
 www.jsssjournal.com

Original Article Open Access

Calderoni et al. J Surveill Secur Saf 2020;1:106-18
DOI: 10.20517/jsss.2019.01

Journal of Surveillance,
Security and Safety

© The Author(s) 2020. Open Access This article is licensed under a Creative Commons Attribution 4.0
International License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use,

sharing, adaptation, distribution and reproduction in any medium or format, for any purpose, even commercially, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made.

Forge-resistant radio-frequency identification tags
for secure internet of things applications
Luca Calderoni1, Dario Maio1, Luciano Margara1, Luca Spadazzi2

1Department of Computer Science and Engineering, University of Bologna, Cesena 47522, Italy.
2Lab51 srl, Cesena 47522, Italy.

Correspondence to: Prof. Luca Calderoni, Department of Computer Science and Engineering, University of Bologna, via
dell’Università, 50, Cesena 47522, Italy. E-mail: luca.calderoni@unibo.it

How to cite this article: Calderoni L, Maio D, Margara L, Spadazzi L. Forge-resistant radio-frequency identification tags for
secure internet of things applications. J Surveill Secur Saf 2020;1:106-18. http://dx.doi.org/10.20517/jsss.2019.01

Received: 13 Dec 2019 First Decision: 1 Feb 2020 Revised: 10 Feb 2020 Accepted: 31 Mar 2020 Available online: 29 Oct 2020

Academic Editor: Michael G. Pecht Copy Editor: Jing-Wen Zhang Production Editor: Jing Yu

Abstract
Aim: Internet of Things (IoT) represents a key aspect within several application domains, and it enables growing
opportunities for both organizations and end-users. Radio-frequency identification tags are probably the most
relevant enabling solution for ubiquitous IoT systems and are often seen as a prerequisite for IoT itself. In this
study, we analyzed one of the most promising radio-frequency identification tags to determine whether or not it
represents a viable solution for secure IoT applications.

Methods: The study was conducted relying on an Android OS application developed within our laboratories, which
helped us to inspect the chip and describe its logical data structure. We studied the capabilities of the tag in
relation to the application protocol data unit it supports, and we described the cryptographic protocols with which
it is equipped.

Results: This tag is resistant to forging activities, and it also preserves confidentiality and authenticity on
exchanged data. We discussed several known privacy and security patterns that may be addressed relying on the
tag we focused on and we underlined some deficiencies concerning chip cloning attack. Again, secure dynamic
messaging and mirroring allow the surpassing of several privacy limitations.

Conclusion: In this paper we investigated the capabilities of the NT4H2421Gx tag. The deep Android inspection
performed on the tag showed that it represents an option to rely on when we need to design secure IoT
applications.

Keywords: Radio-frequency identification, NFC, internet of things, cryptographic protocols

1 INTRODUCTION
Internet of Things (IoT) has exploded in recent years, and the related security aspects are increasingly
relevant[1,2]. Radio-frequency identification (RFID) represents the most adopted solution within the IoT
domain[3,4]. The logistics industry is one of the earliest adopters of IoT and RFID solutions[5], while these
technologies are now used in several application contexts, such as military and defense applications, supply
chains, food industry and so forth. As an example, RFID tags may be applied to manage inventories, to
reduce overstocks and to avoid understocks as well as to track the overall lifecycle of a product[6].

More recently, RFID tags have also been used for different applications, such as localization and personal
identification. For example, electronic machine readable travel documents are equipped with RFID tags[7].
As this feature enables several cryptographic protocols to be applied during the communication between
the tag and the reader, it also makes it possible to deliver automated border controls in crucial areas such
as international airports. At the same time, localization and identification procedures based on RFID also
imply privacy and traceability issues for the tag bearer[8-10].

Thus, the combination of RFID and cryptography is widely studied[11-14], and paving the way for a number
of pervasive and secure applications. Among them, those aimed at preventing forgery and counterfeiting
of trademark products represent a significant slice of the application sector. In recent years, the scientific
community has therefore dedicated significant efforts to the design of techniques aimed to prevent
malicious attacks against RFID technology[15-18]. Consequently, several efficient cryptographic protocols
were proposed to deliver high-quality protection mechanisms for RFID-based applications.

The RFID industry tries to adapt its products so they can fit this rapid evolution and continues to
produce new tags with smarter capabilities. Each RFID tag has different features, including the supported
cryptographic protocols, the amount of data that it is able to store, the set of commands it can deal with and
so forth. The design of a secure IoT application relying on RFID technology should be thus preceded by an
in-depth study of tag capabilities. In this study, we focused on NT4H2421Gx[19], a recent RFID tag released
by NXP Semiconductors, and we investigated its features extensively. The results showed that NT4H2421Gx
represents a valid and promising solution for a wide number of secure IoT applications.

