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Abstract
To improve the rehabilitation training effect of hemiplegic patients, in this paper, a discrete adaptive fractional order
fast terminal sliding mode control approach is proposed for the lower limb exoskeleton system to implement high-
precision human gait tracking tasks. Firstly, a discrete dynamic model is established based on the Lagrange system
discretization criterion for the lower limb exoskeleton robot. Then, in order to design a discrete adaptive fractional
order fast terminal sliding mode controller, the Gr¥unwald–Letnikov fractional order operator is introduced to combine
with fast terminal attractor to construct a fractional order fast terminal sliding surface. An adaptive parameter adjust-
ment strategy is proposed for the reaching law of sliding mode control, which drives the sliding mode to the stable
region dynamically. Moreover, the stability of the control system is proved in the sense of Lyapunov, and the guide-
lines for selecting the control parameters are given. Finally, the simulations are tested on the MATLAB-Opensim
co-simulation platform. Compared with the conventional discrete sliding mode control and discrete fast terminal
sliding mode control, the results verify the superiority of the proposed method in improving lower limb rehabilitation
training.

Keywords: Lower-limb exoskeleton, adaptive discrete-time sliding mode, fractional order control, finite-time conver-
gence
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1. INTRODUCTION
In recent years, the aging population of many countries in the world has increased sharply, and the health
problems of the elderly have been widely concerned by the public [1]. Stroke is a common disease in the el-
derly population, which will lead to the paralysis of the lower limbs of patients. If the patient can get timely
and effective exercise rehabilitation treatment, the patient’s motor function can be restored [1,2]. Traditional
rehabilitation training mainly relies on physical therapists to provide patients with highly repetitive training.
However, the number of therapists is seriously insufficient to meet the social requirements. Furthermore, the
traditional method is a mostly subjective evaluation, which is inefficient and cannot guarantee effectiveness.
In this situation, a lower limb exoskeleton robot is useful for the patient to conduct repetitive rehabilitation
training, greatly reduce the burden of therapists, and assist doctors in accurately observing patients’ rehabil-
itation status. Generally, rehabilitation can be divided into three stages based on the degree of spinal cord
injury: initial, intermediate, and terminal. In the initial stage, due to the weak mobility of the patient, the pa-
tient needs to wear the lower limb exoskeleton robot to accurately follow the predetermined gait trajectory for
rehabilitation training. With the gradual recovery of mobility, the patient can enter the middle and final stages
of active rehabilitation training [2]. Therefore, the initial stage is crucial for the entire rehabilitation training.
However, the uncertainty and disturbance caused by the unexpected behavior of stroke patients will seriously
impact the initial rehabilitation training.

To improve rehabilitation efficiency at the initial stage and eliminate the influence of external disturbance,
many control algorithms can be applied to exoskeleton robots. For instance, the PID control, adaptive control,
robust control [3], fuzzy control [4], active disturbance rejection control [5], neural network control [6], Master-
Slave Synchronization [7], and sliding mode control methods [8]. Among the methods, sliding mode control
has the characteristics of fast response, insensitivity to uncertainties, and easy implementation in motion con-
trol applications. In particular, the sliding mode control can overcome the problems of external disturbances
and uncertainties by constructing the reaching law and sliding mode surface in theory, so that the controlled
system can achieve higher tracking accuracy. Non-singular terminal sliding mode control [9] and fast terminal
sliding mode control [10] were applied to overcome parameter uncertainty and external disturbances to realize
gait tracking control of lower limb exoskeleton rehabilitation robot, and theoretically analyzed the stability
of controller design and tracking accuracy of trajectory. Sliding mode control technology can also be com-
bined with the neural network, a recurrent neural network-based robust nonsingular sliding mode control
is proposed for the non-holonomic spherical robot, it can enhance the robustness to control the system [11].
To obtain higher accuracy, fractional order sliding mode control is introduced to deal with uncertainties and
external disturbances. Fractional order sliding mode control has the characteristics of global memory and
elimination of jitter, so it is widely used in industry, such as micro gyroscope [12], manipulator control [13],
and permanent magnet synchronous motor control [14]. In addition, the fractional order control algorithm
can be applied in the field of robot control in combination with other technical methods. For example, a frac-
tional neural integral sliding-mode controller based on the Caputo-Fabrizio derivative and Riemann–Liouville
integral for a robot manipulator mounted on a free-floating satellite [15] and a method based on the nested sat-
urations technique and the Caputo-Fabrizio derivative for a quadrotor aircraft [16]. In chaotic systems, the
application of fractional order can endow the system with more degrees of freedom [17], help to study the dy-
namic behavior of the system, combined with robust control methods [18], eliminate external interference, and
effectively solve the synchronization problem of the system [19]. However, the general fractional order sliding
mode control strategy is designed based on the continuous time state of the controlled object and is directly
been tested on the digital computer system, so the design of the controller ignoring the sampling interval will
lead to the loss of the control system precision [20,21]. Moreover, the use of fractional operators to construct
sliding mode functions also introduces the influence of uncertainty. If the fractional operators are defined by
Gr¥unwald–Letnikov (GL), there are non-physical initial conditions in the experiment. The fractional defini-
tion of Caputo is feasible in engineering applications, but the definition of Caputo can only be implemented
in the approximation method based on the Laplace transform, which will introduce additional approximation
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errors to the control system [22].

In this paper, a novel discrete adaptive fractional order fast terminal sliding mode controller (AFOFTSMC) is
designed for high-precision gait trajectory tracking tasks. To reduce the difference between theoretical design
and practical application of digital computer systems, the controller designed in this paper derived the discrete-
time object model based on the Lagrange discretization criterion. In addition, to preserve the global memora-
bility of fractional operators, Gr¥unwald–Letnikov fractional difference operators are used to construct discrete
sliding mode surfaces. Considering the uncertainty of parameters and the boundedness of disturbances, a new
adaptive terminal sliding mode approach law is proposed to drive the sliding mode dynamics to the region
of finite step size. In this paper, the theoretical analysis of the system entering the stable state in finite time
is given, and the validity of the algorithm is tested on the co-simulation platform of MATLAB and Opensim
software.

The rest of this article is structured as follows. The second part describes the lower extremity exoskeleton
discretemodel based on the Lagrange system discrete criterion. The design and stability analysis of the discrete
adaptive fractional order fast terminal sliding mode controller is presented in Section III. In Section IV, the
simulation results are analyzed to prove the effectiveness of the controller. Section V summarizes the thesis.

2. DYNAMICS MODEL OF LOWER LIMB EXOSKELETON
The swing leg dynamic model is considered according to a two-degree-of-freedom (2-DOF) lower limb ex-
oskeleton diagram shown in Figure 1. Based on the motion mechanism of human lower limbs, the hip and
knee joints are designed as active joints, and the ankle joint is designed as a passive joint. The physical pa-
rameters of the 2-DOF lower limb exoskeleton in Figure 1 are explained as follows. 𝑂 (0, 0) represents the
coordinate origin, 𝑞𝑖 (𝑖 = 1, 2) denotes the angle of the hip or knee joint, 𝑙𝑐𝑖 (𝑖 = 1, 2) represents the distance
between the centroid of thigh or shank segment and the hip joint or knee joint, 𝑙𝑖 (𝑖 = 1, 2) corresponds to the
length of the thigh or shank segment, 𝑚𝑖 (𝑖 = 1, 2) denotes the mass of thigh or shank segment.

To achieve high-precision motion control of the lower limb exoskeleton rehabilitation robot. We established a
dynamic model of the lower limb exoskeleton using the Lagrange equation of motion. The equation of general
forms is expressed as follows [23]:

𝐿 = 𝑇 −𝑉 (1)

𝜏 =
𝑑

𝑑𝑡
( 𝜕𝐿
𝜕 ¤𝑞 ) −

𝜕𝐿

𝜕𝑞
(2)

where 𝐿 denotes the Lagrangian, 𝑇 and 𝑉 represent kinetic energy and potential energy respectively. 𝜏 repre-
sents the torque of the system.

The equations of motion of a lower limb exoskeleton robot are described according to the Lagrange equation
(2):

𝑀 (𝑞) ¥𝑞 + 𝐶 (𝑞, ¤𝑞) ¤𝑞 + 𝐺 (𝑞) + 𝑁 (𝑞, ¤𝑞, ¥𝑞) = 𝜏 (3)

where 𝑞, ¤𝑞 and ¥𝑞 denote the joint angle, angular velocity, and angular acceleration vectors respectively, 𝑀 (𝑞) ∈
𝑅2×2 is the positive definite inertia matrix, 𝐶 (𝑞, ¤𝑞) ∈ 𝑅2×2 is the Coriolis and centrifugal force matrix, 𝐺 (𝑞) ∈
𝑅2×1 is the gravity matrix [3], 𝜏 ∈ 𝑅2 is the torque vector, 𝑁 (𝑞, ¤𝑞, ¥𝑞) ∈ 𝑅2×1 denotes the uncertainty of model
parameters and external disturbances. 𝑁 (𝑞, ¤𝑞, ¥𝑞) can be expressed as:

𝑁 (𝑞, ¤𝑞, ¥𝑞) = Δ𝑀 (𝑞) ¥𝑞 + Δ𝐶 (𝑞, ¤𝑞) ¤𝑞 + Δ𝐺 (𝑞) − 𝜏𝑑 . (4)

The uncertainty of model parameters and external disturbances should be considered in the actual lower limb
exoskeleton dynamics model. Δ𝑀 (𝑞) ∈ 𝑅2×2, Δ𝐶 (𝑞, ¤𝑞) ∈ 𝑅2×2, Δ𝐺 (𝑞) ∈ 𝑅2×1 denotes the uncertain inertia
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Figure 1. Simplified diagram of 2-DOF lower limb exoskeleton. 2-DOF: two-degree-of-freedom.

part, uncertain Coriolis and centrifugal force part, uncertain gravitational part respectively, and the external
disturbances as 𝜏𝑑 ∈ 𝑅2×1.

