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Abstract
High entropy carbide ceramics have garnered significant interest as a novel class of ultra-high temperature and 
superhard metallic materials. In the present work, a comparative investigation was conducted for the first time on 
the stability, mechanical, and thermodynamic properties of two medium entropy carbides (MECs), (TaZrU)C and 
(YZrU)C, using high-throughput first-principles calculations. Additionally, data from groups IV and V transition 
metal monocarbides were employed for comparison. The temperature-dependent thermodynamic properties, 
including bulk modulus (B), constant volume/constant pressure heat capacity (Cv/Cp), Gibbs free energy, volume, 
entropy, and thermal conductivity, were evaluated using the Debye-Gruneisen model. The results demonstrate that 
(TaZrU)C and (YZrU)C exhibit similar trends in their thermodynamic properties, with (YZrU)C displaying slightly 
superior performance as the temperature rises. This work provides valuable insights into the design of innovative 
high entropy fuels, holding significant implications for the advancement of MEC ceramic fuels in advanced nuclear 
power systems and nuclear thermal propulsion systems.
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INTRODUCTION
Being one kind of ultra-high temperature ceramics[1-10], transition metal carbide ceramics of the IVB, VB, 
and VIB groups have found wide applications in various fields, such as hard cutting tools, high-temperature 
abrasives, aerospace industry, submarine equipment, and nuclear energy[1,2,10-13]. They also present several 
attractive properties, including excellent thermal and electrical conductivity, chemical corrosion resistance, 
high melting point and hardness, abrasion resistance, oxidation and radiation resistance, and high 
temperature stability[14-16]. In recent years, a new approach to alloy design has emerged with the development 
of polymetallic solid solution compounds. These alloys, known as high entropy materials (HEMs)[17-21], are 
formed by combining five or more principal elements, each with a concentration between 35 and 5 at.% and 
exhibiting a mixing entropy S > 1.5R. Owing to the contributions of high entropy, HEMs exhibit unique 
characteristics different from those of metal simple substances, which can be summarized as four major 
effects, including high entropy effects, sluggish diffusion effects, severe lattice distortion effects, and cocktail 
effects.

High entropy carbide ceramics (HECs) are single-phase solid solutions composed of four or more transition 
metal (TM) atoms. Theoretical studies have helped scientists to prepare and study HECs more efficiently 
and economically through different simulation methods[22,23]. For instance, high-throughput computing and 
machine learning (ML) have been used to study HEMs[22,24-29]. Castle et al. experimentally fabricated the high 
entropy carbides (HECs) and inherited the four effects of HEMs[30,31]. Medium entropy carbides (MECs) 
were then derived from the concept of HECs, with a mixing entropy between 1R and 1.5R. MECs, such as 
HECs, have excellent mechanical and functional properties. The study of the properties of MECs in 
multicomponent solid solutions has been widely reported[32-36]. Compared to traditional binary carbides, 
HECs and MECs exhibit superior physical and chemical performances, such as high thermal stability, good 
corrosion resistance, high fracture toughness, high Young’s modulus, and high hardness[24,30,37-42].

In the field of nuclear energy, the Nuclear Thermal Propulsion (NTP) engine systems are attractive options 
for planetary exploration applications due to their high performance, such as Mars exploration[43-46]. In order 
to achieve better performance of NTP systems, the NTP reactors will be utilized at temperatures above 
2,500 K and maintaining pressures exceeding 3 MPa. Historically, uranium fuel (UC) has been the primary 
focus for NTP reactors. The design and study of UC as the initial fuel element have received significant 
attention[47-50]. However, relying solely on UC and UC2 would impose severe limitations on the core 
operating temperature, resulting in a reduction in NTP specific impulse[51].