2 METHODS
In this section, we described the features of NT4H2421Gx. After a brief introduction to the general
specifications of the tag, we investigated in depth its logical data structure, its application protocol data unit
(APDU) and its core functionalities. Finally, we proposed a high-level comparison between this tag and
other related ones.

The NXP’s NT4H2421Gx tag is fully compliant with the NFC Forum Type 4 IC specification and relies on
the ISO/IEC 14443-4 contactless proximity protocol. The file system is compliant with ISO/IEC 7816-4[20].
The APDU is based on ISO/IEC 7816-4 as well, while it preserves only three of the native commands. Each
command included in the command set is tag specific.

2.1 Hardware layer
Contactless smart cards with microprocessors incorporate their own operating system, which is usually
burned into the ROM module at the production stage. The tasks of the operating system are data transfer
from and to the smart card, command sequence control, APDU interpretation, file management and

Calderoni et al . J Surveill Secur Saf 2020;1:106-18 I http://dx.doi.org/10.20517/jsss.2019.01 Page 107

cryptographic algorithm execution (e.g., encryption, authentication)[21]. Concerning NT4H2421Gx, a high-
level block diagram depicting its hardware components is provided in Figure 1.

Usually, a command processing sequence within a smart card operating system undergoes the following
flow. At the physical layer, commands sent from the reader to the tag are received through the radio
frequency interface, according to ISO/IEC 14443-2A. The packets are processed at the transport layer
according to ISO/IEC 14443-3A: error detection and correction are performed by the I/O manager, which
relies on the CRC co-processor. If the packet is deemed correct, its payload is extracted and processed
at the application layer, relying on ISO/IEC 7816-4 or proprietary APDU commands. When secure
messaging applies, the payload is decrypted or checked for integrity. These procedures are enhanced by
the AES and RNG co-processors. When the APDU manager is not able to recognize the command, the
return code manager generates the appropriate return code and sends it back to the reader. Conversely,
if a valid command is received, the system executes the instructions which correspond to the command
code, according to the APDU. When the command implies some access to the EEPROM, this is performed
exclusively by the file management system and the memory manager, which convert all symbolic addresses
into the corresponding physical addresses of the memory area. The file manager is also responsible for
verification of access conditions, depending on the addressed data.

2.2 Logical data structure
Concerning the file system, NT4H2421Gx complies with ISO/IEC 7816-4. Specifically, it is equipped with a
master file (MF), a dedicated file (DF) and three elementary files (EF). The logical data structure mounted
on the tag we focused on is depicted in Figure 2.

The first file is also known as the capability container (CC) file and it is formatted in accordance with NFC
Forum specifications[22]. This file specifies the mapping version and the maximum size of command APDU
and response APDU data size. Moreover, this file contains some metadata concerning the other two files
included in the user memory. For each of them, this file specifies the name of the file, the overall byte size
and the access conditions which need to be met to access the file. The “Results” section provides a deep
look at the CC file.

Page 108 Calderoni et al . J Surveill Secur Saf 2020;1:106-18 I http://dx.doi.org/10.20517/jsss.2019.01

Figure 1. A high-level hardware block diagram of the NT4H2421Gx tag

The second file is also known as the NDEF file and contains an NDEF-formatted message[23]. NDEF is
a lightweight, binary message format that can be used to encapsulate one or more application-defined
payloads of arbitrary type and size into a single message construct. Each payload is composed of a type,
length, and optional id. Just as an example, identifiers may be represented by URIs, MIME media types, or
other NFC-specific types. This file is also designed to support secure dynamic messaging (SDM) and data
mirroring. These options extend the security and privacy features offered by this tag and will be discussed
in the next sections.

The third file is a proprietary NXP file which is read- and write-protected and contains raw data. At the
production stage, access to this file is restricted using two different application keys, one for reading
operations and one for writing operations. This condition is better exemplified in the “Results” section.

The RFID device also includes nine cryptographic keys, designed to be used as advanced encryption
standard (AES) keys[24]. Four keys are provided at the tag level (MF). They are also referred to as originality
keys. The other five keys are instead included at the application level (DF) and are referred to as application
keys. Originality keys are stored in ROM and may never be removed or updated after chip production.
Conversely, application keys are part of the user memory (EEPROM) and may be updated to customize the
tag for application-specific scenarios. Each of these nine keys may be used to perform an authentication
procedure between the tag and a reader. Moreover, to update any of the app keys, a successful

Figure 2. The file system mounted in the user memory. The three elementary files listed under the dedicated file are standard data files ,
according to ISO/IEC 7816-4 . MF: master file; DF: dedicated file; CC: capability container; SDM: secure dynamic messaging; UID: unique
tag identifier; NDEF: NFC data exchange format; NFC: near field communication

Calderoni et al . J Surveill Secur Saf 2020;1:106-18 I http://dx.doi.org/10.20517/jsss.2019.01 Page 109

authentication through the first application key is required. This key is also referred to as App Master Key.
A complete list of the aforementioned keys is provided in Table 1.