To design digital motion control systems, it is crucial to obtain nominal discretization dynamics. In this paper,
the discretization substitution criterion of the Lagrangian system is used to discretize the dynamicsmodel. The
discretization criterion is as follows [24]:

𝑑

𝑑𝑡
( 𝜕𝐿
𝜕 ¤𝑞𝑖

) → 1
𝑇
[( 𝜕𝐿
𝜕 ¤𝑞𝑖

)𝑘+1 − ( 𝜕𝐿
𝜕 ¤𝑞𝑖

)𝑘 ] (5)

𝜕𝐿

𝜕𝑞𝑖
→ 1

2
[𝑀 (𝑞𝑘+1) − 𝑀 (𝑞𝑘 )

𝑞𝑖,𝑘+1 − 𝑞𝑖,𝑘
] ¤𝑞𝑖,𝑘+1 ¤𝑞𝑖,𝑘 (6)

where 𝑇 denotes the sampling period, 𝑘 denotes time step. Then, the explicit form of the discrete dynamics
model is derived as follows [25]:

𝑞𝑘+1 = 𝑞𝑘 + 𝑇 ¤𝑞𝑘
¤𝑞𝑘+1 = 𝑀−1(𝑞𝑘 + 𝑇 ¤𝑞𝑘 )𝑀 (𝑞𝑘 ) ¤𝑞𝑘 + 𝑇𝑀−1(𝑞𝑘 + 𝑇 ¤𝑞𝑘 )𝐶 (𝑞𝑘

+𝑇 ¤𝑞𝑘 , 𝑞𝑘 , ¤𝑞𝑘 ) ¤𝑞𝑘 + 𝑇𝑀−1(𝑞𝑘 + 𝑇 ¤𝑞𝑘 )𝜏𝑘−
𝑇𝑀−1(𝑞𝑘 + 𝑇 ¤𝑞𝑘 )𝐺 (𝑞𝑘 + 𝑇 ¤𝑞𝑘 , 𝑞𝑘 )

(7)

the description of the system given in (7) can be expressed in state representation form as:

𝑥(𝑘 + 1) = 𝑓 (𝑘) + 𝑏(𝑘)𝑢(𝑘) + 𝑑 (𝑘) (8)

𝑓 (𝑘) =
[
𝐼2×2 𝐼2×2𝑇

02×2 𝑀−1(𝑞𝑘 + 𝑇 ¤𝑞𝑘 )𝑀 (𝑞𝑘 ) + 𝑇𝑀−1(𝑞𝑘 + 𝑇 ¤𝑞𝑘 )𝐶 − 𝑇𝑀−1(𝑞𝑘 + 𝑇 ¤𝑞𝑘 )𝐺

]
𝑥(𝑘) (9)

𝑏(𝑘) =
[

02×2
𝑀−1(𝑞𝑘 + 𝑇 ¤𝑞𝑘 )

]
(10)

where, 𝑥(𝑘) = [𝑞1,𝑘 , 𝑞2,𝑘 , ¤𝑞1,𝑘 , ¤𝑞2,𝑘 ]𝑇 is the system state vector, 𝑢(𝑘) = [𝜏1,𝑘 , 𝜏2,𝑘 ]𝑇 is the system control input
vector, 𝑓 (𝑘) ∈ 𝑅4×1 is the nonlinear state transition matrix, and 𝑏(𝑘) ∈ 𝑅4×2 is the control matrix, 𝐼2×2 is
represented as the second-order identity matrix, and 02×2 is a second-order zero matrix, 𝑑 (𝑘) ∈ 𝑅4×1 is the
set of parameter uncertainties and external disturbances of the system. Assuming that 𝑑 (𝑘) is bounded, then
| |𝑑 (𝑘) | | ≤ 𝑑𝜌 .
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3. CONTROLLER DESIGN AND STABILITY ANALYSIS
In the previous section, we modeled and analyzed the dynamics model of the lower limb exoskeleton robot. In
this section, we will design an appropriate controller for the lower limb exoskeleton robot. The design of the
controller is divided into five parts, and the process of controller construction, stability proof, and parameter
selection are explained completely. Firstly, before introducing the fractional order sliding mode surface, the
definition of fractional order needs to be introduced. Fractional order has the advantage of globalmemorability
and plays an important role in the construction of AFOFTSMC. In the second part, the fractional order fast
terminal sliding mode surface and adaptive terminal control law is proposed to construct an AFOFTSMC
controller for the lower limb exoskeleton robot. In the third part, the stability of the controller is proved in
detail, and it is proved that both the sliding mode variables and the system errors can converge in the bounded
region. The fourth part gives some guiding opinions on the parameter selection of the controller. Finally,
conventional sliding mode control (CSMC) and fast terminal sliding mode control (FTSMC) controllers are
designed to compare with AFOFTSMC.

3.1. Preliminaries
In order to design a discrete adaptive fractional order fast terminal sliding mode controller for the lower limb
exoskeleton system, the sliding mode surface function should be designed according to the properties of the
fractional order operator, and the adaptive sliding mode control law should be designed to form the controller.
Therefore, we will elaborate on the basic definition and related nomenclatures of the fractional operator in
detail.

Definition 1:The Gr¥unwald–Letnikov fractional order operator is defined as follows [22]:

𝐺𝐿
𝑎 𝐷𝜆𝑡 𝑓 (𝑡) =

1
ℎ𝜆

[(𝑡−𝑎)/ℎ]∑
𝑗=0

(−1) 𝑗
(
𝜆

𝑗

)
𝑓 (𝑡 − 𝑗 ℎ) (11)

where 𝜆 is the arbitrary order of function 𝑓 (𝑡), the value of 𝜆 will affect the calculus properties of fractional
order operators. When 𝜆 > 0, the fractional order operator is a differentiator, while 𝜆 < 0, the fractional
order operator is an integrator [19]. 𝑎 is the initial value of the integral, and generally, zero initial condition can
be assumed, that is, 𝑎 = 0. ℎ is the sampling time interval, and

(𝜆
𝑗

)
is the binomial coefficient. The specific

calculation method is as follows: (
𝜆

𝑗

)
=

{
1 𝑗 = 0
𝜆(𝜆−1)···(𝜆− 𝑗+1)

𝑗! 𝑗 = 1, 2, 3, . . .
. (12)

However, storing all motion data to calculate fractional integrals in practical engineering applications con-
sumes hardware resources andmakes the calculation inefficient. Therefore, to improve the operation efficiency
and ensure the global memory of the fractional operator, the fractional integral can be calculated by storing
part of the motion data, as shown below:

𝐺𝐿
𝑎 𝐷𝜆𝑡 𝑓 (𝑡) =

1
ℎ𝜆

𝐿∑
𝑗=0

(−1) 𝑗
(
𝜆

𝑗

)
𝑓 (𝑡 − 𝑗 ℎ) (13)

where 𝐿 represents the limited amount of data stored.

Lemma 1 [22]: The sum of binomial coefficients in equation (13) can be expressed by gamma function Γ(𝑧) =∫ ∞
0 𝑒−𝑡 𝑡𝑧−1𝑑𝑡 as:

𝐿∑
𝑗=0

(−1) 𝑗
(
𝜆

𝑗

)
=

Γ(𝐿 + 1 − 𝜆)
Γ(1 − 𝜆)Γ(𝐿 + 1) . (14)
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3.2. Controller design
To synthesize the advantages of the fractional order sliding mode surface and the fast terminal sliding mode
control law to construct the controller, the appropriate fractional order slidingmode surface should be selected.
Several fractional order sliding mode surfaces have been described in the literature [8,12–14,22]. Inspired by the
above strategies, the discrete fractional order sliding mode surface selected are as follows:

𝑠(𝑘) = 𝑐1𝑒1(𝑘) + 𝑒2(𝑘) + 𝑐2𝐷
𝜆 [|𝑒1(𝑘) |𝛽𝑠𝑔𝑛(𝑒1(𝑘))] (15)

where 𝑒1(𝑘) = [𝑥𝑑1(𝑘) − 𝑥1(𝑘), 𝑥𝑑2(𝑘) − 𝑥2(𝑘)]𝑇 is the tracking error between the desired position and real
position, 𝑒2(𝑘) = [𝑥𝑑3(𝑘) − 𝑥3(𝑘), 𝑥𝑑4(𝑘) − 𝑥4(𝑘)]𝑇 is the tracking error between desired velocity and real
velocity, 𝑥𝑑 (𝑘) ∈ 𝑅4×1 is the reference signal vector, 𝑐1 = 𝑑𝑖𝑎𝑔(𝑐1𝑖) (𝑖 = 1, 2), 𝑐2 = 𝑑𝑖𝑎𝑔(𝑐2𝑖) (𝑖 = 1, 2) are
selected constant matrices, 0 < 𝛽 =

𝑞𝛽
𝑝𝛽
< 1 with 𝑝𝛽, 𝑞𝛽 being both odd positive integers.

