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Abstract
Epigenetic regulation refers to alterations to the chromatin template that collectively establish differential patterns 
of gene transcription. Post-translational modifications of the histones play a key role in epigenetic regulation of 
gene transcription. In this review, we provide an overview of recent studies on the role of histone modifications 
in carcinogenesis. Since tumour-selective ligands such as tumor necrosis factor-related apoptosis-inducing 
ligand (TRAIL) are well-considered as promising anti-tumour therapies, we summarise strategies for improving 
TRAIL sensitivity by inhibiting aberrant histone modifications in cancers. In this perspective we also discuss new 
epigenetic drug targets for enhancing TRAIL-mediated apoptosis. 

Keywords: Epigenetics, histone modification, tumor necrosis factor-related apoptosis-inducing ligand, selective 
epigenetic inhibitors, apoptosis 

INTRODUCTION
In humans, the genetic information (DNA) is contained in 23 chromosome pairs. These chromosomes are 
composed of DNA and histone proteins that form highly condensed chromatin. In parallel to genetics, the 
term “epigenetics” was originally defined to describe heritable changes that are not encoded in the DNA. 
Currently, epigenetics is used as a common term to describe chromatin modifications that regulate DNA-
based processes including heritable and non-heritable changes[1]. The main players in epigenetic regulations 
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are DNA modifications, histone modifications and non-coding RNAs. Histone modifications regulate, 
among other things, chromatin remodelling, which is closely related to regulation of gene transcription. For 
example, heterochromatin is usually tightly packed and prohibits gene transcription, while euchromatin 
is usually loosely packed and enables gene transcription[2]. Since epigenetics plays a crucial role in DNA-
based processes, histone modifications are very important in cell growth in normal and disease states such 
as carcinogenesis. 

Among various strategies to treat cancers, the selective induction of cellular apoptosis in cancer cells is 
considered as a promising therapeutic strategy. A well-known ligand to induce apoptosis is tumor necrosis 
factor (TNF)-related apoptosis-inducing ligand (TRAIL). Dulanermin is a TRAIL-based therapeutic 
containing amino acids 114-281 of human TRAIL, which has been developed as a clinical anti-cancer 
drug. An early phase I clinical study showed that dulanermin was well-tolerated by patients with advanced 
cancer. However, only 3% of the patients in this study responded to dulanermin treatment for a period 
longer than 6 months[3]. This may be due to TRAIL-resistance, which occurs in various type of cancer 
cells. TRAIL-resistance can be attributed to impaired TRAIL binding to death receptors, modified levels 
of apoptosis-related proteins, and reduced caspase functions[4]. In spite of this, TRAIL-based therapeutics 
are currently under clinical investigation. For instance, a phase I clinical study is recruiting participants to 
study the application of the novel TRAIL trimer SCB-313 for the treatment of malignant pleural effusions 
and peritoneal malignancies (NCT03869697 and NCT03443674). Moreover, phase I/II clinical studies with 
lung cancer patients using TRAIL expressed by mesenchymal stem cells are ongoing (NCT03298763). This 
demonstrates an active interest in the clinical application of TRAIL-based therapeutics. 

In this review, we provide an overview of post-translational modifications of histones and the enzymes 
involved in the addition or removal of these modifications. We discuss small molecules targeting these 
enzymes and their anti-tumour effects. We connect this to targets involved in apoptosis as potential 
approach in cancer therapy. Finally, we summarize the current understanding of epigenetic mechanisms 
involved in sensitivity to TRAIL-induced apoptosis.

HISTONE MODIFICATIONS
Histones are the central components of nucleosomes, in which a DNA string wraps around an octamer 
containing two copies of four core histones (H3, H4, H2A and H2B). These nucleosomes are organized 
like “beads” on DNA strings and are connected by histone protein H1 and further compacted to 30 nm-
chromatin fibres, which are eventually condensed to form a chromosome. Therefore, histones provide 
structural support for chromosomes to provide organized packing of the DNA inside the nucleus. 
Unstructured histone tails are excluded from nucleosome cores and these tails are rich in lysine and 
arginine residues. Lysine residues are positively charged and provide charge-charge interactions with the 
negatively charged DNA, thus compacting the chromatin structure. Post-translational modifications occur 
mostly on the N-terminal tails of histones. These modifications play versatile roles in regulation of the 
structure and accessibility of the chromatin for transcription factors [Table 1].

