The gripper has two elastomeric compartments[174] creating bidirectional bending by 
pressurized fluid or vacuum[91]. Another robot can achieve jet propulsion motion by expanding and 
contracting its origami structure with fluid [Figure 5, origami jellyfish (jet propulsion)][173]. Other traditional 
jet actuators composed of rigid parts are reported to be susceptible to impact damage[175]. Therefore, 
developing jet actuators composed of soft materials allows for increased impact-bearing capabilities.

Smart, low-modulus materials that respond to external stimuli by deforming, changing elasticity, and 
propelling have also been used for underwater applications. SMAs[176], known for their high power-to-
weight ratio and requiring low voltage levels for actuation, have been incorporated as actuators into soft 
robots. They also have low noise and high force-to-weight ratios. However, they may have lower response 
speeds and poor power consumption performance[137]. Cruz Ulloa et al. describe the development of a 
swimming robot that can travel underwater by SMA actuation when enclosed within a layer of silicone[177] 
[Figure 5, soft robotic jellyfish (SMAs)]. This robot achieved a performance repeatability of 94% for lateral 
motions. An octopus-inspired arm, developed using SMA coils, achieved a bending motion in response to 
fluid temperature changes[83]. Because the heat transfer of SMA occurs at higher rates underwater, the 
authors suggest these robots can leverage environmental conditions to grip and swim[83].

DEAs, consisting of a complaint capacitor structure, deform when an external electric field is applied[178]. 
They have been explored for underwater soft robotic devices due to their density similar to that of water[179]. 
Shintake et al. propose a soft robotic fish that achieves forward motion by the actuation of DEAs[180]. This 
robot has compliant structures, rapid actuation response, and low water absorption [Figure 5, soft robotic 
fish (DEAs)][180]. Christianson et al. propose fluid electrode DEAs that display increased flexibility by 
achieving a maximum curvature of 12.5 ± 0.4 m-1 of a 73 mm bimorph that was actuated with an electric 
field of 20 mV·m-1. A Froude efficiency of 52% and a swimming speed of 1.9 mm/s was also achieved[181]. In 
another study, a soft robot manta ray composed of an ionic polymer metal composites (IPMC) wing 
achieved complex 3D deformation underwater. The IPMC-based wing displayed a maximum twist angle of 
15.5º and had free-swimming capabilities[65] [Figure 5, soft robotic manta ray (IPMC)].

Soft sensors for underwater environments
Sensors monitor environmental changes and external pressure signals in marine environments[182]. Liquid 
metal sensors have a metallic conductivity of about 3.4 × 106 S/m and low modulus liquidity which make 
them candidates for deformable elastomer-based building materials in soft robots. Their use can also 
prevent damage such as cracks from underwater deformation movements due to elasticity and self-healing 
characteristics[183]. Lin et al. also describe using liquid metal-based sensors for the control of a soft robotic 
fish[184] [Figure 6A]. The sensors comprise elastomeric fluidic channels with filled conductive liquid metal, 
eutectic gallium-indium (eGaIn), and can detect applied strain through changes in electrical resistance.

IPMC materials have been implemented for underwater sensing applications due to their soft structures and 
ability to generate output voltages with no applied power. They can be used as sensors to detect changes in 
deformation, pressure, velocity, and humidity[185] [Figure 6B]. In addition, IPMC devices can perform tasks 
without the need for protective waterproofing[186]. They were implemented as sensors for a biomimetic 
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Figure 5. Underwater travel speed comparison of various soft robots. (0.42 cm/s) Soft robotic manta ray composed of IPMC that can 
move underwater[65]. (1.158 cm/s) Soft robotic origami jellyfish that allows for fluidic jet propulsion[173]. (2.5-2.8 cm/s) Soft robotic 
jellyfish composed of SMAs to allow for motion in underwater environments[177]. (3.72 cm/s) Soft robotic fish composed of dielectric 
elastomers that can move forward when actuated[180]. (All images are licensed under CC BY 4.0. http://creativecommons.org/licenses/
by/4.0/.) IPMC: Ionic polymer metal composites; SMAs: shape memory alloys.

Figure 6. Soft sensors for underwater soft robot applications. (A) Liquid metal-based sensor composed of elastomeric fluidic channels 
with filled conductive liquid metal eGaIn to measure strain and provide feedback to control the soft robotic fish[184]; (B) IPMC material 
which can be used as a sensor under bending deformation. IPMC sensors can detect changes in deformation, pressure, velocity, and 
humidity[185]. [All images (A and B) are licensed under CC BY 4.0. http://creativecommons.org/licenses/by/4.0/.] IPMC: Ionic polymer 
metal composites.

underwater vehicle to measure the amplitude and frequency of waves[186]. IPMC devices have also been used 
for bioinspired sensing[187], for example, to develop an artificial fish lateral line for the detection of source 
localization in underwater environments[188]. Thus, the development of IPMC sensors allows for efficient 
sensing in underwater environments for soft robotic devices.