Finally, it is important to point out that the tag ROM also contains the unique tag identifier (UID),
composed of 7 bytes, and a 56-byte digital signature, which was computed by NXP at the production stage
and burned in the memory. This digital signature lays at the basis of the strong anti-forging functionalities
provided by the NT4H2421Gx tag and will be discussed in the next section.

2.3 Application protocol data unit
An APDU consists of the instruction set used by the reader and the tag during communication. Each
procedure that is performed during communication relies on a combination of APDU commands. APDU
instructions are divided into command APDUs and response APDUs. The former ones are sent by the reader
to the tag while the latter are sent back by the tag to the reader.

NT4H2421Gx APDU is based on the ISO/IEC 7816-4 standard. However, the majority of available
commands are proprietary and are programmed through original ISO/IEC 7816-4 command wrapping.
Specifically, only three of the native commands are preserved.

The complete NT4H2421Gx command set is provided in Table 2. Please note that some of the listed
commands are composed of more than one part. For instance, the GetVersion command is divided into
GetVersion part1, GetVersion part2 and GetVersion part3. These details do not add much to the discussion
on the subject and are therefore omitted for brevity.

2.4 Comparison
NT4H2421Gx is a robust and versatile tag and provides a wide range of desirable features within the IoT
domain. As summed up in Table 3, this tag was introduced by NXP to surpass several limitations that
afflicted tags belonging to older generations. NTAG is the market-leading portfolio of NFC tag solutions
for the consumer and industrial segments of IoT. These tags offer different levels of security and different
functionalities as well, to address a wide range of applications.

NT4H2421Gx supports NDEF-formatted messages to be stored in the user memory. NDEF records
may be combined with UID mirroring, UID randomization and SDM to cover a broad range of user
requirements, including privacy preservation. Thanks to several co-processors, this tag also provides
authentication functionalities and secure messaging. Both of them rely on AES-128 cryptography. Memory
access is subject to a mixture of user-driven and manufacturer-driven permissions and relies on AES-
128 authentication as well. Forging attempts are averted by the manufacturer’s digital signature (56 bytes),
which is computed against the UID at the production stage and is embedded into the tag.

Key Length Location Key n Update Authentication Notes
Originality key 1
Originality key 2
Originality key 3
Originality key 4

128 bits
128 bits
128 bits
128 bits

ROM
ROM
ROM
ROM

0x01
0x02
0x03
0x04

×
×
×
×

√
√
√
√

Application key 1
Application key 2
Application key 3
Application key 4
Application key 5

128 bits
128 bits
128 bits
128 bits
128 bits

EEPROM
EEPROM
EEPROM
EEPROM
EEPROM

0x00
0x01
0x02
0x03
0x04

√
√
√
√
√

√
√
√
√
√

App master key

SDM meta read
SDM file read

Table 1. AES keys installed on NT4H2421Gx tag

While App Master Key is always identified by code 0x00 at the dedicated file level, SDM-related keys may be identified by each of the
application keys (i.e., it is not mandatory to use key 0x03 and 0x04 as reported in this table). SDM: secure dynamic messaging

Page 110 Calderoni et al . J Surveill Secur Saf 2020;1:106-18 I http://dx.doi.org/10.20517/jsss.2019.01

NTAG21x is protected by the same digital signature principle, while it relies on a different, weaker elliptic
curve, which produces a 32-byte signature. NDEF and memory access protection are provided as well,
while, for the latter, access is granted on a 32-bit password basis instead of the more reliable AES-128
authentication. The other features are not provided by this tag.

Concerning the last type, NTAG210μ does not provide any of the listed features, apart from the 32-byte
digital signature.

Finally, none of the tags provides strong protection against chip cloning attacks. Concerning NT4H2421Gx,
while a cloning attempt is not straightforward, since it implies that the malicious party needs to learn
the AES originality keys, it is not impossible. Further considerations on the subject are provided in the
“Discussion” section.

3 RESULTS
To effectively check the tag properties and some of its core functionalities, we designed a mobile application
on the basis of Android OS, which uses the NFC sensor of the smartphone as a tag reader. The customized
NT4H2421Gx tag was provided by lab51 srl.