Remark 1: For a nonlinear system, when the system state is far from the equilibrium point, the fractional
order terminal sliding mode surface proposed by Sun et al. [22] can ensure that the system converges in a finite
time. However, considering that the system state is close to the equilibrium point, the terminal attractor can-
not guarantee the fast convergence of the system. In this paper, a linear term 𝑐1𝑒1(𝑘) is introduced into the
sliding mode surface, when the system state is close to the equilibrium point, the convergence time is mainly
determined by the linear term 𝑐1𝑒1(𝑘), which can accelerate the convergence of the system. Therefore, the
sliding mode surface designed in this paper not only makes the system state converge in a finite time but also
preserves the rapidity of the linear sliding mode when it is close to the equilibrium point.

To make the system stable, for the system model (8), the ideal quasi-sliding mode band should meet the fol-
lowing requirements: 𝑠(𝑘 + 1) = 0, then the controller can be obtained as follows:

𝐶1 =

[
𝑐11 0 1 0
0 𝑐12 0 1

]
(16)

𝐶1 [𝑥𝑑 (𝑘 + 1) − 𝑓 (𝑘) − 𝑏(𝑘)𝑢(𝑘) − 𝑑 (𝑘)] + 𝑐2𝐷
𝜆 [|𝑒1(𝑘) |𝛽𝑠𝑔𝑛(𝑒1(𝑘))] = 0. (17)

The equivalent control law is:

𝑢𝑒𝑞 (𝑘) = [𝐶1𝑏(𝑘)]−1 [𝐶1(𝑥𝑑 (𝑘 + 1) − 𝑓 (𝑘)) + 𝑐2𝐷
𝜆 [|𝑒1(𝑘) |𝛽𝑠𝑔𝑛(𝑒1(𝑘))]] . (18)

To eliminate the influence brought by systemparameter uncertainty and external disturbance, the new adaptive
terminal sliding mode reaching law used for system model (8) is:

𝑠(𝑘 + 1) = 𝑃𝑄𝑠(𝑘) − 𝑇𝑃Φ|𝑠(𝑘) |𝛼𝑠𝑔𝑛[𝑠(𝑘)] (19)

where, 𝑃 = 𝑑𝑖𝑎𝑔(𝑃𝑖) with 𝑃𝑖 = 1 − 𝑒𝑥𝑝
(
−[ 𝑠𝑖 (𝑘)𝜖 ]2𝑚

)
, 𝑄 = 𝑑𝑖𝑎𝑔(𝑄𝑖) with 𝑄𝑖 = 1 − 𝜎𝑖𝑇 , Φ = 𝑑𝑖𝑎𝑔(Φ𝑖) with

Φ𝑖 = 𝛿 |𝑠𝑖 (𝑘) |, 𝛿 > 0, 0 < 1 − 𝜎𝑖𝑇 < 1, 0 < 𝛼 < 1, 𝜖 and 𝑚 are positive real numbers, 𝑖 = 1, 2.

Then the switching control law 𝑢𝑠𝑤 is as follows:

𝑢𝑠𝑤 (𝑘) = −[𝐶1𝑏(𝑘)]−1 [𝑃𝑄𝑠(𝑘) − 𝑇𝑃Φ|𝑠(𝑘) |𝛼𝑠𝑔𝑛[𝑠(𝑘)]] . (20)

Combining (8), (15) and the reaching law (19), an AFOFTSMC law is obtained, and the corresponding control
input can be expressed as

𝑢(𝑘) = 𝑢𝑒𝑞 (𝑘) + 𝑢𝑠𝑤 (𝑘). (21)

Substituting equation (21) into the sliding mode function 𝑠(𝑘 + 1), which can be written as:

𝑠(𝑘 + 1) = 𝑃𝑄𝑠(𝑘) − 𝑇𝑃Φ|𝑠(𝑘) |𝛼𝑠𝑔𝑛[𝑠(𝑘)] − 𝜉 (𝑘) (22)

where 𝜉 (𝑘) = 𝐶1𝑑 (𝑘), |𝜉 (𝑘) | ≤ 𝜌 𝑓 , |𝜉𝑖 (𝑘) | ≤ 𝜌𝑖 .
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3.3. Stability analysis
Lemma 2 [20]: If 0 < 𝛼 < 1, 𝜓(𝛼) is a function in equation (23), then 𝜓(𝛼) − 𝑥𝜓(𝛼) − 1 + 𝑥𝛼𝜓(𝛼)𝛼 ≥ 0 holds
for any 𝑥 ∈ [0, 1].

𝜓(𝛼) = 1 + 𝛼 𝛼
1−𝛼 − 𝛼 1

1−𝛼 (23)

with 0 ≤ 𝛼 ≤ 1, 1 < 𝜓(𝛼) < 2.

Proof: Let 𝑓 (𝑥) = 𝜓(𝛼) − 𝑥𝜓(𝛼) − 1 + 𝑥𝛼𝜓(𝛼)𝛼, then to prove whether the minimum value of 𝑓 (𝑥) is greater
than zero. From the properties of𝜓(𝛼), we know that𝜓(𝛼) > 1, then 𝐹 (1) = −1+𝜓(𝛼)𝛼 > 0, and 𝑓 (0) = 𝜓(𝛼).
Then, the extreme value of 𝑓 (𝑥) can be obtained from ¤𝑓 (𝑥) = 0. When ¤𝑓 (𝑥) = 0, 𝑥 = 𝛼

1
1−𝛼 (𝜓(𝛼))−1 can be

obtained, and then the minimum value 𝑓 (𝑥) = 𝜓(𝛼) − 𝛼 1
1−𝛼 − 1 + 𝛼 𝛼

1−𝛼 = 𝜓(𝛼) − 1 + ( 1
𝛼 − 𝑎𝑛)𝛼 1

1−𝛼 > 0, then
the prove is completed.

Lemma 3 [20]: If 0 < 𝛼 < 1, 𝜓(𝛼) is a function in equation (23), then 𝜓(𝛼) + 𝑥𝜓(𝛼) − 1− 𝑥𝛼𝜓(𝛼)𝛼 ≥ 0 holds
for any 𝑥 ∈ [0, 1].

The proof of Lemma 3 is similar to the proof of Lemma 2.

Theorem 1: For system model (8) with uncertainties and external disturbances, the following sliding mode
motion properties can be guaranteed by using control law (21) :

1) The discrete-time sliding variable can be driven into the domain Ω within a finite number of steps 𝐾∗, and
Ω can be expressed as follows.

Ω = {𝑠(𝑘) | |𝑠𝑖 (𝑘) | < 𝜓(𝛼)𝜛𝑖} (24)

𝜛𝑖 = 𝑚𝑎𝑥

{(
𝜌𝑖

𝑇𝑃𝑖 (𝑘)Φ𝑖 (𝑘)

) 1
𝛼

,

(
𝑇Φ𝑖 (𝑘)
1 − 𝜎𝑖𝑇

) 1
1−𝛼

}
= 𝑚𝑎𝑥

{(
𝜌𝑖

𝑍𝑖 (𝑘)

) 1
𝛼

,

(
𝑇Φ𝑖 (𝑘)
𝑄𝑖

) 1
1−𝛼

} (25)

where, 𝑍𝑖 (𝑘) = 𝑇𝑃𝑖 (𝑘)Φ𝑖 (𝑘), 𝐾∗ = b 𝑠
2
𝑖 (0)−(𝜓(𝛼)𝜛𝑖)2
(𝜌𝑖Φ𝛼−𝜌𝑖)2 c + 1, 𝐾∗ ∈ 𝑁+.

2) Once the sliding mode moves into the domainΩ, it will stay in the domain and will not escape, that is, when
|𝑠𝑖 (𝑘) | ≤ 𝜓(𝛼)𝜛𝑖 , then |𝑠𝑖 (𝑘 + 1) | ≤ 𝜓(𝛼)𝜛𝑖 .

3) When the sliding mode variables move in the domain Ω, the errors will converge to the bounded region, as
follows:

|𝑒1𝑖 (𝑘) |≤𝜓(𝛽)·𝑚𝑎𝑥
{(
𝜗𝑖𝑇

𝜆

𝑐2𝑖

) 1
𝛽

,

(
𝑐2𝑖

(1 − 𝑐1𝑖𝑇)𝑇𝜆

) 1
1−𝛽

}
(26)

where 𝜗𝑖 is a bounded variable, which can be known from the following analysis.