SOFT ROBOTS FOR SPACE EXPLORATION
The environmental conditions of extraterrestrial settings present distinct challenges for robot operations. 
Microgravity can incur mechanical effects that alter the behavior of robots compared to earth-bound 
operations[22]. Space environments have extreme temperature fluxes due to the absence of a medium for heat 
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transfer. Therefore, space robots must be able to transfer heat through conduction or radiation between 
spacecraft and the surrounding environment[22] or be thermally insulated to regulate device temperature[22]. 
Robots in space may be exposed to high-energy particles and radiation because of the absence of a 
geomagnetic field[22]. This radiation can result in disturbances in electrical equipment including 
semiconductor components[22]. Durability and redundancy in design are important considerations for 
robots as the ability to fix or replace components is non-trivia, and thus self-healing properties of soft 
devices enable the longer-term service in unmanned environments[189].

Soft actuators for space environments
The tasks a robot may need to perform in space range from assembly to locomotion to sampling, dictating 
the actuation mechanism used in design [Figure 7A]. Deformability, impact-bearing capability, and 
resistance to brittle failure are important features needed to negotiate unstructured space environments[22]. 
Compliant soft microsatellite grippers can conform to capture irregular space debris[190]. Areas with large 
amounts of cosmic radiation may cause materials to become rigid and brittle[22]. Soft robots must be able to 
operate in extreme temperatures in space, such as regions without sunlight that can reach temperatures in 
the range of -200 to -150 °C[22]. Also, the surface temperature of spacecraft in direct sunlight ranges from 97 
to 127 °C. Therefore, using materials that can maintain their properties and characteristics over a wide 
range of temperatures is important for soft robotic applications in space. For instance, temperature-resistant 
elastomers such as silicone can be used for high-temperature applications[22]. Ogliani et al. display the 
material properties of silicone elastomers with different crosslinking densities through thermogravimetric 
analysis by testing these elastomers up to 700 °C in a nitrogen atmosphere[191]. This study depicts how 
removing the sol fraction of PDMS increases the thermal stability of silicone elastomers. Porte et al. describe 
how elastomers that are commonly used in soft robotics including EcoFlex 00-30, Dragon Skin 10, Smooth-
Sil 950, and Sylgard 184, were tested under temperatures ranging from -40 to 140 °C[192]. The results of the 
test depict how generally as the temperature rises, the stiffness of the material also increases[192]. While some 
elastomeric materials have material properties that depend significantly on temperature variances, materials 
such as fiber materials, including Kevlar, and organic materials, such as polyimide and Teflon, have high-
temperature tolerances[22].

Fluidic actuation mechanisms can be used in soft robotic actuators for space applications as they are 
adaptable and may generate high output forces with low energy input[22]. Zhang et al. propose a soft robotic 
gripper with pneumatic actuators designed for low air pressure[48]. This actuator is fabricated from carbon 
fiber reinforced polymer laminates which allows it to be stable in two actuation states. The gripper also has a 
low total energy consumption (~1.85 J) for every grasping motion. Palmieri et al. propose a deployable soft 
arm made of pneumatic inflatable links that can be stored in a small package for reduced weight and volume 
during shipping [Figure 7B][92].

Solar-driven soft robots can be used for space applications for their efficient energy systems. Mirvakili et al. 
developed a solar-driven soft robot consisting of a pressure chamber containing a low boiling point liquid 
[Figure 7C][193]. One end serves as a heat sink while the other is connected to a silicone-based soft robot. 
Once exposed to white light, a solar absorber film increases the liquid temperature which increases pressure 
output and forces actuation.

Electrically driven soft actuators can also be used for space applications as they can be lightweight, easily 
transportable, and durable[194]. To verify if these actuators will perform well in low-pressure environments, 
DEAs, composed of silicone rubber sandwiched between two carbon black layers, were deflection tested. 
Actuator displacement was tested under different pressure conditions by applying a constant voltage to the 
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Figure 7. (A) Overview of various soft robots for different space exploration applications[22]; (B) Soft robotic arm composed of 
pneumatic links and can be stored in a small package for space applications[92]; (C) Soft robotic solar-driven soft actuator[193]; (D) 
Dielectric elastomer soft robotic inchworm that can perform running and jumping motions[195]. [Images (A-D) are licensed under CC BY 
4.0. http://creativecommons.org/licenses/by/4.0/.]

sample in a vacuum chamber. Testing showed sample strain was only minimally affected by vacuum 
chamber pressure. Therefore, DEAs may be useful in variable-pressure environments[194]. Additionally, Jing 
et al. propose a DEA-driven inchworm soft robot that can achieve both forward running and jumping 
motions [Figure 7D][195]. These mechanisms may be advantageous for planetary exploration on unstructured 
surfaces to efficiently traverse the landscape and avoid obstructions.

