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Abstract
Porous carbons have gained great attention for applications in lithium-sulfur (Li-S) batteries. However, achieving
high specific surface area, hierarchical porosity, and abundant heteroatom-doping with facile approaches is still
challenging. Herein, nitrogen, sulfur dual-doped porous biochar fibers (PBF@N@S) are obtained via a simple and 
sustainable activation process of cotton fibers. The as-prepared PBF@N@S exhibits a hierarchically
interconnected network porous structure and large specific surface area. Meanwhile, abundant nitrogen, sulfur
atoms are simultaneously doped in the carbons. These characteristics make the carbon favorable for hosting sulfur.
The PBF@N@S sample with 50 wt% sulfur content (PBF@N@S-S-50%) delivers a high initial capacity with
excellent cycling performance. Such high performance suggests that the PBF@N@S-S could be a promising
cathode material for Li-S batteries.
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INTRODUCTION
Rechargeable lithium (Li) batteries have played an extraordinary role in portable electronics[1-3]. In the 1990s, 
Li-ion batteries (LIBs) were successfully commercialized and dominated the energy storage market, led by 
Sony Company[4]. However, traditional LIBs are reaching their theoretical limits, and there are still 
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challenges in many aspects, such as low specific capacity and energy density, cost, and safety[5,6]. Over the
past few years, multielectron reactions have drawn lots of attention as an efficient way for designing and
developing high-performance batteries. Particularly, compared to traditional LIBs, Li-sulfur (Li-S) batteries
have attracted lots of interest because of their remarkable specific capacity (1,675 mAh/g) and high energy
density (2,500 wh/kg)[7-9]. In addition, S, as the active material of cathodes, has plenty of advantages, such 
as cheap, natural abundance, and eco-friendly[10,11]. Moreover, Li-S batteries offer more safety than 
commercialized Li-ion batteries because the highly reactive Li anode is passivated with sulfide during 
operation. As a result, Li-S batteries have attracted more interest and have been considered as one of the 
most popular candidates for energy storage.

Unfortunately, up to now, the practical application of Li-S batteries is still obstructed by three unsolved
issues: (1) the insulating nature of sulfur and lithium sulfides (5 × 10-30 S/cm at 25 ℃); (2) the “shuttle effect”
occurred between cathode and lithium anode causing irreversible loss of S; (3) the significant changes of
structural and volume in the charge/discharge process[12,13]. To address the above issues, a number of
strategies have been made. Among them, incorporating S with highly conductive carbon materials, such as
porous carbon, graphene, and carbon nanotubes, is one of the most promising strategies for
high-performance Li-S batteries[14-16]. The carbon framework can greatly enhance electron transport,
suppress the diffusion of polysulfides, and improve the ability to withstand volume variations of the active
material. In addition, doping heteroatoms into carbon materials can adjust the local bonding environment
and electron distribution of the carbon surface[17,18]. For instance, the introduction of electronegative
nitrogen (N) atoms into the carbon can affect the net polarity and promote the interaction of S atoms with
the carbon matrix[19]. S doping can also enhance the affinity of polysulfides to the carbons[20]. Niu et al.
prepared a N, S co-doped porous carbon sphere through hydrothermal activation methods, which delivered
a high initial capacity of 942 mAh/g as a Li-S battery cathode[20]. Kim et al. synthesized N, S co-doped
porous carbon via a hydrothermal reaction of graphene and methylene blue. As a Li-S battery cathode, it
showed a good specific capacity along with good stability[21]. Díez et al. produced N, S co-doped carbon
nanoparticles through the pre-carbonization activation method, which delivered a reversible capacity of 841
mAh/g after 100 cycles as Li-S battery cathodes[22]. However, the synthesis of porous carbon materials,
especially with heteroatom doping, suffers from a complex synthesis process and expensive raw materials
and lacks scalability and consistency[23-25]. Therefore, it is necessary to develop and utilize inexpensive,
environmentally friendly, and facile approaches to construct high-performance porous carbon materials.

The porous biochar prepared from biomass is attracting increasing attention due to its cheap,
environmentally friendly, and sustainable development. Up to now, various porous biochars have been
reported as S hosts for Li-S batteries[26,27]. As a natural biomass, cotton has been widely used in daily life due
to its excellent sustainability.