In this section, we exemplified some of the APDU commands executed by the mobile application, and we
stressed the digital signature verification process, as it represents the more reliable feature in relation to
anti-forging. In the following, the content of each command and each response is proposed in hexadecimal
format.

First of all, DF was selected through the standard ISOSelectFile command (see Table 2 for reference).
Subsequently, the GetVersion command was addressed to acquire some basic information on the tag

Category Command Class Description
Basic r/w functionalities ISOSelectFile

ISOReadBinary
ISOReadBinary
ReadData
WriteData

ISO/IEC 7816-4
ISO/IEC 7816-4
ISO/IEC 7816-4
Proprietary
Proprietary

Select MF, DF or EF
Read data from a data file (EF)
Write data to a data file (EF)
Read data from a data file (EF)
Write data to a data file (EF)

Authentication AuthenticateEV2First
AuthenticateEV2NonFirst
AuthenticateLRPFirst
AuthenticateLRPNonFirst

Proprietary
Proprietary
Proprietary Proprietary

Perform AES three-pass authentication
Perform AES three-pass authentication
Perform LRP three-pass authentication
Perform LRP three-pass authentication

Key management GetKeyVersion
ChangeKey

Proprietary
Proprietary

Get version of the specified key
Update key, version and reset counters

Digital signature Read_Sig Proprietary Get the tag digital signature
Metadata management GetVersion

GetCardUID
GetFileCounters
GetFileSettings
ChangeFileSettings
SetConfiguration

Proprietary
Proprietary
Proprietary
Proprietary
Proprietary
Proprietary

Get tag metadata (UID, producer)
Get the unique 7-byte tag UID
Get the SDM read counter
Get file metadata (access rights, SDM)
Set file metadata (access rights, SDM)
Set tag mode (LRP, random ID)

Table 2. NT4H2421Gx command set

MF: master file; DF: dedicated file; EF: elementary file; LRP: leakage-resilient primitive; SDM: secure dynamic messaging; UID: unique tag
identifier; AES: advanced encryption standard

IoT: internet of things; SDM: secure dynamic messaging

Tag type NDEF Secure messaging SDM Random ID Digital Sig. Authentication Memory access protection

NT4H2421Gx
NTAG21x
NTAG210μ

√
√
×

√
×
×

√
×
×

√
×
×

√
√
√

√
×
×

√
√
×

Table 3. Comparison of three NXP tags designed for the IoT domain

Calderoni et al . J Surveill Secur Saf 2020;1:106-18 I http://dx.doi.org/10.20517/jsss.2019.01 Page 111

studied. The complete communication trace is provided in Figure 3. According to the returned data, the
tag was produced during the 39th week of 2018 by NXP. The most important information included in the
answer is the tag ID: as the tag studied is not configured with the random ID setting, the third response
includes the real 7-byte UID. This condition may lead to a privacy breach and will be further discussed in
the “Discussion” section.

The following step consists in the selection of the CC file. The application checks the file settings through
the GetFileSettings command and subsequently reads the full file content using the standard ISOReadBinary
command. The communication trace involved is provided in Figure 4. The information returned by the
GetFileSettings command shows that the SDM is not enabled for this file. Again, the CC file has a size of
20:00:00, which means it is composed of 32 bytes, as it should be interpreted with least significant byte
encoding. Concerning the access rights to the file, the response shows that the E103 file is subject to the
00:E0 access policy. According to NXP specifications, it means that this file is free to read (E), while other
operations (write and change file permissions) need to be preceded by authentication through the key
number 0x00 (the App Master Key). ISOReadBinary asks the tag for 32 bytes from the aforementioned
file. The answer states that the CC effectively occupies 23 bytes only (00:17). Here, we may see that the file
system comprises two more files, named E104 and E105. The first one occupies 256 bytes and may be read
and written without any authentication (00:00). Note that this access notation differs from the one returned
by the GetFileSettings command as it is intended to be in accordance with the NFC Forum specifications.
The latter file occupies 128 bytes. The access conditions for this file are set to 82:83. These numbers fall in
the proprietary range, concerning NFC Forum access policies. Specifically, it means that read operations
need to be preceded by authentication with the application key number 0x02. The same applies to write
operations, with key number 0x03.