Current advances in building habitats in these environments include producing sustainable resources such 
as food. Romano et al. propose using concentrations of the lunar regolith stimulant mixed with cow manure 
to study the effects on the earthworm species, Eisenia Fetida, to prepare moon soil[196]. In another study, 
Giordano et al. present a method of biofortification with iodine from four different species of microgreens 
to provide adequate nutrition using terrestrial resources[197]. Caporale et al. also study the use of different 
substrates including Mojave Mars regolith stimulant for the cultivation of soybean to create resources and 
food in space environments[198]. These methods would help astronauts to survive during long-term space 
missions as the next step for extraterrestrial environment exploration[197]. Soft robots can facilitate this work 
in space. For example, Hammond et al. propose a hybrid soft material robot end-effector that can help in 
the bonding and de-bonding of conical structural components for building larger space equipment[199]. The 
robot uses twisted and coiled artificial muscles for actuation which have a higher force-to-weight ratio than 
other actuation methods[199]. In another study, Molaei et al. propose cable-driven continuum robots that 
would help to build sustainable structures in space environments for planetary habitats[200]. Soft robots can 
aid in developing structures for space missions and for habits in space environments.
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Soft sensors used in space environments
Soft sensors can be used for monitoring equipment, environmental conditions, or feedback sensing on soft 
robots. IPMCs can be used as sensors for space equipment as they can conform to the structure of the 
equipment to provide more detection area on these structures[201]. Equipment damage or defects are sensed 
through changes in IPMC bending and resulting voltage differentials. IPMCs can also be used for vibration 
monitoring in satellites. Satellite vibration can affect orbiting trajectories, disrupting the aim of instruments 
attached to the satellite. It is proposed that IPMC sensors be placed on the structure to record vibration data 
for vibration modeling to monitor the health of the spacecraft. These models can help determine the 
impacts on the structure, trajectories, and instrument tasks based on vibration[201].

Flexible sensors have been proposed for soft space robots and astronaut health monitoring devices. These 
applications require high accuracy, adaptable geometry, and efficient energy systems[202]. Fu et al. developed 
flexible pressure sensors composed of ceramic nanofibers which provide high-temperature resistivity as they 
can withstand temperatures up to 370 °C. These ceramic sensors have quick response speeds of less than 
16 ms and sensitivities of ~4.4 kPa-1 that may facilitate monitoring physiological signals of humans in space 
environments[202] [Figure 8A]. Textile sensors that conduct physiological monitoring can be easily and 
comfortably worn by astronauts. Fan et al. propose a triboelectric textile sensor array to detect aerial pulse 
waves and respiratory signals. This sensor can be easily worn as a wristband, fingerstall, around the neck, or 
integrated into a sock[203] [Figure 8B]. Given the unique challenges and variable climates present in space, 
research is needed to leverage new materials and hybrid structures to effectively meet the needs of this 
environment.

SOFT ROBOTS FOR SEARCH, RESCUE, AND CONFINED SPACES
Natural and man-made environments often create conditions that are unsafe for humans to enter during 
search and rescue operations[108]. Confined spaces that are fully enclosed or have limited entryways include 
pipes, mines, tanks, and pits[204]. These spaces may contain toxic gases, fumes, and dust, potentially causing 
negative health impacts to humans[204]. Thus, robots have been developed to conduct search, rescue, and 
inspection operations in these environments[205]. They must be able to navigate through narrow areas and 
obstructions such as rubble, debris, dust, darkness, and collapsed structures[93]. Soft robots can minimize 
friction for gripping, moving, and sensing operations to prevent further damage to the search and rescue 
site[93]. Thus, they offer new design solutions for increased mobility on rough and obstructed surfaces and 
enclosed spaces through their distinct actuation mechanisms[131], thereby reducing health and safety risks in 
these critical rescue operations.

Soft actuators used for search, rescue, and confined space applications
To navigate confined spaces and rough obstructed terrains, robots must be able to conform elastically to 
avoid surface wear, absorb energy, and bear impact loads on collision. Additionally, these devices must be 
compact and able to travel in narrow spaces. Some soft robot designs proposed for search and rescue are 
growing-type robots that can grow axially with directional control to steer the robot[206]. The growing 
mechanism of these robots can be achieved by continuous additive manufacturing or pneumatic 
actuation[108]. However, buckling can cause growing robots to move in unexpected directions as they can 
retract, resulting in disturbances to the environment. Vine-like robots are another class of growing robots 
that only undergo internal friction and can also feed cables through the center of the actuator[108]. El-
Hussieny et al. propose a soft vine robot built from a polyethylene tube that extends from the tip once air 
pressure is applied [Figure 9, Vine robot][207]. The robot can be steered by applying air pressure to serial 
PAM oriented around the structure’s circumference. These robots can conform to the surrounding 
environment without impacting obstructions and preventing further destruction.
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Figure 8. Soft sensors for space environment applications. (A) Ceramic nanofiber flexible pressure sensor with high-temperature 
resistant characteristics. The device structure, a thermal image of the sensor that is tested at 370 °C, and the capacitance to pressure 
sensitivities for tests at 30, 370, and 30 °C after burning are displayed[202]; (B) Triboelectric all-textile sensor array to monitor aerial 
pulse waves and respiratory signals and can be worn around the neck, as a wristband, fingerstall, or integrated into a sock[203]. [All 
images (A and B) are licensed under CC BY 4.0. http://creativecommons.org/licenses/by/4.0/.]