Modifications of arginine
Arginine methylation
Biologically, arginine methylation refers to a reaction in which a methyl group is transferred from 
S-adenosyl-L-methionine (SAM) to one or both omega nitrogens of an arginine amino acid residue. This 
transfer leads to formation of monomethylarginine (MMA), asymmetric dimethylarginine (ADMA) 
and/or symmetric dimethylarginine (SDMA). This methylation reaction is catalysed by N-arginine 
methyltransferases (PRMTs). All of the PRMTs can catalyse monomethylation of arginine to provide 
MMA. Type I PRMTs, including PRMT1, 2, 3, 4, 6 and 8, methylate MMA further to provide ADMA. Type 
II PRMTs, including PRMT5 and 9, methylate MMA further to provide SDMA. PRMT7 is classified as a 
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type III enzyme that catalyses methylation of various substrates. Histone arginine methylation is directly 
associated with gene transcription. For instance, methylation at H3R2 blocks the ability to methylate H3K4, 
which is responsible for recruiting chromatin-remodelling enzymes to maintain a transcriptionally active 
state[17]. H4R3 has been identified as a binder of DNA methyltransferase DNMT3A[18].

In contrast to arginine methylation, it is less clear which enzymes catalyse arginine demethylation. JMJD6 
was initially reported to demethylate H3R2 and H4R3[19], however this was disputed in later studies[20-22]. 
Recently, a new study reported that JMJD1B, a lysine demethylase, also demethylates arginine at H4R3[23]. 

Arginine citrullination
A recently identified arginine post-translational modification is citrullination. This post-translational 
modification was already found in dozens of proteins, such as proteases, metabolic enzymes, and histones. 
The citrullination of histones is well-known to be involved in the formation of neutrophil extracellular 
traps (NETs), which is connected to innate immunity. In the process of clearing bacteria, the neutrophils 
secrete DNA, histones, and intracellular proteins to the extracellular space where they form NETs [24]. 
In comparison to the involvement of histone citrullination in immune response, the exact biological 
significance of histone citrullination in carcinogenesis is largely unclear[7]. 

Modifications of lysine
Lysine methylation
Lysine methylation is tightly regulated by “writers” (KMTs, methyltransferases) and “erasers” (KDMs, 
demethylases). Similar to PRMTs, KMTs also employ SAM as co-factor to transfer one, two, or three 
methyl groups to specific histone lysine residues. More than 50 human KMTs and 30 KDMs have been 
identified[25]. Instead of global regulation of gene expression across different types of cells, KMTs may be 
involved in the regulation of genes with specific roles in normal or cancer cells. For instance, there are 
6 homologues of H3K4 methyltransferases, denoted KMT2A to KMT2E, that are involved in methylation 
at this position. Moreover, one recent study has shown that KMT2A and KMT2B control different genomic 
regions in brain cells to regulate memory function[25]. Therefore, KMTs may serve as potential biomarkers 
in patients for individualized treatment. Depending on the lysine position, methylation state, and amino 
acids environment, histone lysine methylation can activate or repress gene transcription. Generally, 
methylation on H3K4, H3K36, and H3K79 are considered to activate gene transcription, while methylation 
on H3K9, H3K27 and H4K20 are thought to repress gene transcription[8]. In contrast to KMTs, one KDM 
can catalyse demethylation on several lysine residues. For instance, LSD1 (also called KDM1A) is specific 
to H3K4 and H3K9 residues[26]. 