Figure 3. The complete communication trace concerning the GetVerison command. UID: unique tag identifier; DF: dedicated file

Figure 4. The complete communication trace concerning the commands performed against the capability container file. EF: elementary
file; SDM: secure dynamic messaging

Page 112 Calderoni et al . J Surveill Secur Saf 2020;1:106-18 I http://dx.doi.org/10.20517/jsss.2019.01

The next step consists of the inspection of the NDEF file. After the file selection, the application checks
the file settings through the GetFileSettings command and, subsequently, reads the full file content using
the standard ISOReadBinary command. The complete communication trace is provided in Figure 5. The
information returned by the GetFileSettings command shows that, differently from the CC file, SDM is
enabled for this file. Specifically, the file metadata shows that two attributes are supposed to be mirrored
inside the NDEF file: the tag UID, stored at offset 14:00:00 (i.e., 20 following the decimal notation) and the
SDM read counter, stored at offset 23:00:00 (i.e., 35 following the decimal notation). Both of them are stored
in ASCII encoding. SDM access rights are set to FF:EF; this means that the UID and the SDMReadCtr are
stored as plaintext within the NDEF file. Moreover, no run time encryption is applied to these data when
the NDEF file is read through the ISOReadBinary or ReadData commands. Again, the GetFileCounters
command is disabled. Moreover, metadata indicate that the overall dimension of the NDEF file is 256 bytes
(00:01:00), and the access conditions are set to E0:EE. This access policy reflects the one included in the CC
file for the NDEF file, as it states that the file may be updated and read with no restrictions (E). This setting
suggests that the default file access rights were not changed after chip personalization.

Concerning the file content, the file effectively occupies 39 bytes (00:27). The file stores a single NDEF
record having header D1. Hence, this record is a short record of a well-known type. The specific type is a
URI (55) and the payload length is 35 (23). The first byte of the URI is 02, which is an abbreviation for
“https://www.”. The remaining bytes contain the rest of the URI and the mirrored UID and SDMReadCtr,
stored in ASCII encoding, as depicted in Figure 5.

To check the correctness of the APDU implementation in relation to the tag access logic, we also tested
two more commands: GetCardUID and GetFileCounters. Both commands correctly return an error code.
In the first case, this is due to the fact that the command was executed when the tag and the reader were
not under authenticated mode. The error returned by the latter is instead related to the SDM access rights
reported in Figure 5: as the SDMCtrRet is set to F, the GetFileCounters command is disabled. The error
codes are provided in Figure 6.

Finally, we run the Read_Sig command to verify the digital signature and to prove the compliance of this
tag with respect to chip forging. The related communication trace is listed in Figure 7.

According to NXP, the digital signature relies on elliptic curve cryptography[25] and was produced for the
tag UID using an ECDSA algorithm with the elliptic curve secp224r1. As the name suggests, this curve
implies keys of 224 bits (i.e., 28 bytes). Thus, the digital signature is composed of two parts: the first part is

Figure 5. The complete communication trace concerning the commands performed against the NDEF file. EF: elementary file; SDM:
secure dynamic messaging; UID: unique tag identifier

Calderoni et al . J Surveill Secur Saf 2020;1:106-18 I http://dx.doi.org/10.20517/jsss.2019.01 Page 113

28 bytes long and refers to the r parameter, and the second part is 28 bytes long as well and refers to the s
parameter. The corresponding public key which should be used to verify the digital signature is provided by
NXP and includes the X and Y coordinates of a point on the curve, plus an additional control byte[26]. The
public key is provided in Figure 8.

The verification procedure was written within the Android application relying on the Bouncy Castle
Cryptographic Library (https://www.bouncycastle.org).

To correctly test the digital signature, the raw bytes returned by the Read_Sig command need to be encoded
in DER; otherwise, they cannot be handled by the java library used to operate the verification.

The verification procedure may be summed up as follows:
1. add the Bouncy Castle security provider;
2. create an empty data structure based on the secp224r1 curve;
3. load the elliptic curve point from the raw bytes containing the NXP public key;
4. generate the elliptic curve public key accordingly;
5. prepare a Signature object with the aforementioned public key;
6. set the message to be verified as the tag UID;
7. encode the tag digital signature with DER encoding;
8. perform the digital signature verification on the DER-encoded signature.
The Android algorithm correctly verifies the digital signature. The originality check based on strong
asymmetric cryptography is thus passed.

Figure 6. The complete communication trace concerning the GetCardUID and GetFileCounters commands

Figure 7. The complete communication trace concerning the Read_Sig command

Figure 8. NXP public key for the elliptic curve secp224r1

Page 114 Calderoni et al . J Surveill Secur Saf 2020;1:106-18 I http://dx.doi.org/10.20517/jsss.2019.01

4 DISCUSSION
In this section, we discuss some notable security and privacy patterns that may be addressed using the
NT4H2421Gx tag.

4.1 Communication channel security
The most commonly known security functionalities are based on three-pass mutual authentication and rely
on AES symmetric cryptography. The authentication procedure is initiated by the AuthenticateEV2First or
AuthenticateLRPFirst command.