In this work, we proposed a simple yet effective strategy to turn biomass cotton into heteroatom-doped
porous biochar fibers with a hierarchical pore structure. Typically, N, S dual-doped porous biochar fibers
(PBF@N@S) were prepared through a simple one-step potassium hydroxide (KOH) activation method. The
as-prepared carbons have a unique interconnected porous structure with N, S co-doping, which is beneficial
to the impregnation of S. The as-fabricated S/PBF@N@S composite electrode exhibited an excellent specific
capacity with high cycling performance.
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EXPERIMENTAL
Materials and apparatus
Cystine, KOH, melamine, and nmethyl-2-pyrrolidene (NMP) solution was supplied by Sinopharm
Chemical Reagent Co., Ltd. (China). X-ray diffraction (XRD) patterns were tested on a Rigaku Smartlab (9)
diffractometer with Cu Kα radiation. The testing range of two-theta was from 5° to 90°, and the scanning
rate of 10°/min with a step of 0.02°. Scanning electronic microscopy (SEM) images were obtained with a
Hitachi SU8020 electron microscopy. Transmission electron microscopy (TEM) measurements were
performed with a JEOL JEM-2100F field emission transmission electron microscope. Raman spectra were
obtained using a Renishaw INVIA Raman spectrometer. Gas adsorption/desorption isotherms were
obtained from a Quadrasorb SIMP analyzer at the liquid nitrogen temperature. The specific surface area of
the carbons was calculated using the Brunauer-Emmett-Teller (BET) equation. X-ray photoelectron
spectroscopy (XPS) measurements were conducted on Thermo Fisher Scientific ESCALAB 250Xi
equipment. All spectra were calibrated with the binding energy of the C1s peak at 284.8 eV.

Preparation of PBF@N@S
The preparation of PBF@N@S is shown in Figure 1. Firstly, the cotton was cleaned and cut into cotton
patches using scissors and ground into fine fibers. Cystine was used as N and S sources, and the fine cotton
fibers were mixed with KOH/cystine at 60 ℃ for three days with the weight ratio of 1:5. After drying in an
oven, pyrolysis was conducted by heating under flowing argon at 800 ℃ with a heating rate of 10 ℃/min
with a hold period of 1 h at 800 ℃. For comparison, N-doped porous biochar fibers (PBF@N) were obtained
as the same process but using melamine as a N source. In addition, bare biochar fibers (PBF) were obtained
by directly carbonizing fine cotton fibers without the use of KOH, cystine, and melamine. Subsequently, all
the carbonized products were cleaned using deionized water and anhydrous ethanol.

Electrode preparation and electrochemical measurements
The cathode slurry was prepared by mixing as-prepared carbons (PBF, PBF@N, or PBF@N@S), S with
polyvinylidene fluoride (PVDF), and carbon black at a mass ratio of 8:1:1 in NMP solution. The mixed
slurry was then coated on an aluminum foil and vacuum dried at 60 oC overnight. The S loading is the same
mass ratio as carbons (1:1 mass ratio of S to carbon, named PBF-S-50%, PBF@N-S-50%, and
PBF@N@S-S-50%). Coin cells (2032 type) were assembled using lithium foil as the anode and Celgard 3501
sheets as the separator. 35 μL of 1 M lithium bis (trifluoromethanesulfonyl)imide (LiTFSI) in a mixed
solvent of 1,2-dimethoxyethane (DME) and 1,3-dioxolane (DOL) with a volumetric ratio of 1:1 with 1 wt%
of LiNO3 were used as electrolyte. Electrochemical properties were performed on MTI BST8-MA (MTI
Corporation) and Arbin BT2143 battery analyzers. The applied voltage window was from 1.8 to 2.8 V. All
batteries were assembled in a glovebox.

