
Gregory et al. Hepatoma Res 2022;8:31
DOI: 10.20517/2394-5079.2022.34

Hepatoma Research

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 
International License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, sharing, 
adaptation, distribution and reproduction in any medium or format, for any purpose, even commercially, as 

long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and 
indicate if changes were made.

www.hrjournal.net

Open AccessReview

Alteration in immune function in patients with fatty 
liver disease
Stephanie N. Gregory1, Shruthi R. Perati1, Zachary J. Brown2

1Department of Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA.
2Division of Surgical Oncology, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 
43210, USA.

Correspondence to: Zachary J. Brown, Division of Surgical Oncology, Department of Surgery, The Ohio State University Wexner 
Medical Center, N924 Doan Hall, 410 West 10th Ave, Columbus, OH 43210, USA. E-mail: zachjbrown@gmail.com

How to cite this article: Gregory SN, Perati SR, Brown ZJ. Alteration in immune function in patients with fatty liver disease. 
Hepatoma Res 2022;8:31. https://dx.doi.org/10.20517/2394-5079.2022.34

Received: 29 Jun 2022   First Decision: 3 Aug 2022   Revised: 12 Aug 2022  Accepted: 23 Aug 2022   Published: 26 Aug 2022

Academic Editor: Guido Gerken   Copy Editor: Haixia Wang   Production Editor: Haixia Wang

Abstract
Nonalcoholic fatty liver disease (NAFLD) is a disease spectrum that spans simple steatosis, fibrosis, and ultimately 
cirrhosis, and is a leading cause of chronic liver disease globally. The severe variant of NAFLD, non-alcoholic 
steatohepatitis (NASH), is characterized by triglyceride accumulation within hepatocytes and the subsequent 
inflammatory pathway activation, ultimately progressing to cirrhosis in 10%-20% of patients. NASH is a known 
major risk factor for the development of hepatocellular carcinoma (HCC), and there is emerging data 
demonstrating the impact of NASH on immune subsets and the tumor microenvironment that may influence 
therapeutic response. This review describes the various ways in which the immune system is altered in patients 
with NASH. The innate immune system in NASH shows alterations in dendritic and Kupffer cells, impaired 
cytotoxicity of Natural Killer cells, and an accumulation of neutrophils. Additionally, there is emerging evidence 
emphasizing the role of the adaptive immune system in the development and progression of NASH, seen in the 
alteration of B-cells, T-cells, and NKT Cells. Due to the complex interplay of the immune system in NAFLD/NASH 
and its progression to HCC, many current treatments focus on targeting immune cells for HCC therapy. Recently, 
immune checkpoint inhibitors such as atezolizumab and bevacizumab have been approved as first-line therapy for 
unresectable HCC. Although an emerging field of research, further studies and clinical trials are needed to 
understand the complex interface of NASH, HCC and the immune response.
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INTRODUCTION
Nonalcoholic fatty liver disease (NAFLD) is a leading cause of chronic liver disease in both the Western and 
Eastern hemispheres, making it a significant global problem[1]. NAFLD is a disease spectrum that ranges 
from simple steatosis, fibrosis, and ultimately cirrhosis. The severe form of NAFLD, non-alcoholic 
steatohepatitis (NASH), is characterized by triglyceride accumulations within hepatocytes, and subsequent 
inflammatory pathway activation as hepatocytes are injured and replaced, ultimately progressing to 
cirrhosis in 10%-20% of patients[2-5]. In the United States, the prevalence of NASH is rapidly increasing, with 
an annual incident of 3.6 million cases[6]. Additionally, NASH has been predicted to increase to 56% 
between 2016 and 2030[7,8]. As the incidence of NASH rises, it is becoming a significant risk factor for the 
development of hepatocellular carcinoma (HCC), as evidenced by the cumulative HCC incidence of 2.4% to 
12.8% over 2 to 3 years, respectively among patients with NASH and cirrhosis[9].