Figure 9. Diameter comparison of search and rescue and pipe inspection soft robots for confined space applications (Worm robot, 
50 mm). Soft robots composed of different pneumatic actuators to allow for elongation, radial expansion, and bending to mimic the 
motion of a worm. The robot can be used for pipe inspection[208] (Octopus robot, 70 mm). A soft tendon-driven robot that is octopus-
inspired and includes suction cups that can be used to travel through pipes[216] (Pipe robot, 84-115 mm). Soft robotic pneumatic pipe 
robot which can perform different motions by different inflation patterns[209]. (Vine robot, 200 mm) Soft pneumatic vine robot capable 
of tip extension and steering[207]. (All images are licensed under CC BY 4.0. http://creativecommons.org/licenses/by/4.0/.)

Burrowing and locomoting robots with fluid-driven actuators have also been developed for search, rescue, 
and confined space operations. For instance, worm-inspired soft robots using pneumatic actuators have 
been developed for the maintenance, repair, and inspection of pipelines leveraging their high flexibility and 
elasticity, high load capacity, lightweight, and low cost [Figure 9, Worm robot][208]. Wang et al. prototyped a 
soft pipe robot with a soft hexagonal prism structure[209]. It can perform different motions with 
choreographed inflation patterns to comply with pipe paths [Figure 9, Pipe robot]. A challenge to soft pipe 
robots is the limited distance they can travel. For instance, some pipe soft robots, such as cable-based soft 
robots[210], must be tethered to an actuation[211]. These limitations can be overcome by employing wireless 
control and self-powered mechanisms to travel through these constrained environments. For example, a 
soft robot that performs leak detection within pipes was built with wireless charging capabilities using 
inductive coils[212]. Wang et al. propose a wirelessly controlled soft robot, WASER, which uses radio 
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frequency (RF)-based heating systems to achieve rapid actuation[213]. The actuator also allows for feedback 
using high-power wireless energy. The authors discuss how the WASER soft robot can also be used for 
applications in enclosed spaces.

Usevitch et al. describe the development of an inflatable octahedron truss structured robot that can change 
shape and move using roller modules while maintaining a constant volume, eliminating the need for an air 
supply[214]. This helps maintain the compactness of the soft robot and achieve locomotion. Tolley et al. 
describe the development of an untethered pneumatic actuator that achieves a jumping motion via 
combustion of butane into pneumatic chambers[79]. The robot can reach a height of 0.6 meters in less than a 
second. This soft body structure absorbs energy upon landing, increases its impact-bearing capability, and 
reduces risks to human safety. Thus, the development of explosive-driven soft robotic devices could provide 
new opportunities for soft robotic locomotion while avoiding obstructions in search and rescue 
environments[215]. In another study, Mazzolai et al. describe a tendon-driven soft robotic arm with suction 
cups for grabbing objects in confined environments. The soft robot mimics the motion of octopus tentacles 
and can achieve bending and twisting motions[216] [Figure 9, Octopus robot]. These soft robots have 
actuation systems that allow them to transform to different diameter sizes for travel through different-sized 
pipes. For instance, the pneumatic axial elongation actuation of the worm-inspired soft robots impacts the 
distance the soft robot can move[208]. The radial expansion of the soft robot also allows it to expand to the 
size of the pipe it is traveling through[208]. Similarly, the axial bending deformation, flexion, and extension 
motion through the pneumatic actuation of the soft pipe robot enable travel through pipes with different 
diameter sizes by expansion[209]. These examples suggest that using actuation mechanisms that allow for easy 
and efficient robot size deformation is advantageous in constricted environments. Pneumatically actuated 
soft robots seem to be more beneficial and versatile as they can change size simply by inflation or deflation 
and are more controlled. Other actuation mechanisms of soft robots, such as tendon-based actuation, may 
not be as easily deformable in terms of size and instead can only be built for a specific application.

Soft sensor designs used for search and rescue and confined space applications
Soft pressure and strain sensors were developed for monitoring and inspection operations in hazardous and 
confined environments. Soft grippers with sensing capabilities can sense object orientations and 
deformation when collecting specimens[108]. These sensors include 3D strain sensing printed ionic 
conductive gels[108]. The flexibility of the gel helps the sensor to be easily integrated within the soft gripper 
for accurate sensing. Other integrated sensing technologies are discussed in the literature review by Milana 
on soft robots for infrastructure protection[108].