Proof: Choose the discrete Lyapunov function as 𝑉 (𝑘) = 𝑠𝑇 (𝑘)𝑠(𝑘), then

4𝑉 (𝑘) = 𝑉 (𝑘 + 1) −𝑉 (𝑘)

=
2∑
𝑖=1

[𝑠𝑖 (𝑘 + 1) − 𝑠𝑖 (𝑘)] [𝑠𝑖 (𝑘 + 1) + 𝑠𝑖 (𝑘)] .
(27)

To prove the reaching and existence of the control law, we discuss the following cases.
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1) When the sliding mode moves outside the domain Ω, the following two conditions exist:

Case 1: Considering the situation that 𝑠𝑖 (𝑘) > 𝜓(𝛼)𝜛𝑖 > 0, then equation (27) can be rewritten as:

4𝑉 (𝑘) = −
2∑
𝑖=1

[𝑠𝑖 (𝑘) − 𝑠𝑖 (𝑘 + 1)] [𝑠𝑖 (𝑘) + 𝑠𝑖 (𝑘 + 1)] . (28)

Since 𝑠𝑖 (𝑘) > 𝜓(𝛼)𝜛𝑖 , then 𝑠𝑖 (𝑘) > 𝜓(𝛼)
(

𝜌𝑖
𝑍𝑖 (𝑘)

) 1
𝛼 , and 𝑍𝑖 (𝑘)𝑠𝛼𝑖 (𝑘) > 𝜌𝑖𝜓

𝛼 (𝛼), thus 𝑍𝑖 (𝑘)𝑠𝛼𝑖 (𝑘) > 𝜌𝑖𝜓
𝛼 (𝛼),

we can obtain:
𝑠𝑖 (𝑘) − 𝑠𝑖 (𝑘 + 1)
= 𝑠𝑖 (𝑘) − 𝑃𝑖 (𝑘)𝑄𝑖 (𝑘)𝑠𝑖 (𝑘) + 𝑍𝑖 (𝑘) |𝑠𝑖 (𝑘) |𝛼𝑠𝑔𝑛[𝑠𝑖 (𝑘)] + 𝜉𝑖 (𝑘)
= [1 − 𝑃𝑖 (𝑘)𝑄𝑖 (𝑘)]𝑠𝑖 (𝑘) + 𝑍𝑖 (𝑘) |𝑠𝑖 (𝑘) |𝛼𝑠𝑔𝑛[𝑠𝑖 (𝑘)] + 𝜉𝑖 (𝑘)
≥ [1 − 𝑃𝑖 (𝑘)𝑄𝑖 (𝑘)]𝑠𝑖 (𝑘) + 𝑍𝑖 (𝑘) |𝑠𝑖 (𝑘) |𝛼 − |𝜉𝑖 (𝑘) |
≥ [1 − 𝑃𝑖 (𝑘)𝑄𝑖 (𝑘)]𝑠𝑖 (𝑘) + 𝜌𝑖𝜓𝛼 (𝛼) − 𝜌𝑖
≥ 𝜌𝑖𝜓

𝛼 (𝛼) − 𝜌𝑖
> 0

(29)

𝑠𝑖 (𝑘) + 𝑠𝑖 (𝑘 + 1)
= [1 + 𝑃𝑖 (𝑘)𝑄𝑖 (𝑘)]𝑠𝑖 (𝑘) − 𝑍𝑖 (𝑘) |𝑠𝑖 (𝑘) |𝛼𝑠𝑔𝑛[𝑠𝑖 (𝑘)] − 𝜉𝑖 (𝑘)
≥ 𝑠𝑖 (𝑘) + 𝑍𝑖 (𝑘) [𝜓1−𝛼 (𝛼)𝑠𝑖𝛼 (𝑘) − |𝑠𝑖 (𝑘) |𝛼𝑠𝑔𝑛[𝑠𝑖 (𝑘)]] − 𝜉𝑖 (𝑘)
≥ 𝑠𝑖

1−𝛼 (𝑘)𝑠𝑖𝛼 (𝑘) − 𝜉𝑖 (𝑘)
≥ 𝑍𝑖 (𝑘)

𝑃𝑖 (𝑘)𝑄𝑖 (𝑘) 𝑠𝑖
𝛼 (𝑘) − 𝜉𝑖 (𝑘)

≥ 𝑍𝑖 (𝑘)𝑠𝑖𝛼 (𝑘) − 𝜉𝑖 (𝑘)
≥ 𝑍𝑖 (𝑘)𝑠𝑖𝛼 (𝑘) − |𝜉𝑖 (𝑘) |
≥ 𝜌𝑖𝜓

𝛼 (𝛼) − 𝜌𝑖
≥ 0.

(30)

It can be seen from the above derivation that 𝑠𝑖 (𝑘) − 𝑠𝑖 (𝑘 + 1) > 0 and 𝑠𝑖 (𝑘 + 1) + 𝑠𝑖 (𝑘) > 0 are tenable, we
can easy to deduce that:

Δ𝑉 (𝑘) = −
2∑
𝑖=1

[𝑠𝑖 (𝑘) − 𝑠𝑖 (𝑘 + 1)] [𝑠𝑖 (𝑘 + 1) + 𝑠𝑖 (𝑘)] < 0. (31)

Case 2: Moreover, another situation is that 𝑠𝑖 (𝑘) < −𝜓(𝛼)𝜛𝑖 < 0, similar to the proof for case 1, because

𝑠𝑖 (𝑘) < −𝜓(𝛼)𝜛𝑖 and 𝑠𝑖 (𝑘) < −𝜓(𝛼)
(

𝜌𝑖
𝑍𝑖 (𝑘)

) 1
𝛼 , then 𝑍𝑖 (𝑘) |𝑠𝑖 (𝑘) |𝛼 > 𝜌𝑖𝜓𝛼 (𝛼), we can get that−𝑍𝑖 (𝑘) |𝑠𝑖 (𝑘) |𝛼+

|𝜉𝑖 (𝑘) | < −𝜌𝑖𝜓𝛼 (𝛼) + 𝜌𝑖 < 0.

Therefore, Δ𝑉 (𝑘) = −∑2
𝑖=1 (𝜌𝑖𝜓𝛼 − 𝜌𝑖)

2 < 0 holds in this case. Through the analysis of the above knowledge,
the system will enter the domain Ω in 𝐾∗ step, the 𝑠2𝑖 (𝐾∗) − 𝑠2𝑖 (0) < −𝐾∗ (𝜌𝑖𝜓𝛼 − 𝜌𝑖)2, then we get 𝑠2𝑖 (𝐾∗) <

𝑠2𝑖 (0) − 𝐾∗ (𝜌𝑖𝜓𝛼 − 𝜌𝑖)2 <
(
𝜓(𝛼)𝜛𝑖

)2, available 𝐾∗ =

⌊
𝑠2𝑖 (0)−(𝜓(𝛼)𝜛𝑖)2

(𝜌𝑖𝜓𝛼−𝜌𝑖)2

⌋
+ 1, and 𝐾∗ ∈ 𝑁+ .

2) When the sliding variables enter into the domain Ω, |𝑠𝑖 (𝑘) | ≤ 𝜓(𝛼)𝜛𝑖 . To prove |𝑠𝑖 (𝑘 + 1) | ≤ 𝜓(𝛼)𝜛𝑖 , it is
essential to divide the analyses due to the location of 𝑠𝑖 (𝑘).
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Case 1: Consider
(

𝜌𝑖
𝑍𝑖 (𝑘)

) 1
𝛼 ≥

(
𝑇Φ𝑖 (𝑘)
𝑄𝑖

) 1
1−𝛼 , suppose 𝑠𝑖 (𝑘) = 𝜓(𝛼)𝜃

(
𝜌𝑖

𝑍𝑖 (𝑘)

) 1
𝛼 , 0 < |𝜃 | < 1, show that |𝑠𝑖 (𝑘 + 1) | ≤

𝜓(𝛼)
(

𝜌𝑖
𝑍𝑖 (𝑘)

) 1
𝛼 . |𝜉𝑖 (𝑘) | ≤ 𝜌𝑖 , we have

𝑠𝑖 (𝑘 + 1) = 𝑃𝑖 (𝑘) (𝑄𝑖) 𝑠𝑖 (𝑘) − 𝑍𝑖 (𝑘) |𝑠𝑖 (𝑘) |𝛼 − 𝜉𝑖 (𝑘)
≤ 𝑃𝑖 (𝑘)𝑄𝑖𝑠𝑖 (𝑘) − (𝜓(𝛼)𝜃)𝛼 𝜌𝑖 + 𝜌𝑖𝑠𝑔𝑛[𝑠𝑖 (𝑘)] + 𝜌𝑖

(32)

𝑠𝑖 (𝑘 + 1) = 𝑃𝑖 (𝑘) (𝑄𝑖) 𝑠𝑖 (𝑘) − 𝑍𝑖 (𝑘) |𝑠𝑖 (𝑘) |𝛼 − 𝜉𝑖 (𝑘)
≥ 𝑃𝑖 (𝑘)𝑄𝑖𝑠𝑖 (𝑘) − (𝜓(𝛼)𝜃)𝛼 𝜌𝑖 + 𝜌𝑖𝑠𝑔𝑛[𝑠𝑖 (𝑘)] − 𝜌𝑖 .

(33)

Since
(

𝜌𝑖
𝑍𝑖 (𝑘)

) 1
𝛼 ≥

(
𝑇Φ𝑖 (𝑘)
𝑄𝑖

) 1
1−𝛼 , then

(
𝜌𝑖

𝑍𝑖 (𝑘)

) 1
𝛼 ≥

(
𝑇Φ𝑖 (𝑘)
𝑄𝑖

) 1
1−𝛼

⇒
(

𝜌𝑖
𝑍𝑖 (𝑘)

)1−𝛼
≥

(
𝑇Φ𝑖 (𝑘)
𝑄𝑖

)𝛼
⇒ 𝜌𝑖

1−𝛼 [𝑃𝑖 (𝑘) (𝑄𝑖)]𝛼 ≥ 𝑍𝑖 (𝑘)

⇒ 𝜌𝑖 ≤ 𝑃𝑖 (𝑘) (𝑄𝑖)
(

𝜌𝑖
𝑍𝑖 (𝑘)

) 1
𝛼
.