HCC is the most common primary liver cancer and the fourth leading cause of cancer-related death 
worldwide[10]. Liver cirrhosis is a major risk factor for the development of HCC. Etiologies of cirrhosis 
include NAFLD/NASH as well as viral hepatitis and alcoholic liver disease[11]. Treatment for HCC takes into 
consideration tumor-related factors such as tumor size and anatomic location as well as the severity of 
background liver disease which is a driving factor for post-operative complications. For select patients, liver 
resection, ablation or transplantation can be curative. However, in patients with more advanced tumors or 
liver disease, curative treatment options are not available and patients are treated with arterially directed 
therapies such as transarterial chemoembolization (TACE) or systemic therapy[12-15]. Systemic therapy 
options have improved with the introduction of atezolizumab [anti-programmed death-ligand 1 (PD-L1)] 
with bevacizumab [anti-vascular endothelial growth factor (VEGF)] as the first-line standard of care after 
demonstrating improved overall survival (OS) and progression-free survival (PFS) compared to 
sorafenib[16,17]. However, emerging evidence indicates fatty liver disease alters the tumor microenvironment 
and may affect response to treatment. Over the past decade, there has been immense progress in elucidating 
the mechanisms and immune microenvironment that factor into the development of NASH and its 
progression to cirrhosis and HCC. This review discusses the various ways in which the immune system is 
altered in patients with NAFLD/NASH.

PATHOGENESIS OF FATTY LIVER DISEASE
NAFLD and NASH can also be thought of as the manifestation of metabolic syndrome of the liver, as there 
is a correlation with type 2 diabetes mellitus (DM), dyslipidemia, cardiovascular disease, and obesity[18]. The 
risk of progression for NAFLD to NASH is directly correlated with the increasing number of risk factors in 
a patient[19]. Among these features, DM is shown to have the strongest association with the progression of 
NAFLD to NASH, and up to 75% of individuals with DM type II have NAFLD. The relationship between 
DM and the risk of HCC in patients with NASH is not well quantified. However, Yang et al. followed 354 
patients with NASH cirrhosis, of which 253 (71%) had DM, and thirty of these patients developed HCC 
over a median follow-up period of 47 months.[20] Both a univariate analysis [hazard ratio (HR) = 3.6; 95% 
confidence interval (CI) = 1.1-11.9; P = 0.04] and multivariate analysis (HR = 4.2; 95%CI: 1.2-14.2; P = 0.02) 
revealed an association with DM and an increased risk of developing HCC among patients with NASH 
cirrhosis.
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From a genetic perspective, the patatin-like phospholipase domain-contained protein (PNPLA) 3 has been 
identified as a risk factor for NAFLD. A loss of function mutation in the PNPLA 3 gene impairs triglyceride 
hydrolysis resulting in increased triglyceride accumulation within hepatocytes and lipotoxicity resulting in 
oxidative stress[21]. While genetics, insulin resistance, and obesity have a synergistic role in the perpetuation 
of hepatic steatosis, there are immune changes in response to inflammation and oxidative stress that 
provide additional “hits” that promote the progression of NASH[18].

TUMOR IMMUNE MICROENVIRONMENT OF HCC
HCC frequently develops in the setting of chronic liver disease, where inflammation aids in driving 
carcinogenesis[22]. The tumor microenvironment (TME) is now recognized as a key part of tumor growth 
and immune evasion. The liver is a natural immune tolerant organ; it has developed intrinsic mechanisms 
to promote tolerance in the innate and adaptive immune responses in order to protect itself from 
autoimmune damage secondary to large antigen presentation from the gastrointestinal tract[23,24]. The liver 
also bestows a unique proinflammatory microenvironment that consists of various immunologically active 
cells, such as Kupffer cells (KCs), antigen-presenting cells, T cells, and hepatic stellate cells (HSCs)[25-27]. 
These cells participate in a multifaceted proinflammatory response that occurs during pathologic liver 
injury that results in hepatocyte death and disease progression. In addition, proinflammatory cytokines, 
such as interleukin (IL)-6 and tumor necrosis factor (TNF)-α, as well as hyperinsulinemia, free fatty acids, 
and leptin, can interact with components in the liver microenvironment and create inflammation, fibrosis, 
and lipotoxicity[25]. Recently, literature has shown that the liver TME has been a complex interplay in the 
development of NAFLD/NASH and progression to HCC[1,28,29]. Thus, it is imperative to understand the 
hepatic microenvironment and the innate and adaptive immune system alterations that occur in the 
development of NASH [Figure 1].