Soft pressure sensors have also been developed using conductive elastomer composites that have conductive 
fillers with piezoresistive characteristics[159]. Capacitor-based soft sensors can be used as self-healing pressure 
sensors and can detect changes in external pressure applied by changes in the capacitance of the 
material[217]. Zhang et al. describe a capacitive-based pressure sensor using the self-healing material, 
polyacrylic acid/betaine, thus extending the sensor’s operating life. The sensor is developed using two 
conductive fabrics with an ionotronic layer between them that is composed of self-healing material[218] 
[Figure 10A]. When pressure is applied to the sensor, the change in the capacitance of the material can be 
used to detect the changes in the pressure[218]. Georgopoulou et al. also propose using self-healing 
piezoresistive strain sensor fiber composites (ShSFCs) as an electronic skin to detect deformation and 
damage on a soft robot. The sensor was tested using a tendon-based soft actuator in which the electric signal 
output of the sensor was recorded before damage, after damage, and after healing. The signal output 
displayed that the sensor was able to regain its performance after healing[219] [Figure 10B]. Other self-healing 
soft sensors are discussed in a literature review by Khatib et al.[217].
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Figure 10. Soft sensors for search and rescue environments. (A) Self-healing polyacrylic acid/betaine pressure sensor material 
composition and capacitance variations based on different pressure level loads, response time at a loading pressure of 0.36 kPa, and 
dynamic loading and unloading at different pressure levels[218]; (B) ShSFC-based electronic skin sensor that is attached to a tendon-
based soft robotic actuator. The electrical signal of the sensor recorded before damage, after damage, and after healing is also 
displayed[219]. [All images (A and B) are licensed under CC BY 4.0. http://creativecommons.org/licenses/by/4.0/.] ShSFC: Self-healing 
piezoresistive strain sensor fiber composite.

EXPANDING THE USE OF SOFT ROBOTS IN EXTREME ENVIRONMENTS
So far, this paper has explored the benefits of soft robots in extreme environmental conditions because of 
their material composition, actuation mechanisms, and adaptability. However, challenges and limitations to 
using soft robots persist. Topology optimization tools may be used to strengthen the design and function of 
these robots to expand their usage. Special considerations for soft robots in terms of control systems and the 
extreme environments described should also be considered. Finally, as the field develops and prototypes 
become commercial products, it will benefit these efforts to address challenges for end users during early 
research.

Soft actuator limitations for use in extreme environments
Soft actuators have advantages and limitations that are important to understand when designing soft robots 
for extreme environments. Some soft actuators have drawbacks, such as tendon-driven actuators which may 
undergo fatigue, nonlinear friction, backlash hysteresis, and other transmitted forces[44]. Flexible fluidic 
actuators including PAMs and McKibben actuators require external power sources for actuation, making it 
difficult to build untethered systems for biomedical devices[44] and other applications in enclosed spaces. Soft 
pneumatic actuators also usually suffer from low actuation response speeds[137]. Soft robots have 
unpredictable and complex behaviors resulting in nonlinearities that make them difficult to model and 
control[220]. Therefore, matching actuation mechanisms to applications that achieve desired performance 
levels may help develop soft robots that are favorable in their operating environments. For example, Zaidi 
et al. describe how cable-driven soft actuators, despite their low response speed, can support high 
payloads[137]. In contrast, electro-active polymers have poor payload performance, but exhibit faster response 
speeds and efficient power consumption. SMAs usually have low noise and high force-to-weight ratios but 
lower response speeds and poor power consumption performance. In contrast, pneumatic actuators usually 
have high payloads and adequate power but suffer from noise and poor power consumption[137]. Future 
improvements to building soft robots may include building multi-actuator systems to leverage the 
advantages of different components for enhanced composite performance.

http://creativecommons.org/licenses/by/4.0/.
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Design and topology optimization
Design approaches for soft robots are primarily based heuristically and empirically on bioinspiration and 
intuitive perspectives[221]. Although traditional biomimetic and intuitive approaches have documented 
utility[222], their outcomes are based on initial assumptions about the structure and are greatly dependent on 
anthropogenic factors, such as the designers’ experience, and professional knowledge[223]. The design of soft 
actuators presents challenges due to the hyper-elastic and viscoelastic properties of low-modulus materials 
that produce highly dimensional design spaces[17]. Optimization algorithms, simulation, and analysis tools 
targeting more efficient design methods have been explored[224]. Topology optimization is one such method 
for form-finding of high-performance, lightweight, multifunctional structural designs and has been widely 
used in aerospace[225], automotive[226], and architecture industries[227].

Topology optimization works to identify numerically optimal structural forms by allocating material 
distribution that satisfies prescribed constraints within a specified design domain[223]. That domain, 
predefined by the user, supplies the loading and support configuration and a geometric region on which the 
material distribution is determined by individual design variables. For compliant mechanisms, such as 
grippers, the objective function typically maximizes mutual potential energy, geometric advantage, or 
mechanical advantage[228]. For example, a soft, cable-driven compliant gripper uses topology optimization to 
model interactions between grippers and objects in the form of pressure loading and friction[229]. This 
method has been demonstrated to design flexible thermoelectric devices with increasing output voltage and 
a corresponding improvement in power generation efficiency[230]. It allows for the design of multiple 
microstructural materials within a macrostructure geometry that has spatial variation and hierarchical 
structures[231]. Using these methods, nonlinear viscoelastic and even hyperelastic properties of materials used 
in soft robots can be considered[232]. Topology optimization techniques allow designers to improve the 
efficiency and performance of robot design, beneficial when developing devices to function in complex 
environments.