In recent decades, there has been a progression in the development of carbide fuels, transitioning from 
single-component compositions[52-57] to multicomponent compositions, such as (ZrU)C and (ZrNbU)C[35]. 
Notably, Pelaccio et al. have designed solid-solution (ZrU)C ceramic fuels, which currently serve as the 
primary source of nuclear fuel for NTP reactors, offering improved reliability[58]. Composite ceramic fuels, 
including UC or (ZrU)C, exhibit advantageous properties such as high melting point temperatures and high 
thermal conductivity. Unfortunately, the compatibility of composite ceramics, such as UC or (ZrU)C, with 
fuse-resistant alloys is limited at higher temperatures. Further exploration of incorporating a third metal 
atom into the (ZrU)C system holds the potential to unveil the future prospects of carbide fuels, specifically 
MEC ceramic fuels, for advanced nuclear power systems. Multicomponent (ZrNbU)C fuels are regarded as 
the preferred choice for realizing high thrust nuclear-powered spacecraft in the future, and in the study, a 
powder metallurgical process combining carbothermal reduction and liquid phase sintering is used to 
prepare poly (ZrNbU)C fuels. The mechanisms and laws of the process parameters on the reaction kinetics, 
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phase structure, thermal conductivity, and microstructure of multi-element (ZrNbU)C fuel are 
investigated[59]. Additionally, (UxZr1-x)Cy systems exhibit promise as design concepts/strategies for advanced 
nuclear power systems due to their unique nuclear properties and thermal stability[60].

In the present work, tantalum (Ta) or yttrium (Y) is added as the third metal atom to the (ZrU)C system to 
explore their effects on the properties of MECs. Proper doping of trace elements has been shown to 
promote the densification and grain growth of ceramic materials and extend their service life[61]. It has been 
reported that the utilized temperature of (TaZrU)C fuel could be improved by the addition of Ta and Zr 
into the classical UC one[62], which is selected as the investigated candidacy fuel in the present work. This 
work investigates the physical property changes and thermodynamic properties of (TMZrU)C (TM = Ta, Y) 
MECs in detail using high-throughput first-principles calculations, providing valuable data and technical 
support for the design of new high entropy fuel from both an electronic and atomic perspective. Specifically, 
we focus on examining the equilibrium volume (V0), Gibbs free energy, constant volume heat capacity (Cv), 
constant pressure heat capacity (Cp), bulk modulus (B0), and thermal conductivity of the (TMZrU)C 
structures. This research holds promise for the advancement of carbide materials, specifically MEC ceramic 
fuels, with implications for NTP systems.

MATERIALS AND METHODS
Multicomponent supercell construction via similar atomic environment
Consideration of the possible quasirandom structure with lattice distortion is important in the modeling of 
disordered structures. In the present work, the similar atomic environment (SAE) toolkit combined in the 
Professional Materials at Extreme (ProME) platform is utilized to construct the supercells of the 
multicomponent system[63,64], which has the capability to systematically screen the optimal structure of the 
fuel doping system. It is noted that the SAE approach is a novel structural modeling method that employs a 
similarity function to quantitatively describe the deviation between the current configuration and the 
desired disordered solid solution structure. This approach enables the construction of quasirandom 
structures to be transformed into a minimization problem of configuration space. The superlattices of 
(TaZrU)C and (YZrU)C with 64 atoms were constructed using the SAE method, as shown in Figure 1, 
based on the cell structures of ZrC (the space group number No. 225 and the lattice parameter 
a = b = c = 4.48 Å) and YC (the space group number No. 225 and the lattice parameter a = b = c = 5.09 Å). 
The supercells were generated by enlarging the unit cell of 2 × 2 × 2, which were also selected as 
representative models to simulate the solid solution alloys under various occupancy conditions. In order to 
improve the efficiency of structural optimization/selection, two parallel independent calculations were 
performed. In each optimization loop, the number of random structures conforming to the elemental ratios 
was first generated to be 1,000, and then the one with the smallest objective function was selected as the seed 
structure for subsequent optimization. Subsequently, starting with the seed structure, the Metropolis Monte 
Carlo (MMC) algorithm was used to minimize the objective function and exchange atomic positions to 
evolve the structure[63]. Finally, by repeating the above cycle 12 times, the objective function will reach a local 
minimum, and the criterion to complete the optimization process is expressed as[63]:

where N(Am) represents the number of classes of configurationally equivalent clusters in Am.
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Figure 1. The 64 atoms supercells of investigated medium-entropy carbides (MECs) generated by the SAE method. (A) (TaZrU)C; 
(B) (YZrU)C.