INNATE IMMUNE SYSTEM
The innate immune system is the first line of defense against pathogens in the body. The liver activates 
innate immunity due to its direct antigen exposure from the gastrointestinal tract. This activation has been 
shown to be vital in activating inflammation in NASH[30] [Table 1].

Kupffer Cells
KCs, also classified as liver resident macrophages, account for 10%-20% of total cells in the liver[31]. KCs are 
the liver’s first line of immune defense as they are in constant contact with antigens arriving in the liver 
from the gastrointestinal tract[32,33]. These antigens are presented to toll-like receptors (TLRs) on KCs that 
trigger mechanisms to induce immunity, which may, in turn, contribute to liver diseases such as cirrhosis 
and HCC[33]. For example, translocation of lipopolysaccharide (LPS), a bacterial endotoxin from the gut 
microbiome, is presented to TLR4 on KCs and activates transcription factor (NF)-κB. In return, this 
pathway generates a potent and persistent proinflammatory cascade through the generation of reactive 
oxygen species (ROS), especially through NADPH oxidase 2 (NOX2)[34,35]. During ROS-induced lipotoxicity, 
stressed or dying hepatocytes release intracellular molecules called damage-associated molecular patterns 
(DAMPs). Under physiologic conditions, DAMPs act on a variety of immune cells in the liver to activate a 
homeostatic wound-healing response to repair injured tissue[36,37]. However, if these signals are prolonged in 
the setting of tissue inflammation, DAMPs can induce an excessive inflammatory response through direct 
activation of TLR9 in KCs that can lead to advanced fibrosis and progression to cirrhosis[30,38,39]. Particularly, 
NOX2-induced ROS has been associated with premature senescence of liver sinusoidal endothelial cells 
which are associated with fibrogenesis[40,41]. Furthermore, oxidative stress in the setting of NAFLD has been 
demonstrated through increased levels of soluble NOX2-derived peptide (sNOX2-dp) as well as urinary 8-
iso-prostagladin F2α (8-iso-PGF2α), which is a commonly accepted biomarker of oxidative stress produced 
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Figure 1. The Immune System. Immunopathogenesis of nonalcoholic steatohepatitis (NASH). Interactions between innate immune cells 
(left frame) and adaptive immune cells (right frame) on hepatocytes that promote NASH and the transition to hepatocellular carcinoma 
(HCC). NK cell: Natural killer cell; CD4+: CD4+ helper T cell; CD8+: Cytotoxic CD8+ T cells; Tregs: regulatory T-cells; DAMPs: damage 
associated molecular patterns; IFN: interferon; ROS: reactive oxygen species; MPO: myeloperoxidase; TNF: tumor necrosis factor; TLR: 
toll-like receptor; TRAIL: tumor necrosis factor-related apoptosis-inducing ligand; OSEs: oxidative stress-derived epitopes; OPN: 
Osteopontin; VCAM: vascular cell adhesion molecule; IL: interleukin; PDL: programed death ligand.

by NOX2[42]. While KCs aim to protect the liver from endotoxins and antigens, the resulting persistent 
oxidative stress can be further damaging.