The human body is a challenging environment due to its susceptibility to tissue damage. With the 
increasing use of soft robots in healthcare services[104] and their interaction with fragile materials such as 
human tissue becoming more common[233], the safety of these robots is a growing concern[234]. In such cases, 
reducing the mass and inertia of these robots minimizes the risk of injury to humans during interactions. 
Thus, structural topology optimization is beneficial for designing lightweight medical devices[104]. The 
medical industry has proposed topology optimization techniques to design prosthetics and implants such as 
soft compliant finger prosthetics[235], soft finger-like devices[236], and bioinspired quadruped compliant 
legs[237]. These biomedical soft devices can mimic the stiffness, density, and structure of the body part such 
that they can avoid causing injury[238].

In challenging environments such as confined spaces, topology optimization can be advantageous in 
creating efficient designs for effective locomotion. One study developed a framework specifically for moving 
objects using a topology optimization method incorporating a material point method that can simulate the 
motion of objects[239]. Similarly, topology optimization methods have been used in aerospace and marine 
environments where the weight of the craft, ship, and other devices is an important consideration. 
Expanding the use of topology optimization in soft robot design should broaden the application space and 
enable rapid optimization of soft devices capable of withstanding these complex environments.

Control systems that enable soft robot use in extreme environments
Developing control systems for soft systems is a challenge as soft robots have continuous flexible structures 
as opposed to discrete degrees of freedom. Therefore, implementing control systems that consider the 
mechanical structure or properties of these devices is crucial to developing reliable and efficient systems. 
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Many of these control strategies also require models of the soft robotic device to analyze the material 
dynamics of the device in response to the actuation mode. However, due to the nonlinear structure of soft 
robots, it can be difficult to develop mathematical models that accurately represent device deformation[240]. 
Finite input, output, and disturbance parameters of the control system can be set to describe actuation. 
Additionally, internal memory variables of the soft robot are set using state variables to control the motion 
of the robot across time[220]. Control systems, generally classified as open-loop (OL) and closed-loop (CL) 
systems[241], have utility for different soft devices in various environments.

Runciman et al. developed soft hydraulic actuators for minimally invasive surgery using an OL position 
control system[242]. The actuator contracts by changing the volume of the actuator without feedback from the 
environment. Open loop control systems for fluid-driven assistive robots can be achieved by cycling 
pressure to the actuators[243]. CL feedback control systems have been used for many biomedical applications. 
Beatty et al. developed a drug delivery device that uses CL control to change its actuation regimen to 
dispense the precise amount of the drug[244]. The device, composed of thermoplastic polyurethane, can 
monitor foreign body response by changes in the electrical impedance to determine the actuation regimen 
and efficiently deliver therapeutics.

Model-based (MB) controls use kinematic or dynamic modeling strategies to develop efficient control 
systems for the device[27]. The piecewise constant curvature model is a popular model that divides the soft 
robot into sections with constant curvature[245]. FEM methods divide a soft robotic structure into discrete 
elements to obtain a set of partial differential equations to solve at each degree of freedom[246]. In this case, 
FEM can efficiently evaluate the structure and model material deformations once actuated[247]. Model-free 
(MF) control systems rely only on feedback data from sensors [248]. MF control systems may be implemented 
for device applications in environments that cannot be accurately described by mathematical tools[249]. 
Proportional-integral-derivative (PID) control systems use a signal that consists of the sum of adjustable 
proportional, integral, and derivative constant factors multiplied by the error[250]. Therefore, these systems 
help reduce the error between the output and desired signals[250].

Adaptive control (AC) systems can be implemented as MB or MF systems[251] and allow for changes in the 
control signal using real-time data collected from the current conditions of the system and the environment. 
These control systems make changes to the control signal depending on the known parameter 
disturbances[252]. The AC signal allows for the desired performance index to be achieved using a feedback 
loop and an adaptation system which helps reduce errors in the performance of the system[252]. Model 
reference adaptive control (MRAC) systems use a system model to determine the error between the outputs 
of the actual system and the model, allowing adjustments to the control signal[253].

Reinforcement learning (RL) control systems can be implemented as MF or MB systems[254]. They are based 
on action and reward paradigms[255]. The system uses evaluated feedback to determine whether the behavior 
of the robot has improved to achieve the desired action. It also tries to maximize the reward from the 
evaluated feedback by implementing different actions. Li et al. developed a deep RL framework for motion 
control of an underwater soft robot[256]. The robot could efficiently travel through the environment by 
training a neural network developed using a deep RL algorithm called soft actor-critic. The soft robot was 
trained to move in a straight line starting from a random initial position to later learn how to travel through 
the unpredictable environment[256]. Table 3 displays the various control systems that can be used for soft 
robots.
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Table 3. Summary of soft robot control systems and their application examples