RESULTS AND DISCUSSION
Characterization of PBFs
Figure 2A shows the XRD patterns of the as-prepared porous carbon samples. All samples show two broad 
peaks, located at around 25o and 43o two-theta, which are assigned to the reflection of the graphite (002) and 
(101) planes (JCPDS Card File, No. 41-1487), respectively[23]. No other observable peaks due to impurities 
have appeared. In addition, as it can be seen, the graphite peak of PBF@N@S is sharper, particularly than 
the others, which proves that PBF@N@S has better crystallization. Raman spectra are exhibited in 
Figure 2B, two characteristic peaks at around 1,350 and 1,600 cm-1 can be observed, corresponding to the D 
and G bands of carbon, respectively[28]. The ratio of the D band to the G band (ID/IG) is usually used to 
evaluate the density of defective sites[23]. The ID/IG ratio is 1.11 for PBF@N@S, 1.01 for PBF@N, and 0.98 for 
PBF, respectively, indicating that the defect density increased. The improved defect density would lead to 
more electrochemical active sites[23].
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Figure 1. A schematic diagram of preparing PBF@N@S. PBF@N@S: N, S dual-doped porous biochar fibers.

Figure 2. (A) XRD patterns of the PBF, PBF@N, and PBF@N@S and (B) Raman spectra of PBF, PBF@N, and PBF@N@S. PBF@N: N-
doped porous biochar fibers; PBF@N@S: N, S dual-doped porous biochar fibers; XRD: X-ray diffraction.

N adsorption/desorption isotherms are used to characterize the porosity of the samples, as illustrated in 
Figure 3A, and the corresponding pore size distribution is shown in Figure 3B-C. As shown in Figure 3A, 
the PBF@N@S shows a combination of Type I and II isotherms with an obvious H4 hysteresis loop, 
indicating that both micropores and mesopores exist. PBF@N also shows a composite of type I and II 
isotherms but with a small hysteresis loop, indicating a micropore dominant characteristic. PBF shows poor 
gas adsorption-desorption properties. The calculated BET surface area is 1,696 m2/g, 1,342 m2/g, and 
35 m2/g for PBF@N@S, PBF@N, and PBF, respectively, as presented in Table 1. A greater specific surface 
area would lead to better contact between the material and the electrolyte and further improve the capacity 
and cycle stability[29]. Moreover, the corresponding pore size distribution of the two porous materials is 
exhibited in Figure 3B-C. It can be seen from Figure 3B that multiple pore systems of different sizes in 
PBF@N@S are found, whereas the pore sizes in PBF@N are mostly distributed below 2 nm. The hierarchical 
pore structure of PBF@N@S is not only beneficial for the inclusion of more S but also can bind polysulfide.

The morphologies of PBF, PBF@N, and PBF@N@S were studied by SEM and TEM. As can be seen from 
Figure 4A, the PBF remains the structure of fibers, which shows a smooth surface and no porous structure. 
PBF@N (Figure 4B) and PBF@N@S (Figure 4C-D) exhibit large amounts of pore structures, which 
originates from the activation of KOH. According to Figure 4C-D, the large pores connect with each other 
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Table 1. Physical characteristics of PBF, PBF@N, and PBF@N@S

Sample BET surface area (m2/g)

PBF 35

PBF@N 1342

PBF@N@S 1696

BET: Brunauer-Emmett-Teller; PBF: Bare biochar fibers; PBF@N: N-doped porous biochar fibers; PBF@N@S: N, S dual-doped porous 

biochar fibers.

Figure 3. N2 adsorption/desorption isotherms of PBF, PBF@N, and PBF@N@S (A) and pore size distribution of the PBF@N@S (B) and
PBF@N (C). PBF: Bare biochar fibers; PBF@N: N-doped porous biochar fibers; PBF@N@S: N, S dual-doped porous biochar fibers.

with a pore size of 1-2 μm in the PBF@N@S. In addition, it can be seen from Figure 4D that plenty of 
small-scale pores exist and interconnect. The three-dimensional macro-porous structure of the carbon 
materials played a vital role in enabling high S loading, physically limiting the polysulfide, and improving 
the capacity and cycling stability[30,31].
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Figure 4. SEM images of PBF (A), PBF@N (B), and PBF@N@S (C-D) and TEM images of the PBF@N@S (E-F). PBF: Bare biochar fibers;
PBF@N: N-doped porous biochar fibers; PBF@N@S: N, S dual-doped porous biochar fibers; SEM: scanning electronic microscopy; 
TEM: transmission electron microscopy.