Alongside liver resident KCs, an abundant population of peripheral macrophages are recruited into the liver 
in both NAFLD and NASH. These infiltrative macrophages are differentiated from KCs through the 
expression of different surface markers. Peripheral infiltrating macrophages have high levels of CD11b and 
low F4/80 expression, whereas KCs were noted to have low levels of CD11b and high F4/80 expression[43]. 
CCR2 was another marker shown to have increased expression in infiltrated macrophages compared to 
KCs. Recruitment of the CCR2 macrophages into the liver was seen in parallel with increased levels of CCL2 
found in steatotic hepatocytes[44,45]. In fact, murine models using drugs targeting the CCL2/CCR2 axis to 
impair macrophage recruitment to the liver revealed a reduction of hepatosteatosis, inflammation, and 
fibrosis[46,47]. This murine model demonstrates the importance of both the KCs as well as the infiltration of 
additional macrophages for the promotion of NASH.

Natural killer cells
Natural killer (NK) cells are another subset of the innate immune system that contribute to NASH. NK cells 
are a lineage of immune cells related to lymphocytes that have cytolytic activity against stressed cells, virus-
infected cells, and malignantly transformed cells[48,49]. NK cells also aid in the resolution of hepatic fibrosis 
through the elimination of hepatic stellate cells (HSCs)[50]. NK cells derive their name from their ability to 
kill targeted cells without a need for secondary activation, unlike CD8+ T-cells. NK cells originate in the 
bone marrow, but after maturation, they disperse widely to both lymphoid and non-lymphoid tissue. NK 
cells are found most frequently in the lung, then liver, peripheral blood, and spleen, respectively[51]. In 
addition, NK cells are recognized for their ability to activate macrophages through the release of INF-γ, a 
proinflammatory cytokine[49].

Regarding NASH, liver fibrosis is a key component of activation for NK Cells. In comparison to patients 
with low fibrosis scores, patients with high fibrosis scores were shown to have a significant reduction in the 



Page 5 of Gregory et al. Hepatoma Res 2022;8:31 https://dx.doi.org/10.20517/2394-5079.2022.34 13

tumor-cell-killing capacity of CD56dim NK cells[52]. For NK cells to repair liver fibrosis and kill activated 
HSCs, NK cell tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and NKG2D are critical 
components[53]. In a murine model utilizing DDC-induced liver fibrosis, NK cells were activated by 
polyinosinic-polycytidylic acid, a Toll-like Receptor (TLR)-3 ligand, or INF-γ, to then activate HSCs and 
replicate the severity of liver fibrosis seen in NASH. This study demonstrated that activation of the NK cells 
with either polyionosinic-polycytidylic acid or INF-γ improved the cytotoxicity of the NK cells towards 
HSCs and amplified expression of NKG2D and TRAILs on the liver resident NK cells, resulting in overall 
improvement of liver fibrosis. In contrast, inhibiting NKG2D or TRAIL in the mice was shown to markedly 
diminish the cytotoxicity of NK cells on HSCs, resulting in a decrease in protection against fibrosis[53]. This 
study implies that the impaired cytotoxicity of NK cell activity seen in fatty liver may contribute to fibrosis 
formation and progression in patients with NASH. Additionally, NK cells are reduced in number and 
impaired in the generation of IFN-y and cytotoxic functions in HCC conditions[54].