Amino acids Modifications Positions Nomenclature Ref.
Arginine Methylation *H3R2/R8/R17/R26, H4R3, H2AR3 R-me1, R-me2s, R-me2a [5,6]

Citullination *H3R2/R8/R17/R26/R42, H4R3, H2A, and H1 R-citrulline [7]
Lysine Methylation *H3K9/K4/K36/K79/K27, H4K5/K20 K-me1, K-me2, K-me3 [8]

Acetylation *H3K9/K14/K56, H4K5/K12/K16 K-acetyl [9,10]
Propionylation *H3K14 K-propionyl [11]
Butyrylation *H3K14, H4K5/K8 K-butyryl [11,12]
2-hydroxyisobutyrylation H2AK5/9/36/74/75/95/118, H2BK5/12/20/23/24/3

4/43/46/57/85/108/116/120,
H3K4/9/14/18/23/27/36/56/64/79/122
H4K5/8/12/16/31/44/59/77/79/91

K-2-hydroxyisobutyryl [13]

Malonylation *H2AK119 K-malonyl [14]
Succinylation *H3K79 K-succinyl [15]
Crotonylation H2AK36/118/119/125, H2BK5/11/12/15/16/20/23/34

H3K4/9/18/23/27/56, H4K5/8/12/16
K-crotonyl [16]

Table 1. Histone modifications

*Specific positions which were identified to have certain effects in nuclear processes
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Short-chain lysine acylation
A classically studied lysine modification is acetylation of histone lysine residues. In a lysine acetylation 
reaction, an acetyl group from acetylated coenzyme A is transferred to the e-amino from a lysine residue, 
which results in neutralization of the positive charge and thus weakening of the electrostatic interaction 
with the DNA. This change leads to a more open chromatin structure, which allows access of DNA 
binding proteins. In general, acetylation is related to increased gene transcription, while deacetylation is 
connected to repression of gene transcription [Figure 1]. This dynamic process is catalysed by three groups 
of enzymes: (1) histone acetyltransferases (HATs), also known as “writers”, are responsible for transferring 
acetyl groups to targeted lysine residues; (2) histone deacetylases (HDACs), known as “erasers”, are found to 
remove acetyl groups; and (3) bromodomain proteins, known as “readers”, specifically recognize acetylated 
lysine residues. 

Besides histone lysine acetylation, recent studies show that other short-chain CoAs, such as propionyl-
CoA, butyryl-CoA[27], 2-hydroxyisobutyryl-CoA[13], crotonyl-CoA[16], malonyl-CoA and succinyl-CoA[28], 
can be used as substrates to acylate histone lysine residues. 

Others
Besides the aforementioned methylation and acetylation, other types of post-translational modifications 
are identified on histones, such as lysine ubiquitinoylation, sumoylation and ADP-ribosylation. These 
modifications are mostly reported to relate to DNA damage and repair. Moreover, phosphorylation of 
histone serine and threonine residues is a globally found modification, which plays important roles in 
diverse nuclear processes. Details for these modifications are discussed in recent reviews[29-31].

ABERRANT HISTONE MODIFICATIONS IN CANCERS AND THE DEVELOPMENT OF SMALL-

MOLECULE INHIBITORS
Inhibitors to target arginine modifications
Overexpression of PRMTs has been observed in various types of human cancers[32]. For instance, the 
overexpression of PRMT5 has been observed in non-Hodgkin lymphoma[33,34]. Additionally, recent studies 
show that PRMT5 promotes survival of lymphoma cells via WNT and AKT-mediated proliferation 
signalling[35,36]. Interfering with PRMT5 activity prevents the maintenance of malignant phenotypes[37]. 
Therefore, PRMT5 is a rational target for treating lymphoma. Small-molecule inhibitors specifically 
targeting PRMT5 have been developed and two inhibitors, JNJ-64619178 and GSK3326595, were patented 
and are now under clinical investigation. Besides the development of PRMT5 inhibitors, type I PRMT 
inhibitors have also gained interest due to the high expression of type I PRMTs in various types of 
cancers[38-41]. Moreover, PRMT1 is identified as an essential component of mixed lineage leukaemia (MLL) 
and specific knockdown of PRMT1 suppresses MLL-mediated transformation[42]. Interestingly, a recent 

Figure 1. Acetylation or deacetylation of histone lysine residues is catalysed by HATs and HDACs, respectively. Lysine acetylation 
is connected to loosening of the chromatin structure. This change enables DNA binding and eventually leads to activation of 
gene transcription. In contrast, deacetylation closes the chromatin structure and represses gene transcription. HATs: histone 
acetyltransferases; HDACs: histone deacetylases 
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study shows that GSK3368715, a type I PRMT inhibitor, synergizes with the anti-tumour effect of PRMT5 
inhibition[43] [Table 2]. 