Computational methods
The first-principles calculations were carried out using the Vienna ab initio simulation package (VASP), 
which is based on the density functional theory (DFT) framework[65]. To treat the interactions between 
valence electrons and ionic cores, the projector augmented wave (PAW) method was utilized[66], and the 
exchange-correlation energy was calculated using the generalized gradient approximation (GGA) 
parametrized by Perdew-Burke-Ernzerh (PBE)[67]. Throughout the present work, the plane-wave basis 
energy cut-off was set to 1.4 times the maximum energy of each component. During the optimization, the 
total energies calculated by VASP finally converged within 1 × 10-6 eV/atom, and the Monkhorst-Pack 
scheme[68] was used to sample special k-points by automatically generating k-points grid in the Brillouin 
zone. Full relaxation of the supercell is carried out using the Methfessel-Paxton technique[69]. The total 
energy and electronic density of states (DOS) calculations were performed by using the tetrahedron method 
with Blöchl correction[70]. The bulk modulus, equilibrium volume, and the pressure derivative of the bulk 
modulus were determined from the total energy calculated, and these results were fitted to the four-
parameter Birch-Murnaghan (BM4) equation of state (EOS)[71]. The bounding charge density (∆ρ) was 
defined as[72]:

Where ρtotal is the total electron density, and ρIAM is the density related to the superposition of free and 
unbonded atoms, also known as the Independent Atomic Model (IAM). The Visualization for Electronic 
and Structural Analysis (VESTA) code was used to generate the isosurface structures of (TMZrU)C with 
different values of ∆ρ[73].

To investigate the thermodynamic properties, the temperature- and volume-dependent Helmholtz free 
energy is needed, which is calculated in the following form[74]:
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where E0 represents the static energy at 0 K, corresponding to the energy of the ground state when the ion is
fixed in its lattice position. Additionally, Fel accounts for the thermal free energy arising from electronic
excitation, while Fion represents the vibrational contribution to the free energy, Sconf is the configuration
entropy of the system. The equilibrium structure of a crystal at any given temperature (T) and volume (V)
can be determined by minimizing the Helmholtz free energy F(V, T). Once the minimum Helmholtz free
energy F(V, T) is determined for a particular T and V, other thermodynamic functions and properties of the
crystal can be deduced as implemented. For instance, entropy (S), isothermal bulk modulus (BT), heat
capacity at constant volume       , and heat capacity at constant pressure (Cp) can be calculated accordingly
and expressed as[75]:

All these thermodynamic properties are estimated using the mean-field potential (MFP) method proposed
by Wang et al.[76] and later improved by Song et al.[75] to extend its applicability to more general cases and
complex structural crystals[77-79]. This method is suitable for various complex systems and has significant
potential for predicting the thermodynamic properties of multicomponent alloys.

RESULTS AND DISCUSSION
Structural stability
The structures are optimized through full relaxation to obtain the energies E of MECs and their binary 
carbides as a function of volumes V. A series of energy-volume data points around the equilibrium volume 
were calculated by minimizing the total energy to optimize the crystal structure. Then, the energy-volume 
data points of the calculated MECs and their corresponding individual metal binary carbides were fitted 
using the fourth-order Birch-Murnaghan EOS[80], as shown in Figure 2.

The present results show the effect of TMs on the total energy and volume of MECs. Specifically, the 
equilibrium volume for binary carbides is found to increase in the order of TaC < ZrC < UC < YC, which is 
roughly consistent with the trend of pure metal atomic size change, i.e., Ta < U < Zr < Y. In addition, the 
equilibrium volume of MECs also increases with the increasing volume of TM atoms, in the order of 
(TaZrU)C < (YZrU)C. Meanwhile, the total energy of middle entropy carbides, (TaZrU)C < (YZrU)C, also 
increases with the improved volumes of TM atoms.