TEM also exhibits the formation of an abundant porous structure in the sample PBF@N@S. As shown in 
Figure 4E and Figure 4F, the abundant microporous structure has small pore sizes, of which most of them 
are smaller than 2 nm. The abundant microporous structure is beneficial to restrict the volume change of 
the S due to the strong confinement effect and contributes to the physical adsorption slowing down the S 
loss. Meanwhile, the crystal lattice of PBF@N@S is hardly observed from the high-resolution TEM image 
[Figure 4F], indicating an irregular carbon, which has a positive effect on bundling polysulfide.

XPS is used to study the chemical characteristics of the surface of the PBF@N@S. Figure 5A shows the 
wide-scan survey XPS spectrum of the PBF@N@S. The obvious signals of C, N, and S further reveal the N 
and S co-doping. The C 1s high-resolution spectrum [Figure 5B] could be deconvoluted into five peaks at 
284.8 eV, 286.1 eV, 287.2 eV, 288.4 eV, and 289.7 eV, relating to C-C/C=C, C-N/C-S, C-O, C=O, and 
O-C=O bonds, respectively[29,32-34]. Figure 5C shows N 1s spectra, which can be effectively divided into 
pyridinic N (398.4 eV), pyrrolic N (400.3 eV), and quaternary N (401.8 eV)[23]. The S 2p spectra are shown 
in Figure 5D. The two sulfur species are assigned to carbon-bonded thiophene-like sulfur C-S-C[29,35]. The 
co-doped N and S would improve the polysulfide absorptivity and long-term cycling stability[29]. In addition, 
the atomic percentages of PBF@N@S obtained from XPS are listed in Table 2, which shows the N and S 
atomic contents are 3.18% and 1.34%, respectively.
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Table 2. Elemental composition of PBF@N@S obtained from XPS

Elements C N S O

Percentage (at.%) 81.44 3.18 1.34 14.04

PBF@N@S: N, S dual-doped porous biochar fibers; XPS: X-ray photoelectron spectroscopy.

Figure 5. XPS spectra of PBF@N@S: full survey (A), C 1s spectra (B), N 1s spectra (C), and S 2p spectra (D). PBF@N@S: N, S dual-doped 

porous biochar fibers; XPS: X-ray photoelectron spectroscopy.

Electrochemical measurements
To investigate the electrochemical properties of the cathode, electrochemical cycling was first implemented. 
Figure 6A illustrates the cycling performances of PBF-S-50%, PBF@N-S-50%, and PBF@N@S-S-50% at a 
current rate of 0.1C. All these three electrodes showed high discharge capacities even after 200 cycles. 
Obviously, it demonstrates the cycling performance of PBF@N@S-S-50% electrodes is much better than 
PBF@N-S-50% and PBF-S-50%. The introduction of N and S atoms into the PBF induces asymmetric sites 
for binding lithium polysulfide, which enables the PBF@N@S electrode to have higher capacity and battery 
cycling stability. On the other hand, the hierarchical porous structure of PBF@N@S ensures good electrical 
contact between S and the conductive carbon framework and further accelerates Li-ions transportation, 
which improves the high performance of the battery.

Furthermore, an excellent rate capability performance is observed in Figure 6B. With the C rate successively 
increasing from 0.1 to 0.2, 0.5, 1, and 2C, the capacity of the three electrodes gradually decreases. When the 
C rate switches back to 0.1C after 50 cycles, the capacity of the electrodes can be recovered to the initial 
stage, indicative of their good rate capability. Notably, it is evident that PBF@N@S-S-50% exhibits 
consistently better electrochemical performance than both PBF@N-S-50% and PBF-S-50% cathodes, 
including larger specific capacity, longer cyclic life, and superior rate capability.



Page 8 of 11 Li et al. Miner Miner Mater 2023;2:7 https://dx.doi.org/10.20517/mmm.2023.06

Figure 6. Electrochemical performances of as-prepared electrode for Li-S batteries: (A) Cycling performance of the PBF-S-50%,
PBF@N-S-50%, and PBF@N@S-S-50% electrode over 200 cycles at 0.1C; (B) Rate capability of PBF@N@S-S-50%, PBF@N-S-50%, and
PBF-S-50%; (C) CV profiles of PBF@N@S-S-50% electrode at the scan rate of 0.1 mV/s; (D) Galvanostatic charge-discharge curves of
the PBF@N@S-S-50% at 0.1C. PBF: Bare biochar fibers; PBF@N: N-doped porous biochar fibers; PBF@N@S: N, S dual-doped porous 
biochar fibers.