Inhibitors to target lysine modifications
Numerous studies have shown that mutation, dysregulation, or overexpression of lysine modifying enzymes 
such as KMTs, KDMs, HATs, or HDACs are associated with cancers and other diseases. Therefore, these 
enzymes were recognized as potential drug targets for cancer treatment[59,60]. 

As listed in Table 2, several inhibitors targeting lysine methylation have been described. EZH2 (enhancer 
of zeste) homolog is becoming a potential target for treating lymphoma. EZH2 is a catalytic components of 
polycomb repressive complexes 2 (PRC2), which methylate H3K27[61]. Gain-of-function mutations of EZH2 
are mainly detected in diffuse large B cell lymphoma and follicular lymphoma among all categories of 
lymphomas and lymphoid leukaemia[62]. Moreover, a mutation at Y641 within the catalytic domain of EZH2 
proved to increase methylation of H3K27, because the mutant EZH2 shows higher catalytic efficiency 
compared to wild type EZH2. This increased methylation contributes to the pathogenesis of germinal 
centre B-cell lymphomas[63]. Another EZH2 mutation, A677G, also increases methylation of H3K27me3[64]. 
These insights triggered the development of EZH2 inhibitors for therapeutic use. For instance, tazemetostat 
is a promising inhibitor that is under investigation in phase II clinical trials.

Previously, the FDA approved several pan-HDAC inhibitors for the treatment of cancers. For instance, 
vorinostat (SAHA) is approved for the treatment of cutaneous manifestations of cutaneous T-cell 
lymphoma[65]. Belinostat (Beleodaq) is approved for the treatment of patients with relapsed or refractory 
peripheral T-cell lymphoma (PTCL)[66], and panobinostat (Farydak) is approved for patients with relapsed 
multiple myeloma (MM)[67]. Besides these pan-HDAC inhibitors, a class I specific HDAC inhibitor 
romidepsin (Isodax) is approved for the treatment of PTCL. Further developments are aimed at the 
application of more isoenzyme-selective HDAC inhibitors. Moreover, several specific inhibitors are shown 
that were developed for cancer treatment over the last decade. Among these inhibitors, HDAC6-selective 
inhibitors show a promising anti-tumour effect to various cancers. For instance, ricolinostat (ACY-
1215) shows strong potential at treating MM alone or with other drugs[68-70]. Several clinical trials using 
ricolinostat for patients with MM are currently ongoing (NCT01323751, NCT02189343, NCT01997840, 
and NCT01583283) [see Table 3].  

In comparison to HDAC inhibitors, the development of potent and specific HAT inhibitors is lagging. 
C646 was firstly considered as a p300 and CBP selective inhibitor[91]. However, a recent study shows that 

Name Type of histone 
modification Target Clinical 

phase Condition or disease in clinic Disease in preclinical studies

Pinometostat
(EPZ-5676)

Lysine 
methylation

DOT1L 1 Advanced acute leukemia, particularly 
MLL-r[44]

Rearranged mixed lineage leukemia 
(MLL-r)[45-47]

CPI-1205 EZH2 1 B-cell lymphomas[48] B-cell lymphomas[49]

Tazemetostat
(EPZ-6438)

2 Elapsed or refractory B-cell non-Hodgkin 
lymphoma and advanced solid tumours[50]

Non-Hodgkin lymphoma[51,52] Rhabdoid 
tumour models[53]

GSK2879552 LSD1 1 Relapsed or refractory SCLC[54] Small cell lung carcinoma[55]

JNJ-64619178 Arginine 
methylation

PRMT5 1 Relapsed/refractory B cell non-Hodgkin 
lymphoma (NHL) or advanced solid 
tumours

Human NSCLC and SCLC cancer 
mouse xenograft models[49]

GSK3326595
(EPZ015938)