(34)

Since 0 < 𝜃 < 1, lead to 𝜓(𝛼)𝜃 ≥ 1 or 0 < 𝜓(𝛼)𝜃 < 1. When 𝜓(𝛼)𝜃 ≥ 1, we have

𝑠𝑖 (𝑘 + 1) ≤ 𝑃𝑖 (𝑘)𝑄𝑖𝑠𝑖 (𝑘) − (𝜓(𝛼)𝜃)𝛼 𝜌𝑖 + 𝜌𝑖

≤ 𝑃𝑖 (𝑘)𝑄𝑖𝜓(𝛼)𝜃
(
𝜌𝑖

𝑍𝑖 (𝑘)

) 1
𝛼

≤ 𝜓(𝛼)𝜃
(
𝜌𝑖

𝑍𝑖 (𝑘)

) 1
𝛼

≤ 𝜓(𝛼)
(
𝜌𝑖

𝑍𝑖 (𝑘)

) 1
𝛼

(35)

𝑠𝑖 (𝑘 + 1) ≥ 𝑃𝑖 (𝑘)𝑄𝑖𝑠𝑖 (𝑘) − (𝜓(𝛼)𝜃)𝛼 𝜌𝑖 − 𝜌𝑖

≥ 𝑃𝑖 (𝑘)𝑄𝑖𝑠𝑖 (𝑘) − [(𝜓(𝛼)𝜃)𝛼 + 1] 𝑃𝑖 (𝑘)𝑄𝑖
(
𝜌𝑖

𝑍𝑖 (𝑘)

) 1
𝛼

≥ [𝜓(𝛼)𝜃 − (𝜓(𝛼)𝜃)𝛼 − 1] 𝑃𝑖 (𝑘)𝑄𝑖
(
𝜌𝑖

𝑍𝑖 (𝑘)

) 1
𝛼

≥ −𝑃𝑖 (𝑘)𝑄𝑖
(
𝜌𝑖

𝑍𝑖 (𝑘)

) 1
𝛼

≥ −𝜓(𝛼)
(
𝜌𝑖

𝑍𝑖 (𝑘)

) 1
𝛼

.

(36)

We consider the situation that 0 < 𝜓(𝛼)𝜃 < 1, according to Lemma 3, we can also obtain |𝑠𝑖 (𝑘 + 1) | ≤

𝜓(𝛼)
(

𝜌𝑖
𝑍𝑖 (𝑘)

) 1
𝛼 .

From the above proof, we have |𝑠𝑖 (𝑘 + 1) | ≤ 𝜓(𝛼)
(

𝜌𝑖
𝑍𝑖 (𝑘)

) 1
𝛼 , when

(
𝜌𝑖

𝑍𝑖 (𝑘)

) 1
𝛼 ≥

(
𝑇Φ𝑖 (𝑘)
𝑄𝑖

) 1
1−𝛼 and 0 < 𝜃 < 1,

0 < 𝑠𝑖 (𝑘) ≤ 𝜓(𝛼)𝜛𝑖 .
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When −𝜓(𝛼)𝜛𝑖 ≤ 𝑠𝑖 (𝑘) < 0 and −1 < 𝜃 < 0, 𝑠𝑖 (𝑘) = 𝜓(𝛼)𝜃
(

𝜌𝑖
𝑍𝑖 (𝑘)

) 1
𝛼
= −𝜓(𝛼) |𝜃 |

(
𝜌𝑖

𝑍𝑖 (𝑘)

) 1
𝛼

, then

𝑠𝑖 (𝑘 + 1) = 𝑃𝑖 (𝑘)𝑄𝑖𝑠(𝑘) − 𝑍𝑖 (𝑘) |𝑠𝑖 (𝑘) |𝛼𝑠𝑔𝑛[𝑠𝑖 (𝑘)] − 𝜉𝑖 (𝑘). (37)

Similar to the above proof process, we can obtain |𝑠𝑖 (𝑘 + 1) | ≤ 𝜓(𝛼)
(

𝜌𝑖
𝑍𝑖 (𝑘)

) 1
𝛼 .

From the above proof, it can be seen that |𝑠𝑖 (𝑘 + 1) | ≤ 𝜓(𝛼)
(

𝜌𝑖
𝑍𝑖 (𝑘)

) 1
𝛼 is still satisfied with the conditions(

𝜌𝑖
𝑍𝑖 (𝑘)

) 1
𝛼 ≥

(
𝑇Φ𝑖 (𝑘)
𝑄𝑖

) 1
1−𝛼 , −1 < 𝜃 < 0 and −𝜓(𝛼)𝜛𝑖 ≤ 𝑠𝑖 (𝑘) < 0.

Case 2: If
(

𝜌𝑖
𝑍𝑖 (𝑘)

) 1
𝛼
<

(
𝑇Φ𝑖 (𝑘)
𝑄𝑖

) 1
1−𝛼 , suppose 𝑠𝑖 (𝑘) = 𝜓(𝛼)𝜃

(
𝑇Φ𝑖 (𝑘)
𝑄𝑖

) 1
1−𝛼 , 0 < |𝜃 | < 1, then prove |𝑠𝑖 (𝑘 + 1) | ≤

𝜓(𝛼)
(
𝑇Φ𝑖 (𝑘)
𝑄𝑖

) 1
1−𝛼 . Submit 𝑠𝑖 (𝑘) to 𝑠𝑖 (𝑘 + 1), we can obtain that:

𝑠𝑖 (𝑘 + 1) = 𝑃𝑖 (𝑘)𝑄𝑖𝑠𝑖 (𝑘) − 𝑍𝑖 (𝑘) (𝜓(𝛼)𝜃)𝛼
(
𝑇Φ𝑖 (𝑘)
𝑄𝑖

) 𝛼
1−𝛼 − 𝜉𝑖 (𝑘) (38)

(
𝜌𝑖

𝑍𝑖 (𝑘)

) 1
𝛼
<

(
𝑇Φ𝑖 (𝑘)
𝑄𝑖

) 1
1−𝛼

⇒
(

𝜌𝑖
𝑍𝑖 (𝑘)

)1−𝛼
<

(
𝑇Φ𝑖 (𝑘)
𝑄𝑖

)𝛼
⇒ 𝜌𝑖

1−𝛼 < 𝑍𝑖 (𝑘)
[𝑃𝑖 (𝑘)𝑄𝑖]𝛼

⇒ 𝜌𝑖 < 𝑃𝑖 (𝑘)𝑄𝑖
(
𝑇Φ𝑖 (𝑘)
𝑄𝑖

) 1
1−𝛼

.

(39)

When 𝜓(𝛼)𝜃 ≥ 1, 𝜓(𝛼)𝜃 ≥ (𝜓(𝛼)𝜃)𝛼, then, based on Lemma 2

𝑠𝑖 (𝑘 + 1)

≤ 𝑃𝑖 (𝑘)𝑄𝑖𝑠𝑖 (𝑘) − 𝑃𝑖 (𝑘)𝑄𝑖 (𝜓(𝛼)𝜃)𝛼
(
𝑇Φ𝑖 (𝑘)
𝑄𝑖

) 1
1−𝛼 + 𝜌𝑖

≤ [𝜓(𝛼)𝜃 − (𝜓(𝛼)𝜃)𝛼 + 1] 𝑃𝑖 (𝑘)𝑄𝑖
(
𝑇Φ𝑖 (𝑘)
𝑄𝑖

) 1
1−𝛼

≤ 𝜓(𝛼)𝑃𝑖 (𝑘)𝑄𝑖
(
𝑇Φ𝑖 (𝑘)
𝑄𝑖

) 1
1−𝛼

≤ 𝜓(𝛼)
(
𝑇Φ𝑖 (𝑘)
𝑄𝑖

) 1
1−𝛼

(40)

𝑠𝑖 (𝑘 + 1)

≥ 𝑃𝑖 (𝑘)𝑄𝑖𝑠𝑖 (𝑘) − 𝑃𝑖 (𝑘)𝑄𝑖 (𝜓(𝛼)𝜃)𝛼
(
𝑇Φ𝑖 (𝑘)
𝑄𝑖

) 1
1−𝛼 − 𝜌𝑖

≥ [𝜓(𝛼)𝜃 − (𝜓(𝛼)𝜃)𝛼 − 1] 𝑃𝑖 (𝑘)𝑄𝑖
(
𝑇Φ𝑖 (𝑘)
𝑄𝑖

) 1
1−𝛼

≥ −𝑃𝑖 (𝑘)𝑄𝑖
(
𝑇Φ𝑖 (𝑘)
𝑄𝑖

) 1
1−𝛼

≥ −𝜓(𝛼)𝐹𝑖 (𝑘) (𝑄𝑖)
(
𝑇Φ𝑖 (𝑘)
𝑄𝑖

) 1
1−𝛼

.

(41)
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After 𝜓(𝛼)𝜃 ≥ 1 with 𝜓(𝛼)𝜃 ≥ (𝜓(𝛼)𝜃)𝛼 proved, we will discuss 0 < 𝜓(𝛼)𝜃 < 1 with 𝜓(𝛼)𝜃 ≤ (𝜓(𝛼)𝜃)𝛼.

According to Lemma 3, we can obtain that |𝑠𝑖 (𝑘 + 1) | ≤ 𝜓(𝛼)
(
𝑇Φ𝑖 (𝑘)
𝑄𝑖

) 1
1−𝛼 .

It can be seen from the above proof that under conditions
(

𝜌𝑖
𝑍𝑖 (𝑘)

) 1
𝛼
<

(
𝑇Φ𝑖 (𝑘)
𝑄𝑖

) 1
1−𝛼 and 0 < 𝜃 < 1, namely,

0 < 𝑠𝑖 (𝑘) ≤ 𝜓(𝛼)𝜛𝑖 , |𝑠𝑖 (𝑘 + 1) | ≤ 𝜓(𝛼)
(
𝑇Φ𝑖 (𝑘)
𝑄𝑖

) 1
1−𝛼 holds.