The fitted E-V curves provide valuable information about the equilibrium atomic energy E0, equilibrium 
volume V0, bulk modulus B0, first derivative of bulk modulus with respect to pressure B0’, and lattice 
constants a at zero temperature and pressure for MECs and their corresponding pure carbides. These 
predicted properties listed in Table 1 are in good agreement with the experimental and theoretical 
properties reported in the literature[81-87]. Specifically, the predicted E0 and V0 for (TaZrU)C and (YZrU)C 
are -9.7095 eV, -8.8862 eV and 13.3873 Å3, 15.1241 Å3, respectively. The lattice constants are a = 9.5097 Å for 
(TaZrU)C and a = 9.9043 Å for (YZrU)C. These values are very close to the average values of the 
equilibrium atomic energies E0, equilibrium volumes V0, and lattice constants a of the three component 

(CV)
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Table 1. The calculated properties of HECs in the present work at ground state (0 K), including equilibrium atomic energy (E0),

equilibrium atomic volume (V0), equilibrium bulk modulus (B0), the derivative of B0 (B’), and lattice parameter (a)

Composition E0 (eV/atom) V0 (Å3/atom) B0 (GPa) B’ a (Å)

(TaZrU)C -9.7059 13.3873 235.14 4.11 9.5097

(YZrU)C -8.8862 15.1241 173.71 4.45 9.9043

TaC -11.1001
-11.1a, -11.1b

11.2312 324.88 
322.15b, 365.3j

4.23 
4.22b

4.48
4.479b, 4.42j

ZrC -9.7315
-9.74a, -9.73b

13.0724 222.11 
219.3b, 220.1e

3.97 
4.06b

4.71 
4.711b, 4.71e

UC -10.3533 14.9923 186.77
158f, 191g

3.66 4.93 
4.96f, 4.97g

YC -7.8109 16.4216 123.98
128j, 124.3e

4.06 
4.451d

5.08
5.08j, 5.09e

The present first-principles calculations utilize PAW-GGA-PBE. aYe et al., first-principles calculations with PAW-GGA- PBE[81]; bJiang et al., first-
principles calculations with PAW-GGA- PBE[82]; dMaibam et al., first-principles calculations with GGA- PBE[83]; eKorir et al., first-
principles calculations with PAW-GGA- PBE[84]; fShi et al., first-principles calculations with PAW-GGA- PBE[85]; gMei et al., first-principles 
calculations with PAW-GGA-PBE[86]; jIsaev et al., first-principles calculations with GGA-PBE[87].

Figure 2. The calculated Energy-Volume (E-V) curves of (TaZrU)C and (YZrU)C.

binary carbides. Furthermore, the bulk modulus B0 of (TaZrU)C and (YZrU)C are also comparable to the 
average value of the three binary carbides. Similar to most HECs, the equilibrium properties of MECs, 
(TaZrU)C and (YZrU)C, follow the mixture rule[88], as seen in their equilibrium atomic energy, volume, 
lattice constant, and bulk modulus.

Mechanical properties are critical to the industrial applications of materials. Interestingly, (TaZrU)C has a 
greater bulk modulus B0 than (YZrU)C, indicating that (TaZrU)C has a higher strength than (YZrU)C and 
will be validated by the following bonding charge density analysis. However, the first derivative of bulk 
modulus with respect to pressure B0’ of (TaZrU)C is smaller than that of (YZrU)C. Despite the absence of 
experimental data for comparison, the current findings can serve as valuable references for future 
experimental and theoretical research.
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Temperature-dependent thermo-physical properties
The investigation of the thermodynamic properties of materials is crucial in the field of high-temperature
engineering applications. In order to gain a deeper understanding of the thermodynamic properties of
(TaZrU)C and (YZrU)C in the temperature range of 0-2,000 K, the Debye-Gruneisen model implemented
in MFP[76] was utilized in this study. The calculated thermodynamic properties are presented in Table 2,
including the equilibrium volume V0, Gibbs free energy, constant volume heat capacity Cv, constant
pressure heat capacity Cp, bulk modulus B0, and thermal conductivities. The thermodynamic properties of
materials can be determined through various experimental techniques, including differential thermal
analysis[60], chemical analysis[89], and X-ray diffraction[61,90,91]. Additionally, the hardness of a material is
commonly measured using Vickers hardness, which can be determined using a nanometer indentation
method[82]. However, with the advancement of science and technology towards extreme conditions, it
becomes increasingly challenging to experimentally obtain accurate thermodynamic data. As a result, there
are currently no available experimental or theoretical data on the thermodynamic properties of (TaZrU)C
and (YZrU)C. Therefore, the present findings are of significant value in guiding future research efforts to
develop advanced NTP fuels.