PRMT5 1 Advanced or metastatic solid tumours 
and non-Hodgkin’s lymphoma[56,57]

Hematologic and solid tumour cells 
lines[58]

GSK3368715
(EPZ019997)

Type I 
PRMTs

1 Solid tumours and diffuse large B-cell 
lymphoma

Lymphoma and AML cell lines[43]

Table 2. Inhibitors of histone methylation in clinical studies

SCLC: small cell lung cancer; NSCLC: non-small-cell lung carcinoma; AML: acute myeloid leukemia
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C646 binds off-target to other kinases[92]. A novel p300 and CBP specific inhibitor A485 was synthesized 
and shows inhibition of proliferation in myeloma cells[90,93]. This new inhibitor holds promise for further 
exploration in myeloma. 

Bromodomains are protein modules that are present in 46 different human proteins[94]. An important 
bromodomain family is the bromodomain and extra-terminal domain-containing (BET) protein family, 
which consists of two bromodomains (BD1 and BD2) and one extra-terminal domain. BET proteins 
recognize and bind specific peptide sequence in the chromatin, which plays an enabling role in the 
assembly of protein-protein complexes on the chromatin[95]. Currently, BET protein modules are considered 
as a promising group of targets for treatment of cancer, which triggered the development of BET 
inhibitors[96-98]. Whereas early studies provided BET inhibitors with limited selectivity, more recent studies 
promise to provide therapeutically relevant BET inhibition with improved selectivity profiles. For instance, 
ABBV-744 and BY27 are BD2-specific inhibitors that are proven to inhibit tumour cell growth in vitro[99,100]. 
A phase I study is ongoing in which the safety and pharmacokinetics of BET inhibitor ABBV-744 is 
evaluated for treatment of patients with acute myeloid leukaemia (NCT03360006).

IMPROVED TRAIL-INDUCED APOPTOSIS BY TARGETING ENZYMES INVOLVED IN HISTONE 

MODIFICATIONS
TRAIL-induced apoptosis pathways
TRAIL is a member of the TNF superfamily and it binds to five receptors, including death receptor 4 (DR4), 
death receptor 5 (DR5), decoy receptor 1 (DcR1), decoy receptor 2 (DcR2), and osteoprotegerin. DR4 and 
DR5 both contain an intracellular death domain (DD), which initiates apoptotic signalling transduction. 
In contrast, DcR1 and DcR2 do not induce apoptosis due to the truncated DD in DcR1 and the absent DD 
in DcR2. The mechanisms of TRAIL-induced apoptosis have been intensively investigated and pathways 
identified are shown in Figure 2[101-103]. Extrinsic apoptotic signalling is initiated upon binding of a TRAIL 
trimer to DR4 or DR5, which initiates formation of a death-inducing signalling complex (DISC). In 
this DISC, FAS-associated protein with death domain (FADD) is connected with DR4 or DR5 via DDs. 
Initiator caspases, like pro-caspase-8 or 10, are recruited to FADD via the interaction between death 
effector domains. This recruitment also actives self-dimerization of pro-caspase-8 or 10, leading to auto-
proteolytic processing at consensus cleavage sites. Executioner caspases, like caspase-3 or 7, are cleaved by 
initiator caspases to create a mature functional protease, which coordinates to the degradation phase of 
apoptosis, including DNA fragmentation, membrane blebbing and cell shrinkage. Single active executioner 
caspase can cleave and activate other caspases, resulting in activation of the caspase cascade. In addition, 
caspase-8 or 10 engages the intrinsic apoptosis pathway through cleavage of the BH3-interacting domain 
death agonist (Bid) to facilitate the release of cytochrome C from mitochondria. In fact, the truncated Bid 
translocates from the cytoplasm to mitochondria and stimulates oligomerization of Bax or Bak. At the 

Name Target Links to cancer
BG45 Class I HDAC multiple myeloma[71-73]

TMP-195 Class IIa HDAC Breast tumour[74]

LMK235 HDAC4,5 Chemoresistant cancer cells[75] multiple myeloma[76] pancreatic neuroendocrine tumours[77]