The electrochemical mechanism of a Li-S battery was studied by cyclic voltammetry (CV), as shown in
Figure 6C. The typical CV curves of a S cathode contain two reductive peaks and one oxidative peak.
During the cathodic scan, peaks at around 2.35 V were attributed to the transformation from solid sulfur to
soluble polysulfide intermediates (Sn

2-, n ≥ 4)[36,37]. The other reduction peak that appeared at around 2.02 
V can be agreed with the reaction of polysulfide to the lower order insoluble Li2S2 and finally to Li2S 
from small sulfur molecule S4

2-[38,39]. Subsequently, the anodic peak at around 2.35 V was coherent 
with the conversion of Li2S2/Li2S to polysulfides and sulfur. Meanwhile, the peak position and area 
remained nearly good reaction reversibility in the successive cycles, indicating good stability.

Typical voltage capacity profiles of the PBF@N@S-S-50% at different cycles are shown in Figure 6D. The
discharge curves show two typical plateaus, which locate at around 2.1 V and 2.3 V, respectively; this could
be assigned to a two-step reaction of S with Li during the discharge process, agreeing well with the results of
CV measurements. In addition, the plateau at about 2.1 V could be commonly observed, which might
originate from the strong adsorption process of Li2S2 on the microporous besides the reduction process
(from Li2S2 to Li2S). This observation is similar to other carbon-sulfur nanocomposite electrodes[40,41]. Such
strong interactions can guarantee the stable performance of PBF@N@S-S-50% electrodes. Moreover, the
discharge plateaus are considerably stable even after ten cycles, which ensures excellent cyclic performance.
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Figure 7. Nyquist plots of PBF@N@S-S-50%, PBF@N-S-50%, and PBF-S-50% cathodes (A) and Nyquist plots of PBF@N@S-S-50%
after 1st, 10th, 20th, 50th, 100th, and 200th cycles (B). PBF: Bare biochar fibers; PBF@N: N-doped porous biochar fibers; PBF@N@S:
N, S dual-doped porous biochar fibers.

Electrochemical impedance spectroscopy (EIS) is a powerful method for analyzing cyclic changes and was 
measured to get further insight into the electrochemical performance. The semicircle at medium-to-high 
frequency was attributed to the charge-transfer process at the interface between the electrolyte and 
electrode[42]. The Warburg impedance that occurred in low frequency was associated with the semi-infinite 
diffusion of soluble lithium polysulfide in the electrolyte[43,44]. Figure 7A shows the Nyquist plots of fresh 
PBF@N@S-S-50%, PBF@N-S-50%, and PBF-S-50% cathodes. The introduction of N and S atoms makes the 
impedance of PBF@N@S and PBF@N much larger than PBF. Figure 7B exhibits the EIS plots of 
PBF@N@S-S-50% after the 1st, 10th, 20th, 50th, 100th, and 200th cycles. As shown in Figure 7, after 
activation of the first cycle, the resistance gradually became quite stable and maintained a small charge-
transfer resistance even at 200 cycles. As the number of charge-discharge cycles increased, the impedance of 
the PBF@N@S-S-50% increased gradually and then became stable because of the solid-electrolyte-interface 
(SEI) film, which was caused by the formation of Li2S (or Li2S2) on the carbon matrix in the cathode[45]. This 
small and stable resistance should also benefit the cycling performance.

CONCLUSIONS
A N, S co-doped hierarchical porous carbon has been successfully prepared via a simple one-step activation 
method and was employed as a cathode in Li-S batteries. The obtained porous carbon shows a highly 
interconnected network, which can encapsulate sulfur and polysulfide. The co-doped N and S into the 
carbon matrix could generate more active sites, which improves the battery capacity and cycling stability. 
The electrode illustrated an improved electrochemical performance and delivered a high initial capacity 
(above 1,200 mAh/g at 0.1C) and high reversible capacity after 200 cycles. This work provides a facile route 
to synthesize heteroatom-doped porous carbon materials for Li-S battery applications.
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