When −1 < 𝜃 < 0, 𝑠𝑖 (𝑘) = 𝜓(𝛼)
(
𝑇Φ𝑖 (𝑘)
1−𝑞𝑖𝑇

) 1
1−𝛼

= −𝜓(𝛼) |𝜃 |
(
𝑇Φ𝑖 (𝑘)
1−𝑞𝑖𝑇

) 1
1−𝛼 .

𝑠𝑖 (𝑘 + 1)

= 𝑃𝑖 (𝑘)𝑄𝑖𝑠𝑖 (𝑘) − 𝑍𝑖 (𝑘) (𝜓(𝛼)𝜃)𝛼
(
𝑇Φ𝑖 (𝑘)
𝑄𝑖

) 𝛼
1−𝛼 − 𝜉𝑖 (𝑘)

= 𝑃𝑖 (𝑘)𝑄𝑖𝑠𝑖 (𝑘) + 𝑃𝑖 (𝑘)𝑄𝑖 (𝜓(𝛼) |𝜃 |)𝛼
(
𝑇Φ𝑖 (𝑘)
𝑄𝑖

) 1
1−𝛼 − 𝜉𝑖 (𝑘).

(42)

Similar to the above proof process, we can obtain |𝑠𝑖 (𝑘 + 1) | ≤ 𝜓(𝛼)
(
𝑇Φ𝑖 (𝑘)
𝑄𝑖

) 1
1−𝛼 .

To this end, when 𝑠𝑖 (𝑘) ∈ Ω, 𝑠𝑖 (𝑘 + 1) ∈ Ω.

3) After the sliding mode variables enter the determination domain Ω, we will further discuss the bounded
convergence region of the tracking errors. Before proving, it is necessary to introduce an important lemma
about the discrete fast terminal sliding mode surface, as follows.

Lemma 4 [20]: Consider a scalar dynamical system

𝑧(𝑘 + 1) = 𝑣𝑧(𝑘) − 𝑙𝑧(𝑘)𝛼 + 𝑔(𝑘) (43)

where 𝑣 > 0, 𝑙 > 0 and 0 < 𝛼 < 1. if |𝑔(𝑘) | < 𝛾, 𝛾 > 0, then the state 𝑧(𝑘) is always bounded and there is a
finite step to guarantee

|𝑧(𝑘) |≤𝜓(𝛼)·𝑚𝑎𝑥
{(𝛾
𝑙

) 1
𝛼
,

(
𝑙

𝑣

) 1
1−𝛼

}
. (44)

When the sliding mode variable enters the domain Ω, combined with the analysis of the fractional order fast
terminal sliding mode surface, we can see

𝑐1𝑒1(𝑘) + 𝑒2(𝑘) + 𝑐2𝐷
𝜆 [|𝑒1(𝑘) |𝛽𝑠𝑔𝑛(𝑒1(𝑘))] = 𝑔(𝑘). (45)

By the definition of GL fractional order operator,

𝑐1𝑒1(𝑘) + 𝑒2(𝑘) +
𝑐2

𝑇𝜆

𝐿∑
𝑗=0

(−1) 𝑗
(
𝜆

𝑗

)
|𝑒1(𝑘 − 𝑗) |𝛽𝑠𝑔𝑛(𝑒1(𝑘)) = 𝑔(𝑘). (46)

According to Lemma 1 and equation (17), the following expression can be obtained:

𝑒1𝑖 (𝑘 + 1) = (1 − 𝑐1𝑖𝑇)𝑒1𝑖 (𝑘) +
𝑐2𝑖

𝑇𝜆
|𝑒1𝑖 (𝑘) |𝛽𝑠𝑔𝑛(𝑒1𝑖) (𝑘)) + Υ𝑖 (𝑘) (47)
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where |Υ𝑖 (𝑘) | ≤ 𝜗𝑖 , Lemma 1 tells us, 𝜗𝑖 = 𝜓(𝛼)𝜛𝑖 + 𝜂𝑖𝐾𝑖

𝑇𝜆 , 𝜂𝑖≥𝑚𝑎𝑥
{
|𝑒1𝑖 (𝑘 − 𝑗) |𝛽

}
, 𝐾𝑖 =

∑𝐿
𝑗=1 (−1) 𝑗

(𝜆
𝑗

)
=

Γ(𝐿+1−𝜆)
Γ(1−𝜆)Γ(𝐿+1) − 1, based on Lemma 4,

|𝑒1𝑖 (𝑘) |≤𝜓(𝛽)·𝑚𝑎𝑥
{(
𝜗𝑖𝑇

𝜆

𝑐2𝑖

) 1
𝛽

,

(
𝑐2𝑖

(1 − 𝑐1𝑖𝑇)𝑇𝜆

) 1
1−𝛽

}
. (48)

According to the above analysis, the system errors will also converge within the bounded region when the
sliding variables enter the domain.

3.4. Selection of control parameters
Through detailed control input exhibition and stability proof accomplished so far, choosing befitting control
parameters concerning the factors including control input smoothness andmeasuring noises is also important
in the acquisition of outstanding performance. Hence, a parameter selection guideline is provided here.

Selection of 𝑐1𝑖 : When the sliding variables enter the equilibrium states, the parameter 𝑐1𝑖 canmake the sliding
variables decay exponentially rapidly to ensure that the system states converge in a finite number of steps and
realize the sliding variables converge quickly and precisely to the equilibrium states. Increasing 𝑐1𝑖 can improve
the rapidness of the system convergence, but too large a value will lead to serious system chattering. Given this
trade-off, we set 𝑐11 = 15 and 𝑐12 = 10.

Selection of 𝑐2𝑖 : In equation (47), if 𝑐2𝑖 is too large or too small, the convergence limit of errors will be affected
and chattering will occur in the system. To achieve a balance, we set 𝑐21 = 100, 𝑐22 = 100.

Selection of 𝜆: The smaller the parameter 𝜆 is, the higher the tracking accuracy will be, but too small will
seriously make the system chattering problem. For better performance, we set 𝜆 = −1.7.

Selection of 𝛽: 𝛽 =
𝑞𝛽
𝑝𝛽
, the selection of 𝑝 and 𝑞 must satisfy the odd number of 𝑝𝛽 > 𝑞𝛽 > 0, making 𝑢(𝑘)

have no switching item, which can effectively eliminate chattering. we set 𝑝𝛽 = 5 and 𝑞𝛽 = 3.

Selection of 𝜖 , 𝑚, 𝛿: In equation (19), the parameter 𝜖 , 𝑚, 𝛿 are the system overcomes the main parameters per-
turbation and external disturbance, but the parameter selection inappropriate tends to cause system chattering.
In order to get better performance, we set 𝜖 = 500, 𝑚 = 2, 𝛿 = 160.

Selection of 𝜎𝑖 : The larger the parameter 𝜎𝑖 is, the faster the system reaches the sliding mode surface, but it
also causes chattering. Taking this tradeoff into consideration, we set 𝜎1 = 0.6 and 𝜎2 = 0.6.

Selection of 𝛼: The smaller the parameter 𝛼 is, the smaller the sliding mode bandwidth will be obtained. But
it is better to set 𝛼 = 0.5 so that the boundary layer of the sliding variable is 𝑂 (𝑇2).

Remark 2: For the method proposed in this paper, the stability of convergence in finite steps has been proved
in the above parts. This method combines the global memory characteristics of fractional order operators,
accelerates the convergence rate of the system, and makes the system errors approach zero quickly. Moreover,
adaptive law is added to adjust the width of the quasi-sliding mode band in real time to reduce the chattering
of the system. Compared with CSMC algorithm [26] and FTSMC algorithm [27], it can improve the dynamic
response ability of the system.
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Figure 2. 2-DOF lower limb exoskeleton dynamic simulator block diagram. The exoskeleton controllers are implemented in MATLAB
interfacing with the human and exoskeleton models defined in Opensim. 2-DOF: two-degree-of-freedom.

4. SIMULATION
To verify the effectiveness of the AFOFTSM control algorithm proposed in this paper on the suppression of ex-
ternal disturbances, we used OpenSim andMatlab software to develop a lower limb exoskeleton co-simulation
control system to simulate the motion state of the human body wearing lower limb exoskeleton rehabilitation
robot, which is depicted in Figure 2. OpenSim is open-source software for modeling, simulating, controlling,
and analyzing the human neuromusculoskeletal system, developed by the National Institutes of Health (NIH)
Center for Biomedical Computing at Stanford University [28,29]. OpenSim is a developable platform. Using the
template and experimental data provided by OpenSim, we built a human musculoskeletal model with a height
of 1814mm and a weight of 72.6kg and wore the lower extremity exoskeleton on the model [30]. At the same
time, the controller algorithm was written inMatlab to calculate the input torque of each exoskeleton joint and
control the lower limb exoskeleton to drive the human body to move together.

In the following simulation, the established simulation system was run inMatlab software, the simulation time
was 3s, the simulation step size was 0.001s, and the standard hip and knee joints of a healthy subject when
walking horizontally were used as the reference track.