Control 
systems Description Examples of soft robot applications

OL Feedback data is not required to make changes to the system. Depends 
only on input to achieve the desired output. Prior knowledge of the 
operating environment is required for more accurate control[257]

Soft hydraulic actuator for highly repeatable results- 
advantageous for surgical applications[242]. Pneumatically 
actuated soft robotic manipulators can inflate devices to 
different shapes[257]

CL Feedback data from output is required to adjust the input signal to 
achieve correct output. Feedback data can be obtained by sensors to 
measure the current conditions of the environment and system. Prior 
knowledge of the operating environment is not required[257]

Drug delivery devices receive real-time feedback data from 
foreign body responses to change the actuation regimen to 
deliver the correct amount of drug to the body[244]. SMA 
spring bot can actuate/deform with sensors to obtain 
feedback data[258]

MF Feedback data from sensors is used to adjust input signal to achieve 
correct output without the use of models of device/system[248]. Can be 
used for devices that have complex structures/actuation mechanisms 
and environments that cannot be described by mathematical 
models[259]

Locomotion bot using MF to interact with the environment 
by learning the state transitions and optimized periodic 
control sequences[260]. Pneumatic muscle actuator soft 
robots can follow certain paths[261]

MB Modeling strategies including PCC[245] and FEM[247] to mathematically 
represent the device and its operation to modify the input signal to 
achieve the correct output[262]

Environmentally adaptive bot achieves planar motion using 
MB CL controllers for trajectory tracking and impedance 
control[262]. Uses PCC and FEM to model and simulate the 
device. Piezoelectric inchworm for constrained 
environments with MB motion control[263]

PID Type of MF control system that uses error between actual and desired 
output to modify input signal to achieve correct output[264]. Uses 
proportional, integral, and derivative factors that can be adjusted for 
more accurate control[265]. Variations include PI control system[266]

Bio-inspired underwater vehicles use four PID controllers 
for autonomous control[267]. The pneumatic arm can reach 
certain destinations or follow trajectories[268]

AC Can be MB or MF, depending on the application[261]. Modified input 
depending on known parameter disturbances. MRAC[253] uses the 
device model to compare the system’s actual and predicted output to 
adjust the control signal[253]. Other types include direct AC[269] and 
indirect AC[270]

A soft robotic arm that uses AC to control its position and 
stiffness[271]. Underwater soft robot that uses AC for visual 
servoing and prior knowledge of environmental impact for 
more accurate control[272]

RL Can be MB or MF, depending on the application. Evaluated feedback of 
output signal used to monitor system behavior and modify input signal 
to maximize system reward and achieve correct output[273]. RL 
approaches include value-based[274], policy-based, or MB and can also 
be either active or passive-based[274]

Motion control of the underwater robot by training a neural 
network developed using a deep RL algorithm for a bot to 
learn how to travel through unpredictable environments 
[256]. A caterpillar bot uses RL to travel to different 
environments[275]

OL: Open-loop; CL: closed-loop; SMA: shape memory alloy; MF: model-free; MB: model-based; PCC: piecewise curvature models; FEM: finite 
element method; PID: proportional-integral-derivative; PI: proportional-integral; AC: adaptive control; MRAC: model reference adaptive control; 
RL: reinforcement learning.

Future considerations of the control of soft robotic devices include artificial intelligence (AI). The AI-driven 
control systems and models may consider the nonlinear structure of soft robots and implement control that 
is similar to biological organisms[276]. An AI-driven control system may consist of a neural network with a 
hierarchical structure of input variables and hidden nodes that are connected and weighted based on 
importance[277]. There are also designs to develop neural networks for robotics such as supervised 
control[278], direct inverse control[279], neural AC[280], back-propagation utility[281], and adaptive critic 
methods[282]. These strategies allow the system to learn based on the environment and use case[283]. Machine 
learning algorithms can be used for the control of soft robots as the nonlinearity of soft robotic devices can 
be modeled and integrated into a neural network[276]. Machine learning models can also be developed to 
model the interaction between different actuators with complex nonlinear structures[276]. Therefore, the 
development of AI-driven control systems and models may allow for more robust control of soft robotic 
devices for extreme environments as they learn and adapt to uncertain conditions.

Future considerations for the design and use of soft robots
The application of traditional, rigid robots currently dominates in terms of availability. As soft robots 
continue to develop, opportunities for commercial products are increasing. Currently, soft robots are 
available for applications including grippers in manufacturing[284], sleep monitoring technology[285], 
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rehabilitation exosuits[286], and search and rescue operations[287]. As commercial applications increase, their 
designers must also consider the end users to expand their reach and accessibility for low-cost, durable, and 
safe devices[288].