Neutrophils
Neutrophils are a copious population of circulating white blood cells and activate the early phases of the 
inflammatory response in the innate immune system[49]. In the event of injury or pathogen invasion, 
neutrophils are recruited to the site through various chemokines. Activated neutrophils then attack the 
foreign pathogen by the generation of reactive oxygen species (ROS) through a process called the 
respiratory burst. In order to generate this process, the enzyme myeloperoxidase (MPO) is used to create 
ROS to kill microbes. The large influx of neutrophils is a usual phenomenon seen in NASH[55]. Neutrophils 
are recruited to the liver in the early stages of hepatic injury by chemokines such as CXCL1, IL-8, and 
CXCL2[56]. In patients with NASH, an increase in MPO in the blood plasma has been found, suggesting that 
MPO accumulation and its oxidative products may contribute to liver inflammation and the promotion of 
NASH[57]. Further, neutrophils exacerbate the ongoing inflammatory state and hepatocyte damage through 
macrophage recruitment and interaction with antigen-presenting cells[30]. In addition, neutrophils release 
chromatin-associated traps called neutrophil extracellular traps (NETs)[58,59]. NETs are long chromatin fibers 
embedded with inflammatory proteins and neutrophil proteases[58]. NETs were initially observed during the 
microbial invasion; however, recent studies revealed NET formation occurs in the early stages of NAFLD 
and persists in livers with advancement to NASH[59]. Van der Windt et al. revealed that livers from mice 
with NASH induced by high-fat diet and neonatal streptozotocin had early neutrophil infiltration and NET 
formation, followed by an influx of monocyte-derived macrophages, inflammatory cytokine production (IL-
6, TNF-α), and progression from NASH to HCC[58]. Inhibition of the NET formations caused a reduction of 
monocyte infiltration,  inflammatory cytokine production, reduction of NASH through improvements in 
hepatocyte ballooning, and decreased tumor growth[58]. Overall, the chronic inflammatory hepatic 
microenvironment promotes the persistent formation of NETs, resulting in a continued proinflammatory 
state and, ultimately, liver damage.

Dendritic cells
Dendritic cells (DCs), antigen-presenting cells, are innate immune cells that initiate the adaptive immune 
system by presenting antigens to naïve T-cells. DCs ingest tumor cells or virus-infected cells and present 
antigens to T-cells on class I MHC molecules through cross-presentation[49]. DC cells originate in the bone 
marrow, but a small percentage represent the non-parenchymal liver cells inhabiting the central and portal 
veins[30]. While there is a paucity of literature on the role of DCs in NASH, a study by Henning et al. 
revealed a rapid infiltration of phenotypically active DCs into the liver of experimentally induced NASH in 
mice that were expressing increased levels of TNF-α, IL-6, and MCP-1. In addition, depletion of  DCs in 
murine models was shown to delay the resolution of intrahepatic inflammation and fibrosis, thus promoting 
NASH[60].
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ADAPTIVE IMMUNE SYSTEM
Although the innate immune system has routinely been recognized to play an integral part in the 
pathogenesis of NASH, emerging evidence has recently emphasized the role of the adaptive immune system 
in the development and progression of NASH in the alteration of B-cells, T-cells, and natural killer-T 
(NKT) cells [Table 2].

B cells
B cells are a subset of the adaptive immune system and influence immune-mediated inflammatory 
responses. For instance, B cells are known for their ability to present antigens, secrete cytokines upon TLR-
mediated activation by pathogen-associated molecular patterns, and produce immunoglobulins[61-63]. B-cells 
are suspected of contributing to the pathogenesis of NASH, as an accumulation of B-cells in the liver is seen 
in parallel with high levels of lobular inflammation and fibrosis[64]. In fact, liver biopsies in both human and 
experimental NASH models show increased infiltration of B- and T- lymphocyte clusters[65]. These clusters 
correlate with increased levels of oxidative stress-derived epitopes (OSEs), which are released from damaged 
hepatocytes[66]. A study by Bruzzi et al. revealed that B-cells were able to present OSEs to CD4+ T helper 
(Th1) cells allowing them to release proinflammatory cytokines, thus inducing an inflammatory state[64]. On 
the contrary, B-cells can also differentiate into plasma cells and produce anti-OSE immunoglobulins (IgG), 
thus counteracting an inflammatory state[64]. Similarly,  Shalapour et al. revealed that liver-resident IgA cell 
accumulation was associated with chronic inflammation and fibrosis in both humans and mice with 
NAFLD[67]. These IgA cells were able to express programmed death ligand 1 (PD-L1) and IL-10, which were 
found to directly suppress hepatic cytotoxic CD8+ T cells. In addition, inhibition of the IgA cells resulted in 
reactivation of cytotoxic CD8+ T cells and regression of established HCC[67].