When the reader and the tag are in the authenticated state, they are able to communicate using each
command included in the command set. Performing a successful authentication proves that the reader
possesses one of the cryptographic keys listed in Table 1. In authenticated mode, each APDU command
is protected by secure messaging. Thus, message payloads are encrypted using the adopted AES key, and a
message authentication code is attached as well. It follows that the communication channel is secured with
respect to sniffing/eavesdropping attacks. Three-pass mutual authentication and secure messaging ensure
confidentiality, integrity and trust. Of course, as they rely on symmetric AES cryptography, they suffer the
key distribution problem, which is notably relevant within this field[27]. Some strategies should be adopted
to provide the readers with one or more AES keys.

Finally, the SetConfiguration command may be used to enable the leakage-resilient primitive (LRP)
mode (note that it is not possible to revert the tag to simple AES mode). Under LRP mode, three-pass
authentication is started by the AuthenticateLRPFirst command and may rely on originality keys as well.
LRP mode relies on a slightly different AES algorithm which is designed to resist side-channel attacks. An
in-depth discussion on this subject falls out of the scope of this work.

4.2 Privacy implications
The GDPR specifically includes the term online identifiers within the definition of what constitutes personal
data. These objects may include information relating to the device that an individual is using, such as
applications, tools or protocols. To this end, the GDPR Recital 30 shows a shortlist as an example and
explicitly includes RFID tags. To comply with the latest privacy requirements, a good tag should thus be
allowed to hide its UID under specific circumstances, since this UID may be sniffed out by unauthorized
readers, threatening the user’s privacy.

The random ID feature provided by NT4H2421Gx implements this requirement. This setting may be
triggered through the SetConfiguration command, and prevent the UID to be unveiled through the
GetVersion command. Specifically, when the tag is in random ID mode, a 4-byte random ID substitutes the
7-byte UID within the GetVersion response. There are two more options to learn the tag UID: using the
GetCardUID command or reading it out from the NDEF file when UID mirroring is active. The first option
does not represent a privacy breach, as the GetCardUID command is not allowed when the reader is not
authenticated (see Figure 6 for reference). Concerning the latter option, it should be pointed out that UID
mirroring is not mandatory, and moreover, the mirrored UID may be stored as ciphertext within the NDEF
file. While the examined tag mirrors the UID as plaintext (see Figure 5 for reference), a proper change in
the NDEF file settings (through the ChangeFileSettings) would encrypt the UID.

4.3 Chip cloning
The ability of a malicious stakeholder to clone the tag is probably the most dangerous event concerning
NT4H2421Gx. The only countermeasure provided by the tag is represented by the inability of the attacker
to copy the four originality keys which are stored in the ROM. These keys may be used accessing the MF
level to perform a successful authentication, proving the tag originality. Unfortunately, it is evident from

Calderoni et al . J Surveill Secur Saf 2020;1:106-18 I http://dx.doi.org/10.20517/jsss.2019.01 Page 115

NXP documentation that these symmetric AES keys are sometimes shared with NXP’s licensees to check
if the tags are genuine[26]. This information could be maliciously used to produce a complete clone of a
genuine NXP tag.

To this end, please note that the tag UID and the corresponding NXP digital signature may be acquired
through a legitimate tag inspection (as described in the “Results” section) and copied to the cloned tag as
well.

To overcome this issue, further security protocols should be adopted. A significant example is represented
by electronic passports[15]. The guidelines for e-Passport issuance and management are provided by the
International Civil Aviation Organization (ICAO), and include a detailed description of the security
protocols and the logical data structure used to store and arrange data into the RFID chip. To prevent
chip cloning attacks, ICAO designed the Active Authentication security protocol. This protocol relies on
asymmetric cryptography and requires a dedicated key pair. Briefly, during the chip’s customization phase,
the secret key is stored in the chip’s secure memory, while the public key is stored in one of the chip’s
elementary files. When the reader needs to check whether or not the chip is genuine, it sends a random
nonce to the chip, which signs it using the private key as signing key, according to the adopted cypher. The
reader then reads the chip’s public key from the corresponding EF and decrypts the string. On a positive
match, the protocol succeeds. As the private key is stored in the chip’s secure memory, it is very hard to
read for an attacker. Moreover, as the protocol relies on asymmetric cryptography, there is no need for
the licensees to handle the private key. This missing piece (the private key) and the introduced protocol
represent a strong defense against chip cloning attacks. A similar solution could be adopted to strengthen
the security features of NT4H2421Gx.