At the same time, the discrete CSMC algorithm [26] and the discrete FTSMC algorithm [27] are respectively
applied to the dynamics model of the lower limb exoskeleton robot for comparison. The design methods of
CSMC and FTSMC are as follows:

1) CSMC

For simplicity, the CSMC [26] control input 𝑢𝑐𝑠𝑚𝑐 is given directly:

𝑢𝑐𝑠𝑚𝑐 = [𝐶𝑒𝑐𝑏(𝑘)]−1 [𝐶𝑒𝑐𝑥𝑑 (𝑘 + 1) − 𝐶𝑒𝑐 𝑓 (𝑘) − (1 − 𝑞𝑐𝑇) 𝑠𝑐 (𝑘) + 𝜀𝑐𝑇𝑠𝑔𝑛 (𝑠𝑐 (𝑘))] . (49)

In the formula (49), 𝑠𝑐 (𝑘) is the sliding mode variable, which is defined as follows:

𝑠𝑐 (𝑘) = 𝑐𝑐𝑒𝑐 (𝑘) + ¤𝑒𝑐 (𝑘) (50)
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Figure 3. Trajectory tracking performance of the robotic exoskeleton by using CSMC, FTSMC, and AFOFTSMC control strategy. (a) tra-
jectory tracking of the hip joint. (b) trajectory tracking of the knee joint. CSMC: conventional sliding mode control; FTSMC: fast terminal
sliding mode control; AFOFTSMC: adaptive fractional order fast terminal sliding mode controller.

𝑒𝑐 (𝑘) is the tracking error under the control of CSMC, 𝑐𝑐 =
[
15 10

]
, 𝜀𝑐 =

[
0.01 0.01

]
,𝐶𝑒𝑐 =

[
15 0 1 0
0 10 0 1

]
.

2) FTSMC

An FTSMC control law [27] is also designed for comparison, and the control input 𝑢 𝑓 𝑡𝑠𝑚𝑐 is shown below:

𝑢 𝑓 𝑡𝑠𝑚𝑐 =[𝐶 𝑓 𝑐𝑏(𝑘)]−1 [𝐶 𝑓 𝑐 (𝑥𝑑 (𝑘 + 1) − 𝑓 (𝑘)) − (1 − 𝑞𝑐𝑇)𝑠 𝑓 (𝑘)
+ 𝜀𝑐𝑇𝑠𝑔𝑛(𝑠(𝑘)) − 𝐶 𝑓 𝑐2 |𝑠 𝑓 (𝑘) |𝛼𝑠𝑔𝑛[𝑠 𝑓 (𝑘)]] .

(51)

In Formula (51), 𝑠 𝑓 is a sliding mode variable, defined as follows:

𝑠 𝑓 (𝑘) = 𝑐 𝑓 𝑐1𝑒 𝑓 (𝑘) + ¤𝑒 𝑓 (𝑘) + 𝐶 𝑓 𝑐2
��𝑒 𝑓 (𝑘)��𝛼 𝑠𝑔𝑛 [𝑒 𝑓 (𝑘)] (52)

𝑒 𝑓 (𝑘) is the tracking error under FTSMcontrol, 𝑐 𝑓 𝑐1 =
[
15 10

]
, 𝑐 𝑓 𝑐2 =

[
0.05 0.05

]
,𝐶 𝑓 𝑐 =

[
15 0 1 0
0 10 0 1

]
.

To test the robustness of the three algorithms to external disturbances, the same external disturbances are set
for the three controllers respectively, and the external disturbances are set as:

𝜉 (𝑘) =
[

5𝑠𝑖𝑛(𝑘)
−5𝑠𝑖𝑛(𝑘)

]
(𝑁𝑚). (53)

The simulation results are shown in Figure 3-6, which are position tracking of the hip joint and knee joint,
control input signals, position tracking errors, and sliding mode surface function respectively. In Figure 3,
compared with CSMC and FTSMC, the control algorithm proposed in this paper can track the gait trajectory
more accurately, and the tracking trajectory of AFOFTSMC is closer to the reference trajectory.

Moreover, it can be seen fromFigure 4 that the control inputs of AFOFTSMCdonot need to give greater control
efforts to maintain higher track tracking accuracy and effectively eliminate the impact of external interference.
According to the comparison of tracking errors in Figure 5, the AFOFTSMC algorithm has the smallest steady-
state tracking error, which can ensure that the system error converges in a finite time. In Figure 6, the sliding
mode variables of the three controllers can move rapidly into the quasi-sliding mode band, and the control
algorithm proposed in this paper can effectively reduce the width of the quasi-sliding mode band.
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Figure 4. AFOFTSMC control input comparison with CSMC and FTSMC. CSMC: conventional sliding mode control; FTSMC: fast terminal
sliding mode control; AFOFTSMC: adaptive fractional order fast terminal sliding mode controller.
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Figure 5. Tracking errors comparison of CSMC, FTSMC, and AFOFTSMC in simulations. (a) errors comparison of the hip joint; (b) errors
comparison of the knee joint. CSMC: conventional sliding mode control; FTSMC: fast terminal sliding mode control; AFOFTSMC: adaptive
fractional order fast terminal sliding mode controller.

0 0.5 1 1.5 2 2.5 3

Time(s)

-2

-1.5

-1

-0.5

0

0.5

1

s1
(k

)

AFOFTSMC
CSMC
FTSMC

0.054 0.055 0.056 0.057 0.058 0.059
-0.01

0

0.01

0.02

(a) Sliding variables 𝑠1 (𝑘)

0 0.5 1 1.5 2 2.5 3

Time(s)

-4

-3

-2

-1

0

1

2

3

4

5

s2
(k

)

AFOFTSMC
CSMC
FTSMC

0.05 0.055 0.06 0.065
-0.1

0

0.1

(b) Sliding variables 𝑠2 (𝑘)

Figure 6. Sliding variables for the three sliding surfaces.

To provide more quantitative proof, three indicators are compared in Table 1 to evaluate the performance of
three different control strategies. Mean absolute error (MAE) with 𝑀𝐴𝐸 = 1

𝑁

∑𝑁
𝑘=1 |𝑒(𝑘) |, maximum tracking

error (MTE) with 𝑀𝑇𝐸 = 𝑚𝑎𝑥 |𝑒(𝑘) |, root mean square error (RMSE) with 𝑅𝑀𝑆𝐸 =
√

1
𝑁

∑𝑁
𝑘=1 [𝑒(𝑘)]2.

The results are shown in Table 1. The discrete adaptive fractional order fast terminal sliding mode control
algorithm proposed in this paper is applied to the lower limb exoskeleton robot to achieve better trajectory
tracking control. The generated RMSE and MAE are both minima, but the MTE is maximum, which is due to
overdrive caused by fast response speed.

To enhance SMC’s ability to resist external disturbances, we use fractional order sliding mode surfaces to accel-
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Table 1. Performance indicators of the three controllers

Controllers RMSE of hip MAE of hip MTE of hip RMSE of knee MAE of knee MTE of knee

AFOFTSMC (Proposed) 0.0056 rad 0.0026 rad 0.0300 rad 0.0075 rad 0.0057 rad 0.0529 rad
CSMC [26] 0.0066 rad 0.0056 rad 0.0174 rad 0.0189 rad 0.0166 rad 0.0529 rad
FTSMC [27] 0.0056 rad 0.0370 rad 0.0253 rad 0.0128 rad 0.0105 rad 0.0529 rad

erate the convergence of system errors and make adaptive adjustments to control law parameters. Compared
with the traditional control methods, AFOFTSMC has better potential to be applied to the actual exoskeleton
rehabilitation robot and help patients to carry out rehabilitation training in the early stage of rehabilitation.
In addition to the field of rehabilitation robots, the algorithm can also be extended to other fields to achieve
better control effects, such as chaotic systems, robot manipulators, and quadrotor UAVs.

5. CONCLUSIONS
In this paper, we study a human gait trajectory-tracking control issue of lower limb exoskeleton rehabilitation
robot. Firstly, the dynamic properties of the lower limb exoskeleton rehabilitation robot were analyzed. Then,
a new AFOFTSMC algorithm was developed for the lower limb exoskeleton robot with uncertain parameters
and unknown external interference, where the fractional order fast terminal sliding mode function was intro-
duced to achieve rapid convergence in finite time. Particularly, the unknown dynamic part of the exoskeleton
was processed by adaptive law, and the width of the quasi-sliding mode band was adjusted in real-time to en-
sure that the sliding mode variables quickly enter the quasi-sliding mode band. Moreover, the stability of the
whole control system was verified in the Lyapunov sense. To illustrate the effectiveness of the proposed con-
troller, we compared the simulation results of CSCM, FTSMC, and AFOFTSMC on the MATLAB-Opensim
co-simulation platform. The simulation results showed that the adaptive fractional order fast terminal slid-
ing mode controller has the characteristics of high precision, fast response, and strong robustness for robot
trajectory tracking.

DECLARATIONS
Authors’ contributions
Implemented the methodologies presented and wrote the paper: Zhou Y, Sun Z
Performed oversight and leadership responsibility for the research activity planning and execution, as well as
developed ideas and evolution of overarching research aims: Sun Z, Chen B, Wang T
Performed critical review, commentary, and revision, as well as providing technical guidance: Sun Z, Chen B,
Wu X, Huang G
All authors have revised the text and agreed to the published version of the manuscript.

Availability of data and materials
Not applicable.

Financial support and sponsorship
Thisworkwas supported by the Primary Research andDevelopment Planof Zhejiang Province (No. 2022C03029)

Conflicts of interest
All authors declared that there are no conflicts of interest.

Ethical approval and consent to participate
Not applicable.

http://dx.doi.org/10.20517/ir.2023.05


Zhou et al. Intell Robot 2023;3(1):95-112 I http://dx.doi.org/10.20517/ir.2023.05 Page 111

Consent for publication
Not applicable.

Copyright
©The Author(s) 2023.