T-cells
Conventional T-cells are abundant in healthy livers and are characterized into several subsets: CD4+ helper 
T (Th) cells, CD8+ cytotoxic T cells, and regulatory T-cells (Tregs)[68]. CD4+ T cells are required for tumor 
control by inhibiting tumor initiation as well as facilitating clearance of malignant cells[69-71]. Analysis has 
ascertained CD4+ T cells as provokers of anti-tumor response and has linked CD4+ T cells to favorable 
responses to immunotherapy. In the setting of NASH, anti-tumor surveillance is impaired through the 
promotion of ROS-dependent cell death of hepatic CD4+ T cells. In fact, disruption of the loss of CD4+ T-
cells in association with NASH phenotype suggests immunotherapy may be impaired in the setting of 
NASH-related hepatic tumors[72,73]. In one study, steatohepatitis induced through a methionine-choline 
deficient diet in mice was shown to reduce the effect of immunotherapeutic agents such as M30, an mRNA 
vaccine, and aOX40, an antibody against OX40, on inhibiting hepatic tumor growth through reduction of 
tumor infiltration by CD4+ T cells and effector memory cells[69]. Another experimental NASH model 
showed worsening of steatohepatitis in relation to the increased recruitment of CD4+ and CD8+ T-
lymphocytes within the liver[74]. Similarly, Rag1-/- mice, which lack lymphocyte populations, lead to the 
reversal of NASH phenotype, irrespective of metabolic alterations such as obesity[68].

CD8+ cytotoxic T-cells are the main effector cells of the cellular immune system, and yield cytotoxic 
processes to destroy infected or malignant cells through recognition of antigens presented on MHC I 
molecules[75]. In healthy livers, there are populations of non-recirculating CD8+ tissue-resident memory 
(TRM) cells that act as local immune sentinels[76,77]. In inflammation or pathogen invasion situations, hepatic 
TRMs secrete IFN-γ as an immune response[78]. In the early stages of NASH, an accumulation of 
intrahepatic cytotoxic CD8 T-cells is associated with an obesity-induced hepatic type I interferon (INF-1) 
response[79]. INF-1 response induces increased CD8+ T-cell production of proinflammatory cytokine IFN-γ 
and TNF- α, which promotes continued metabolic dysfunction and, ultimately, hepatocyte damage[79]. In 
fact, deletion of CD8+ T cells in experimental animal models resulted in amelioration of NASH and 
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Table 2. Cells of the adaptive immune system

Adaptive Cell type Activity-pro-fibrosis Activity-anti-fibrosis

B cells Accumulation in clusters within liver 
Presentation of OSEs to CD4+ helper T-cells 
IgA expression of PD-L1 and IL-10 to suppress CD8+ T-cells

Plasma cell differentiation 
Anti-OSE IgG 

CD4+ helper T (Th) cells TRM cell secretion of IFN-γ Inhibit tumor growth and promote tumor clearance

CD8+ cytotoxic T cells Increased IFN-γ and TNF-α production

Tregs Increased accumulation in liver 
evasion of immunosurveillance

NKT cells Production of IL-4 and INF-y in response to lipids 
Increased levels of CXCL16, VCAM-1, IL-15 
Overactive Hedgehog pathway  
Secretion of OPN

OSEs: Oxidative stress-derived epitopes; PD-L1: programmed death ligand 1; IL: interleukin; TRM: tissue-resident memory; INF: interferon; TNF: 
tumor necrosis factor; VCAM: vascular cell adhesion molecule; OPN: Osteopontin.

improvements such as restored hepatic insulin sensitivity and reduced fibrosis[75,79]. The resolution of NASH 
through depletion of CD8+ T-cells suggests a direct impact on NASH pathogenesis and subsequent 
transition to HCC.