4.4 Tag forging
When we talk about tag forging, we refer to the ability of an attacker to produce a new tag from scratch
claiming that it is genuine and that it is produced by some trusted organization (such as NXP). This
procedure differs from the cloning one, as in this case the attacker does not copy the same tag UID in the
forged chip, where the aim is to couple the tag with a new different UID.

The deep inspection performed on the NT4H2421Gx tag proved that this technology is strongly resistant
with respect to forging activities. In fact, the Read_Sig command provides the reader with a digital
signature which was computed signing the tag UID with an NXP elliptic curve private key (see Figure 7
for reference). Hence, to forge the tag, the attacker should sign the new UID with the same private key and
should store the resulting signature in the tag ROM. Differently from symmetric AES keys, this private key
never leaves the NXP hardware security module. As such, to forge a genuine NXP chip, the attacker must
be able to break strong asymmetric encryption (which is usually deemed impossible under reasonable
settings).

4.5 Soft security settings
To facilitate user experience and tag interoperability, this tag also supports a soft security setting named
SDM. This feature may be set up for a single file (namely the NDEF one) through the ChangeFileSettings
command. Besides, as depicted in Figure 5, SDM is enabled in the tag studied. SDM allows for confidential
and integrity-protected data exchange, without requiring a preceding authentication. The NDEF file content
may be accessed without any authentication. Encrypting part of the file content (together with tag UID or
SDMReadCtr) is a valid option to reach the maximum interoperability with any RFID/NFC reader, while
preserving some form of security. As predictable, when the involved application context requires strong
security settings, SDM should not be considered a valid option.

Page 116 Calderoni et al . J Surveill Secur Saf 2020;1:106-18 I http://dx.doi.org/10.20517/jsss.2019.01

This work could be extended according to several directions. From a theoretical point of view, a formal
validation of the experimental results presented in this article would be an interesting open issue.
Furthermore, a future research direction could involve further investigation of which countermeasures
may be set up in this chip to handle chip cloning attacks better. Following the ICAO principles designed for
electronic machine readable travel documents, a viable solution could consist of a novel protocol relying on
asymmetric cryptography. Furthermore, this tag supports notable features that enhance privacy and also
implement soft security settings, which increase tag interoperability. From a practical and application point
of view, a good option could be to design and implement stateless systems (from the user’s perspective) able
to preserve some form of security and confidentiality while enabling tag inspection. Such a system could
rely on smartphones NFC sensors and should be independent of a dedicated end-user application on the
smartphone itself. This setting should exploit the SDM feature provided by the tag.

In a conclusion, in this paper we investigated the capabilities of the NT4H2421Gx tag. To effectively check
the tag properties and some of its core functionalities, we designed a mobile application based on Android
OS which uses the NFC sensor of the smartphone as a tag reader. This application allowed us to read the
memory of the aforementioned chip at the bit level, and to discuss its core functionalities and settings in
relation to the most common security and privacy patterns. In the final part of the paper we considered
each of these aspects separately to stimulate the research community regarding these topics. Concluding,
the deep Android inspection performed on the NT4H2421Gx tag showed that it represents an option to
rely on when we need to design secure IoT applications. This tag is resistant to forging activities, and it also
preserves confidentiality and authenticity on exchanged data. Again, SDM and mirroring enable stateless
applications (from the user’s perspective) to be delivered and also allow the surpassing of several privacy
limitations.

DECLARATIONS
Authors’ contributions
Made substantial contributions to conception and design of the study and performed data analysis and
interpretation: Calderoni L
Provided technical and material support: Spadazzi L
Supervised the work: Maio D, Margara L

Availability of data and materials
Not applicable.

Financial support and sponsorship
None.

Conflicts of interest
All authors declared that there are no conflicts of interest.

Ethical approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Copyright
© The Author(s) 2020.

Calderoni et al . J Surveill Secur Saf 2020;1:106-18 I http://dx.doi.org/10.20517/jsss.2019.01 Page 117

REFERENCES
1. Conti M, Dehghantanha A, Franke K, Watson S. Internet of things security and forensics: challenges and opportunities. Future Generation

Comp Syst 2018;78:544-6.
2. Palmieri P, Calderoni L, Maio D. Private inter-network routing for wireless sensor networks and the internet of things. Proceedings of the

Computing Frontiers Conference (CF’17). ACM, New York, USA; 2017;396-401.
3. Mehta R, Sahni J, Khanna K. Internet of things: vision, applications and challenges. Procedia Computer Sci 2018;132:1263-9.
4. Jia X, Feng Q, Fan T, Lei Q. RFID technology and its applications in Internet of Things (IoT). Proceedings of the 2nd International

Conference on Consumer Electronics, Communications and Networks (CECNet), Yichang; 2012:1282-5.
5. Lee YM, Cheng F. Exploring the impact of RFID on supply chain dynamics. Proceedings of the 36th conference on Winter simulation;