In 2012, as soft robotics was gaining popularity[12], Empire Robotics was founded to commercialize a particle 
jamming gripper. By 2016, the company closed but offered lessons learned from its commercialization 
efforts[289]. The team initially explored markets including space exploration, prosthetics, bottle capping, and 
toys, but found that industrial applications had the fewest regulatory hurdles and largest market 
opportunity[289]. While n = 1,000 cycles to failure are acceptable for an academic demonstration, Empire 
Robotics estimated that their grippers would need replacement every 70 days in industrial settings. Even 
with a successful product, competing design criteria (durability, size, shape, pneumatics, granularity) 
presented challenges for the commercial effort[289]. Despite this, the market for soft robot technologies 
continues to grow. In 2019, the soft robotics market was estimated to reach almost $5 billion by 2025[290]. 
Soft Robotics Inc. provides PneuNet (pneumatic network)-based grippers for industrial packaging and had 
revenue of $26.4 million in 2019 and continues to expand its offerings and use globally[16]. Future 
considerations for the commercialization of soft robots include their expansion into other applications 
including biomedical and extreme environment exploration. The soft material structure makes soft robots 
safe for human interaction, including in medical devices[291]. However, the fabrication and operation of these 
robots must also avoid actuator dysfunction which might result in safety concerns[291]. Using low-cost soft 
materials to build these systems can increase the accessibility of soft robots for many applications.

One arena in which soft robots are being tested for their ease of use and durability is in classrooms. 
Researchers at academic institutions have developed courses that engage undergraduate and graduate 
students in soft robot design and ideation[292,293]. The potential for low-cost prototyping materials, design-
based development, and interdisciplinarity in the field has also led to the use of soft robots in K-12 
education[294]. Education can be a particularly complex environment because designs must be robust and 
easy to use to ensure positive experiences in science, technology, engineering, and mathematics (STEM) for 
children[295]. Designers here must focus on simplified designs[296] and low cost to increase accessibility[297]. 
Additionally, progress toward safe material composition and fabrication methods[298] of soft robots for 
educational outreach purposes would help reduce safety risks. For instance, edible soft robotic candy 
actuators can be used for STEM outreach to provide students with a safe and enjoyable hands-on experience 
in building soft robots[299]. Designing soft actuators for engineering-based learning activities for students 
allows them to build and interact with these actuators safely as they learn about and consider becoming the 
next generation of innovators contributing to this rapidly evolving field.

CONCLUSION AND OUTLOOK
The soft robotic actuation mechanisms, sensors, and control systems that we have reviewed have benefits 
when compared to traditional robots for applications in extreme environments including within the human 
body, ocean exploration, space exploration, search and rescue sites, and confined spaces. We can identify 
areas where soft robots provide some advantages compared to rigid devices for use in these harsh 
environments. The body is a challenging environment where compliance matching of the device to 
biological matter such as human skin and tissue is important for comfortable human contact to prevent 
injuries. These requirements make biocompatible and compliant soft devices beneficial for use in and on the 
human body compared to rigid devices. Harsh marine and space environments benefit from having devices 
that are lightweight and thermally insulated to meet the weight criterion and handle extreme temperatures 
to function in their respective environments. Confined spaces and rough unpredictable terrains can be 
navigated with soft devices with impact-bearing capabilities and deformability compared to rigid robots. 
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Self-healing capability is also a unique advantage of some soft materials that can increase operation time in 
challenging environments where retrieval and repair are difficult.

However, soft robots also have drawbacks. They are less powerful and precise than rigid devices due to 
being made of much softer and, in some cases, weaker materials. The properties of these materials, such as 
extensional stiffness, strength, and elasticity, can be improved[300] through reinforcement with rigid materials 
such as fibers[301]. These hybrid materials offer enhanced capabilities, expanding the reach of soft and hybrid 
robots in extreme environments. Additionally, soft robots are difficult to model and control due to their 
nonlinear properties and lack of a supporting structure.

As observed in nature, most fully soft organisms are small, and if larger, need a skeleton to support their 
weight[12]. Large, soft animals without skeletons typically exist in water or underground so that their bodies 
are supported by the surrounding medium. This evidence suggests that the best systems may be an 
integration of rigid structures and soft technologies. Thus, new types of hybrid structures have evolved that 
can withstand and exert more force than simple soft robots, increasing their applications in industrial 
settings[302]. Developing controllers and stable interfaces between the soft and rigid components is necessary 
in future research to control the upcoming hybrid devices[302]. Hybrid system interactions are also generally 
required for actuator control since soft elastic materials would require rigid microprocessors until the time 
microelectronics can be fully made of low-modulus and elastic materials.

Since rigid robots dominate in use and availability, we see opportunities to expand the potential of soft 
robots in extreme environments. This can be accomplished using design techniques such as topology 
optimization that can improve the efficiency, cost, and material savings, and the tunability of actuator 
design. Implementing control systems with AI and machine learning may allow for more robust control of 
complex nonlinear behaviors and better decision-making. Finally, soft robots must be expanded by 
designing with the end user in mind by increasing accessibility, and usability, and reducing cost. Other ways 
to enhance the scope of these soft devices include improving operational lifetime with durable, self-healing, 
elastic materials and building entire structural components including electronics and power units from 
sustainable materials to minimize environmental impact. Thus, there is significant potential to advance soft 
robots in harsh environments, and future studies must accelerate the transition of high-performance soft 
devices from research labs to real-world applications.
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