Tregs, immunosuppressive subset of CD4+ T-cells, are essential for maintaining homeostasis and immune 
tolerance. Tregs are distinguished from other T-cells through their expression of master transcription factor 
forkhead box P3 (FoxP3)[59,80]. In an experimental NASH murine model, Tregs were found to be increased in 
NASH livers, whereas CD4+ T cells were found in lower concentrations. When Tregs were then depleted 
using FoxP3-DTR mice, HCC initiation and progression of NASH were drastically inhibited[59]. Therefore, 
the accumulation of Tregs allows evasion of immunosurveillance in the NASH liver and plays a critical role 
in hepatocarcinogenesis.

NKT cells
NKT cells are considered a bridge between innate and adaptive immunity and are mostly located in the 
hepatic sinusoids to provide intravascular immune surveillance[49,81]. NKT cells are a small subset of 
nonconventional T-cells that express surface markers of NK cells as well as an antigen receptor (TCR) 
characteristic of a T-cell, allowing effector functions similar to helper T-cells[30,49]. NKT cell TCRs recognize 
lipids that are bound to class I MHC-like molecules called CD1 molecules. When triggered by lipids bound 
to CD1 molecules, NKT cells can rapidly produce cytokines such as IL-4 and INF-γ[49]. NKT cells are both 
proinflammatory through type I NKT cells and protect against liver injury through NKT Type II cells[82]. 
Syn et al. reported that hedgehog (Hh)-mediated accumulation of NKT cells contributed to both the 
formation and progression of NASH in both mice and humans[83]. Overly active Hh pathway in mice 
resulted in increased levels of NKT cell chemokine, CXCL16, vascular cell adhesion molecule 1 (VCAM-1), 
and IL-15, a proinflammatory cytokine. These mice were shown to accumulate more NKT cells in their 
livers and develop worse NASH fibrosis. In addition, NASH cirrhosis was found to have four times as many 
NKT cells as individuals with healthy livers[84]. Osteopontin (OPN), a matricellular protein and cytokine 
secreted by NKT cells, has also been shown to promote NAFLD progression through exacerbation of 
concanavalin A-induced hepatitis[85,86]. Feeding mice with methionine-choline-deficient diets resulted in 
activated hepatic NKT cells that generated Hh and OPN and thus activated HSCs to differentiate into 
myofibroblasts and induce fibrosis. In contrast, Ja18-/- mice, which lack NKT cells, showed decreased Hh 
and OPN expression as well as decreased fibrosis[84]. In humans, plasma levels of OPN and Hh expression 
directly correlated with the severity of fibrosis in patients, concluding that hepatic NKT cells promote 
fibrogenesis in NASH through their production of Hh and OPN[84]. Lastly, Wolf et al. discovered a cross-
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talk between CD8 T-cells, NKT cells, and hepatocytes in NASH development and progression to HCC. In 
patients with NASH, NKT cells and CD8 T-cells were found to be significantly elevated[87]. Using choline-
deficient high-fat diet mouse models, depletion of CD8 T-cells revealed the reversal of liver damage; 
however, upon reduction of NKT cells despite elevated levels of CD8 T-cells, liver damage was shown to be 
prevented[87]. This result suggests that CD8 T-cells on their own are not enough to cause liver damage in the 
absence of NKT cells, thus providing evidence that NKT cells are needed to induce liver damage.