Tubastatin A HDAC6 cholangiocarcinoma[78] melanoma[79]

Ricolinostat (ACY-1215) multiple myeloma[68-70]

SKLB-23bb solid and hematologic tumour[80]

Cay 10603 Burkitt’s lymphoma[81] lung carcinoma[82]

Nexturastat A myeloma[83-85]

PCI-34051 HDAC8 neuroblastoma[86] T-cell lymphomas[87] malignant peripheral nerve sheath tumours[88]

A485 P300/CBP myeloma[89,90]

Table 3. Specific HAT and HDAC inhibitors developed between 2009 and 2019, and their applications in cancer in vitro

HAT: histone acetyltransferase; HDAC: histone deacetylase
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same time, Bax and Bak permeabilize the membrane of the mitochondrion, also called mitochondrial outer 
membrane permeabilization (MOMP). Following MOMP, the mitochondrial inner membrane releases 
cytochrome C or second mitochondria-derived activator of caspase/direct inhibitor of apoptosis-binding 
protein with low pI (Smac/DIABLO) into the cytosol. With the binding of cytochrome C to adaptor protein 
apoptotic protease-activating factor-1, dATP and the initiator caspase caspase-9 are recruited to form the 
apoptosome. Finally, active caspase-9 directly cleaves executioner caspases caspase-3 or 7. 

Anti-apoptotic proteins are also involved in these apoptotic signalling pathways. For instance, cellular-FLIP 
(c-FLIP) and cellular inhibitors of apoptotic proteins (cIAP1 and cIAP2) disturb the formation of DISC. 
X-linked IAP (XIAP) and survivin, on the other hand, block executioner caspases and the apoptosome. 
Moreover, anti-apoptotic Bcl-2 family members, like Bcl-2, Bcl-XL, Mcl-1, and Bfl-1 are able to prevent 
MOMP.

Improving TRAIL-induced apoptosis
Although, TRAIL has promising tumour-cell selective apoptosis-inducing properties, various tumour cells 
are resistant to TRAIL treatment. Therefore, it is important to improve TRAIL-sensitivity. Here, we discuss 

Figure 2. TRAIL-induced apoptotic pathways. After trimerization, TRAIL binds to death receptors, which triggers the formation of the 
DISC and activates caspase-8/10. Subsequently, activated caspase-8/10 induces cleavage of caspase-3/7, which leads to apoptosis. 
On the other hand, cleaved caspase-8/10 can also recruit Bid to trigger apoptosis via the intrinsic pathways. The intrinsic pathway 
is usually activated by DNA damage followed by p53 activation, whereas TRAIL-induced intrinsic apoptotic pathway is independent 
of p53. Interestingly, p53 has also been found to regulate TRAIL receptors DR4, DR5, DcR1, and DcR2[104-107]. Anti-apoptotic proteins, 
including c-FLIP, c-IAP1/2, Bcl-2, Bfl-1, Mcl-1, Bcl-XL, XIAP, and survivin, are shown in blue circles. DISC: death-inducing signalling 
complex; DR4: death receptor 4; DR4: death receptor 5; DcR1: decoy receptor 1; DcR2: decoy receptor 2 
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the strategies of improving TRAIL-sensitivity by targeting histone modifying enzymes that are involved in 
methylation and acetylation. Examples of the use of selective inhibitors as TRAIL sensitizers to overcome 
TRAIL-resistance are shown in Table 4.

Histone methylation
The enzyme EHMT2 catalyses the dimethylation of H3K9me2, which is associated with silencing of 
tumour suppressor genes. The PRC2 complex plays an important role in H3K27me3, which is also related 
to transcriptional repression of tumour suppressor genes. When combined with TRAIL, inhibitors of either 
EHMT2 or PRC2 increase the number of apoptotic cells through upregulation of DR5[108,109]. These results 
indicate that the expression of DR5 may be be related to the reduced methylation of histones.

Additionally, a recent study shows that silencing KDM2B, a H3K36-specific histone demethylase, can cause 
a de-repression of a pro-apoptotic gene Harakiri (HRK) in glioblastoma multiforme cells. This study also 
shows that the silencing of KDM2B cooperates with TRAIL to reduce cell viability[116].