REFERENCES
1. Liu WL, Yin BL, Yan BB. A survey on the exoskeleton rehabilitation robot for the lower limbs. In: 2016 2nd International Conference

on Control, Automation and Robotics (ICCAR); 2016 Apr 28-30; Hong Kong, China. IEEE; 2016. pp. 90–94.
2. Meng W, Liu Q, Zhou ZD, Ai QS, Sheng B, Xie SQ. Recent development of mechanisms and control strategies for robot-assisted lower

limb rehabilitation. Mechatronics 2015;31:132–45. DOI
3. Han J, Yang SY, Xia L, Chen YH. Deterministic adaptive robust control with a novel optimal gain design approach for a fuzzy 2-DOF

lower limb exoskeleton robot system. IEEE Trans Fuzzy Syst 2021;29:2373-87. DOI
4. Sun W, Lin JW, Su SF, Wang N, Er MJ. Reduced adaptive fuzzy decoupling control for lower limb exoskeleton. IEEE Trans Cybern

2021;51:1099-109. DOI
5. Long Y, Du ZJ, Cong L, Wang WD, Zhang ZM, Dong W. Active disturbance rejection control based human gait tracking for lower

extremity rehabilitation exoskeleton. ISA Trans 2017;67:389-97. DOI
6. Asl HJ, Narikiyo T, Kawanishi M. Neural network-based bounded control of robotic exoskeletons without velocity measurements. Contr

Eng Pract 2018;80:94-104. DOI
7. Torres FJ, Guerrero GV, García CD, Gomez JF, Adam M and Escobar RF. Master-slave synchronization of robot manipulators driven by

induction motors. IEEE Latin Am Trans 2016;14:3986-91. (in Spanish) DOI
8. Ahmed S, Wang HP, Tian Y. Robust adaptive fractional-order terminal sliding mode control for lower-limb exoskeleton. Asian J of Contr

2019;21:473-82. DOI
9. Narayan J, AbbasM, Patel B, Dwivedy SK. A Singularity-free terminal sliding mode control of an uncertain paediatric exoskeleton system.

In: 2022 5th International Conference on Advanced Systems and Emergent Technologies (IC_ASET); 2022 Mar 22-25; Hammamet,
Tunisia. IEEE; 2022. pp. 198–203.

10. Cao SB, Cao GZ, Zhang YP, Ling ZQ, He BB, Huang SD. Fast-terminal sliding mode control based on dynamic boundary layer for
lower limb exoskeleton rehabilitation robot. In: 2021 IEEE 11th Annual International Conference on CYBER Technology in Automation,
Control, and Intelligent Systems (CYBER); 2021 July 27-31; Jiaxing, China. IEEE; 2021. pp. 453–458.

11. Chen SB, Beigi A, Yousefpour A, et al. Recurrent neural network-based robust nonsingular sliding mode control with input saturation for
a non-holonomic spherical robot. IEEE Access 2020;8:188441-53. DOI

12. Fei JT, Feng ZL. Fractional-order finite-time super-twisting sliding mode control of micro gyroscope based on double-loop fuzzy neural
network. IEEE Trans Syst Man Cybern, Syst 2021;51:7692-706. DOI

13. Wang YY, Gu LY, Xu YH, Cao XX. Practical tracking control of robot manipulators with continuous fractional-order nonsingular terminal
sliding mode. IEEE Trans Ind Electron 2016;63:6194-204. DOI

14. Yang Y, Chen YQ, Chu YZ,Wang Y, Liang Q. Fractional order adaptive sliding mode controller for permanent magnet synchronous motor.
In: 2016 35th Chinese Control Conference (CCC); 2016 July 27-29; Chengdu, China. IEEE; 2016. pp. 3412–3416.

15. Lavín-Delgado JE, Chávez-Vázquez S, Gómez-Aguilar JF, Alassafi MO, Alsaadi FE, Ahmad AM. Intelligent Neural Integral Sliding-
mode Controller for a space robotic manipulator mounted on a free-floating satellite. Adv Space Res 2022; Epub ahead of print. DOI

16. Lavín-Delgado JE, Beltrán ZZ, Gómez-Aguilar JF, Pérez-Careta E. Controlling a quadrotor UAV bymeans of a fractional nested saturation
control. Adv Space Res 2022; Epub ahead of print. DOI

17. Li JF, Jahanshahi H, Kacar S, et al. On the variable-order fractional memristor oscillator: Data security applications and synchronization
using a type-2 fuzzy disturbance observer-based robust control. Chaos, Solitons & Fractals 2021;145:110681. DOI

18. Wang YL, Jahanshahi H, Bekiros S, Bezzina F, Chu YM, Aly AA. Deep recurrent neural networks with finite-time terminal sliding mode
control for a chaotic fractional-order financial system with market confidence. Chaos, Solitons & Fractals 2021;146:110881. DOI

19. Xiong PY, Jahanshahi H, Alcaraz R, Chu YM, Gómez-Aguilar JF, Alsaadi FE. Spectral entropy analysis and synchronization of a multi-
stable fractional-order chaotic system using a novel neural network-based chattering-free sliding mode technique. Chaos, Solitons &

Fractals 2021;144:110576. DOI
20. Li SH, Du HB, Yu XH. Discrete-time terminal sliding mode control systems based on euler’s discretization. IEEE Trans Automat Contr

2014;59:546-52. DOI
21. Chen B, Hu GQ, Ho DWC, Yu L. Distributed Estimation and Control for Discrete Time-Varying Interconnected Systems. IEEE Trans

Automat Contr 2022;67:2192-207. DOI
22. Sun GH, Ma ZQ, Yu JY. Discrete-time fractional order terminal sliding mode tracking control for linear motor. IEEE Trans Ind Electron

2018;65:3386-94. DOI
23. Ajjanaromvat N, Parnichkun M. Trajectory tracking using online learning LQR with adaptive learning control of a leg-exoskeleton for

disorder gait rehabilitation. Mechatronics 2018;51:85-96. DOI
24. Neuman CP, Tourassis VD. Discrete dynamic robot models. IEEE Trans Syst , Man, Cybern 1985;SMC-15:193-204. DOI

http://dx.doi.org/10.20517/ir.2023.05
http://dx.doi.org/10.1016/j.mechatronics.2015.04.005
http://dx.doi.org/10.1109/tfuzz.2020.2999739
http://dx.doi.org/10.1109/tcyb.2020.2972582
http://dx.doi.org/10.1016/j.isatra.2017.01.006
http://dx.doi.org/10.1016/j.conengprac.2018.08.005
http://dx.doi.org/10.1109/tla.2016.7785923
http://dx.doi.org/10.1002/asjc.1964
http://dx.doi.org/10.1109/access.2020.3030775
http://dx.doi.org/10.1109/tsmc.2020.2979979
http://dx.doi.org/10.1109/tie.2016.2569454
http://dx.doi.org/10.1016/j.asr.2022.08.053
http://dx.doi.org/10.1016/j.asr.2022.10.023
http://dx.doi.org/10.1016/j.chaos.2021.110681
http://dx.doi.org/10.1016/j.chaos.2021.110881
http://dx.doi.org/10.1016/j.chaos.2020.110576
http://dx.doi.org/10.1109/tac.2013.2273267
http://dx.doi.org/10.1109/tac.2021.3075198
http://dx.doi.org/10.1109/tie.2017.2748045
http://dx.doi.org/10.1016/j.mechatronics.2018.03.003
http://dx.doi.org/10.1109/tsmc.1985.6313349


Page 112 Zhou et al. Intell Robot 2023;3(1):95-112 I http://dx.doi.org/10.20517/ir.2023.05

25. Zhou Y, Hu ZY, Sun Z, Wang T, Chen B. Covariance intersection fusion approach for gait estimation of lower limb rehabilitation Ex-
oskeleton Robot. In: 2022 5th International Symposium on Autonomous Systems (ISAS); 2022 April 08-10; Hangzhou, China. IEEE;
2022. pp. 1–6.

26. Gao WB, Wang YF, A HMF. Discrete-time variable structure control systems. IEEE Trans Ind Electron 1995;42:117–22. DOI
27. Wang Z, Li SH, Li Q. Discrete-time fast terminal sliding mode control design for DC–DC buck converters with mismatched disturbances.

IEEE Trans Ind Inf 2020;16:1204–13. DOI
28. Delp SL, Anderson FC, Arnold AS, et al. OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE

Trans Biomed Eng 2007;54:1940-50. DOI
29. Seth A, Hicks JL, Uchida TK, et al. OpenSim: Simulating musculoskeletal dynamics and neuromuscular control to study human and

animal movement. PLoS Comput Biol 2018;14:e1006223. DOI
30. Mi WM, Zhang T. Fuzzy variable impedance adaptive robust control algorithm of exoskeleton robots. In: 2019 Chinese Control Confer-

ence (CCC); 2019 July 27-30; Guangzhou, China. IEEE; 2019. pp. 4302–7.

http://dx.doi.org/10.20517/ir.2023.05
http://dx.doi.org/10.1109/41.370376
http://dx.doi.org/10.1109/TII.2019.2937878
http://dx.doi.org/10.1109/TBME.2007.901024
http://dx.doi.org/10.1371/journal.pcbi.1006223

	1. Introduction
	2. DYNAMICS MODEL OF LOWER LIMB EXOSKELETON
	3. CONTROLLER DESIGN AND STABILITY ANALYSIS
	3.1. Preliminaries
	3.2. Controller design
	3.3. Stability analysis
	3.4. Selection of control parameters

	4. SIMULATION
	5. Conclusions
	Declarations
	Authors’ contributions
	Availability of data and materials
	Financial support and sponsorship
	Conflicts of interest
	Ethical approval and consent to participate
	Consent for publication
	Copyright