IMPACT ON THERAPY
NASH is a known major risk factor for developing HCC and data is emerging as to the impact of NASH on 
immune subsets and the potential ability to influence the effectiveness of systemic therapies[88]. Due to the 
crucial role immune cells play in NAFLD/NASH and its progression to HCC, many current treatments 
focus on targeting immune cells for HCC therapy[Table 3]. Historically, sorafenib, an oral multi-kinase 
inhibitor, was the gold standard therapy for advanced HCC for decades with a minimal prolonged survival 
of approximately 3 months vs. placebo[89]. Several years later, Lenvatinib, an oral tyrosine kinase inhibitor, 
was granted approval for treatment of chemotherapy-naïve patients with HCC after an open-label phase III 
trial noted non-inferiority to sorafenib[90-92]. More recently, immune checkpoint inhibitors (ICIs) have 
become an emerging therapy for HCC after success in the treatment of patients with other 
malignancies[93,94]. Atezolizumab, in combination with bevacizumab, is now the new standard of care for 
patients with advanced HCC as a result of the IMbrave-150 trial. The IMbrave-150 trial was a randomized, 
phase III trial evaluating the efficacy and safety of atezo + bev compared with sorafenib in unresectable 
HCC patients who were systemic therapy naive[95,96]. Compared to sorafenib, atezo + bev was shown to have 
statistically significant improvement in overall survival (OS) [hazard ratio (HR), 0.58; 95%CI: 0.42-0.79] and 
progression-free survival (PFS) (HR: 0.59; 95%CI: 0.47-0.76). As such, atezo + bev is now approved for first-
line therapy for unresectable HCC[95]. However, a subgroup analysis of patients from IMBrave150 revealed 
the ORR for patients with NASH-related HCC was 27% versus 35% among patients with HCC due to other 
etiologies[97]. In addition, a phase III clinical trial evaluating the efficacy and safety of lenvatinib versus atezo 
+ bev as first-line therapy for the treatment of unresectable HCC was conducted on 232 patients in Korea. 
There were no statistical differences in OS, objective response rates, or PFS with lenvatinib vs atezo + bev, 
resulting in either drug as the first-line option[98]. In contrast, a meta-analysis by Pfister et al. that examined 
the outcomes of PD-L1 or programmed cell death protein 1 (PD-1) inhibitors as monotherapy or in 
combination with bevacizumab for the treatment of HCC revealed no significant difference in overall 
survival with immune therapy vs the control group for nonviral HCC[99,100]. While atezo + bev is now a 
promising first-line therapy, there is still a need for future studies to further understand the complex 
interface of NASH, hepatocellular carcinoma, and the immune response.

CONCLUSIONS
NASH is a multifactorial, complex, immunologic disease that results in severe liver alterations. A vast 
network of immune cells is mobilized and functionally changed in patients with NASH, resulting in a 
persistent driving force for the progression of cirrhosis and HCC. While we have described a few of the 
immune alterations above in both the innate and adaptive immune systems, there are still many 
mechanisms responsible for steatohepatitis that are incompletely understood. At this time, further studies 
are needed to elicit a more robust understanding of the complex immune pathophysiology of this disease.
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Table 3. Recruiting and upcoming clinical trials utilizing immunotherapy for the treatment of HCC

Trial Treatment Phase Setting Estimated enrollment (
n)

Primary 
outcomes

Secondary 
outcomes

NCT04721132 Atezolizumab + Bevacizumab II Neoadjuvant 30 pCR 
AEs 

ORR 
DOR 
RFS 
OS 

NCT04442581 Cabozantinib + 
Pembrolizumab

II First-line 29 OR OR 
PFS 
OS 
AEs 
DC 

NCT05359861 Atezolizumab + Bevacizumab 
 
+ SRF388

II First-line 110 PFS ORR 
DPR 
DC 
TTP 
OS 
Tmax 
T1/2 

NCT05199285 Nivolumab + Ipilumumab II Second-line 40 ORR OS 
PFS 
DC 
AEs 

NCT03680508 TSR-022 (Cobolimab) +  
TSR-042 (Dostarlimab)

II First-line 42 ORR DOR 
TTP 
PFS 
OS

PCR: Pathologic complete response rate; AEs: adverse events; ORR: overall response rate; DOR: duration of response; RFS: recurrence-free 
survival; OS: overall survival; PFS: progression-free survival; TTP: time to progression.
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