As discussed above, EZH2 is a promising therapeutic target for lymphoma. Therefore, EZH2-specific 
inhibitors may enhance the sensitivity of lymphoma cells to TRAIL. Additionally, another methyltransferase 
PRMT5 has been identified as a novel TRAIL receptor binding protein at the plasma membrane, which is 
involved in the early stage of signal initiation for induction of the NF-κB signalling pathways[117]. Moreover, 
a study shows that the overexpression of PRMT5 increased expression of c-FLIPL by decreasing the 
ubiquitination via inhibition of the interaction between c-FLIPL and ITCH, leading to decreased apoptotic 
cells induced by doxorubicin in human lung cancer cells[118]. Therefore, targeting PRMT5 by specific 
inhibitors may improve sensitivity to TRAIL. 

Histone acetylation
Previously, studies have shown that the combination of pan-HDAC inhibitors, such as panobinostat, 
with TRAIL downregulates anti-apoptotic proteins, c-FLIP and XIAP, thereby improving sensitivity to 
TRAIL[119,120]. This study indicates a close relationship of histone acetylation and the TRAIL signalling 
pathways.

Moreover, highly acetylated Ku70, a DNA repair protein, disrupts the formation of the Ku70-FLIP complex 
and triggers the degradation of FLIP by polyubiquitination. Therefore, using the HDAC inhibitor vorinostat 
increases apoptosis through the stabilization of the Ku70-FLIP complex in colon cancer models in vivo. 
Interestingly, this study also shows that the HDAC6-specific inhibitor tubacin increases apoptosis[121]. With 
the increasing development of HDAC-specific inhibitors, the combination of HDAC specific inhibitors 
with TRAIL may be an interesting choice [Table 4].

Target Small molecule Regulation mechanisms Cancer type Ref.
Euchromatic histone-lysine 
N -methyltransferase 2 
(EHMT2, G9a)

BIX-01294 Downregulation of Survivin and 
Upregulation of DR5

Renal carcinoma [108]

Upregulation of DR5 Breast cancer [109]
PRC2 Retinoic acid (RA) or 

3-deazaneplanocin A (DZNep)
Increased DR5 transcript level Colon cancer [110]

Class I HDAC Entinostat 
(MS-275)

Restore expression of Coxsackie 
Adenovirus receptor

Prostate cancer [111]

Upregulation of DR4, DR5, Bax, Bak Breast cancer [112]
Decrease degradation of endogenous 
TRAIL

Anaplastic thyroid 
carcinoma

[113]

Expression of endogenous TRAIL Acute myeloid 
leukemia

[114]

HDAC3 RGFP966 Upregulation of DR4 Colon cancer [115]
HDAC8 PCI34051

Table 4. Improved TRAIL-induced apoptosis pathway using inhibitors targeting enzymes in histone modifications
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Interestingly, the BET inhibitor JQ1 was reported to reduce the expression of c-FLIP and XIAP at mRNA 
and protein level in KRAS-mutated NSCLC cells. Combined JQ1 with TRAIL significantly enhanced 
apoptosis[122]. Furthermore, JO1 combined with the HDAC inhibitor vorinostat increases apoptosis via the 
extrinsic pathway in CTLC cells[123]. These results indicate that BET inhibitors play an important role in 
regulating proteins in the apoptotic signalling pathway axis. Therefore, the combination of BET inhibitor 
with TRAIL may be a promising strategy for the development of cancer therapeutics. 

CONCLUSION 
Due to intensive research efforts over the past decades, the knowledge of epigenetic regulation in 
carcinogenesis is expanding rapidly. This knowledge provides new insights into the role of histone 
modifications in oncogenic gene transcription. Consequently, histone modifying enzymes have been 
recognized as drug targets. In this review, we summarize recent discoveries involving histone modifications 
and the enzymes involved. We focus on small molecules targeting these enzymes involved, and we highlight 
their effects on TRAIL-induced apoptosis. Finally, we indicate new targets in Table 4 for enhancing TRAIL 
sensitivity.
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