2004 Dec 5-8; Washington, DC, USA; 2004. pp. 1145-52.
6. Wu L, Liu S, Zhao B, Wu W, Zhu B. The research of the application of the binary search algorithm of RFID system in the supermarket

shopping information identification. J Wireless Com Network 2019;27:1-10.
7. International Civil Aviation Organization. Doc 9303 - Machine readable travel documents. 7th ed. ICAO; 2015.
8. Avoine G, Calderoni L, Delvaux J, Maio D, Palmieri P. Passengers information in public transport and privacy: can anonymous tickets

prevent tracking? Int J Information Management 2014;34:682-8.
9. Chothia T, Smirnov V. A traceability attack against e-passports. In: Sion R, editor. Financial cryptography. Lecture notes in computer

science. Springer; 2010. pp. 20-34.
10. Ma D, Saxena N, Xiang T, Zhu Y. Location-aware and safer cards: enhancing RFID security and privacy via location sensing. IEEE Trans

Distributed Secure Computing 2013;10:57-69.
11. Yang SJ, Huang X. Certain types of M-fuzzifying matroids: a fundamental look at the security protocols in RFID and IoT. Future

Generation Computer Systems 2018;86:582-90.
12. Halevi T, Li H, Ma D, Saxena N, Voris J, et al. Context-aware defenses to RFID unauthorized reading and relay attacks. IEEE

Transactions Emerging Topics Computing 2013;1:307-18.
13. He D, Zeadally S. An analysis of RFID authentication schemes for internet of things in healthcare environment using elliptic curve

cryptography. IEEE Int Things J 2015;2:72-83.
14. Li N, Mu Y, Susilo W, Guo F, Varadharajan V. Vulnerabilities of an ECC-based RFID authentication scheme. Security Comm Networks

2015;8:3262-70.
15. Calderoni L, Maio D. Cloning and tampering threats in e-passports. Expert Syst Appl 2014;41:5066-70.
16. Gandino F, Montrucchio B, Rebaudengo M. Tampering in RFID: a survey on risks and defenses. Mobile Netw Appl 2010;15:502-16.
17. Gao L, Zhang L, Lin F, Ma M. Secure RFID authentication schemes based on security analysis and improvements of the USI protocol.

IEEE Access 2019;17:1360-6.
18. Aghili SF, Mala H, Kaliyar P, Conti M. SecLAP: secure and lightweight RFID authentication protocol for Medical IoT. Future Gener

Comput Syst 2019;101:621-34.
19. NXP Semiconductors: NT4H2421Gx - NTAG 424 DNA. Tech. rep., NXP (January 2019), rev. 3.0. Available from https://www.nxp.com/

docs/en/data-sheet/NT4H2421Gx.pdf [Last accessed on 3 Jun 2020]
20. International Organization for Standardization Electrotechnical Commission. Organization, Security and Commands for Interchange. 3th

ed. 2013.
21. Finkenzeller K, Muller D. RFID handbook: fundamentals and applications in contactless smart cards, radio frequency identification and

near-field communication. 3th ed. Wiley; 2010.
22. NFC Forum: Type 4 Tag Operation Specification. 2011. Available from https://nfc-forum.org/product/nfc-forum-type-4-tag-specification-

version-1-1/ [Last accessed on 3 Jun 2020]
23. NFC Forum: NFC Data Exchange Format (NDEF). 2006. Available from https://nfc-forum.org/product/nfc-data-exchange-format-ndef-

technical-specification/ [Last accessed on 3 Jun 2020]
24. Daemen J, Rijmen V. The Design of Rijndael: AES - The Advanced Encryption Standard. Information Security and Cryptography,

Springer; 2002.
25. Miller VS. Use of elliptic curves in cryptography. In: Williams HC, editor. Advances in Cryptology - CRYPTO’85, Proceedings.

CRYPTO 1985. Lecture Notes in Computer Science, Springer, Berlin, Heidelberg; 1985;218:417-26.
26. NXP Semiconductors: AN12196 - NTAG 424 DNA and NTAG 424 DNA TagTamper features and hints. Tech. rep., NXP (July 2019), rev.

1.5. Available from https://www.nxp.com/docs/en/application-note/AN12196.pdf [Last accessed on 3 Jun 2020]
27. Ng CY, Susilo W, Mu Y, Safavi-Naini R. Practical RFID ownership transfer scheme. J Computer Security 2011;19:319-41.

Page 118 Calderoni et al . J Surveill Secur Saf 2020;1:106-18 I http://dx.doi.org/10.20517/jsss.2019.01