The heat capacity is a fundamental parameter that links the thermodynamic and dynamic properties of
materials. The constant volume heat capacity     was estimated using an expression CV = T(∂S)v and
investigated its temperature dependence for (TaZrU)C and (YZrU)C together with the benchmarks of
binary ones, as shown in Figures 3 and 4. In particular, Figure 3 illustrates the constant pressure heat
capacity CV and constant pressure heat capacity CP of binary carbides, matching well with the available
reported results in the literature and indicating the precise of our benchmark tests. Moreover, the
thermodynamic properties of (TaZrU)C and (YZrU)C are presented in Figure 4. In addition, the
contributions of ionic and electronic heat capacities are also shown in Figure 4A and B for comparison. The
results demonstrate that the ionic heat capacity outweighs the electronic heat capacity across the entire
temperature range examined. Compared to the binary carbides of each component, (TaZrU)C and
(YZrU)C have larger CP and CV values due to the mixing of the binary carbides of each component in the
same temperature range. It is indicated that these two MECs exhibit a sharp increase in     at temperatures
below 400 K, which is also followed by a gradual increase toward a constant value at higher temperatures in
line with the Dulong-Petit limit. Notably, the CV values of both carbides were very similar at lower
temperatures, while the CV of (YZrU)C at higher temperatures is slightly higher than that of (TaZrU)C. On
the contrary, the CP of (TaZrU)C and (YZrU)C is depicted in Figure 4B, and although they exhibit similar
trends, their CP values are more sensitive to temperature at low temperatures and gradually increase at high
temperatures. Furthermore, (YZrU)C displays a larger CP than that of (TaZrU)C. It is noteworthy that at
very high temperatures, CP does not follow the Dulong-Petit law as CV does but still shows a small increase.
This feature may arise from the relationship between CP and CV with the expression of CP = CV + 3α2BTV.

Estimating the strength of materials is crucial for their practical applications, and the bulk modulus B is a
measure of resistance to compression of a material. An increase in bulk modulus leads to a stronger
material. The bulk modulus is calculated using B0 = -V(∂P)T    , and the results for (TaZrU)C and (YZrU)C
are displayed in Figure 4C. Both carbides exhibit a significant decrease in bulk modulus with
increasing temperature, indicating a more pronounced softening effect. The bulk modulus of (TaZrU)C is
consistently higher than that of (YZrU)C throughout the entire temperature range of 0-2,000 K, providing
a significant strength advantage of (TaZrU)C in engineering applications.

Entropy is a fundamental thermodynamic parameter that describes the degree of disorder in a crystal
structure. A higher entropy value indicates a higher degree of disorder in the crystal structure. The entropy
value is a crucial factor for defining HEMs, and its variation is related to the formation, stability, and phase

CV

CV
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Table 2. Based on quasiharmonic approximation, thermodynamic properties of (TaZrU)C and (YZrU)C predicted by first-principles 
calculations, including equilibrium volume (V0), Internal energy, Gibbs free energy, Constant volume heat capacity (Cv), Constant 

pressure heat capacity (Cp), and Isothermal bulk modulus (B0)

Composition V0 
(Å3/atom)

Internal 
(eV)

Gibbs 
(eV)

Cv 
(J/mol/K)

Cp 
(J/mol/K)

B0

(GPa)

(TaZrU)C 13.446 -9.6614 -9.7428 23.098 23.412 228.34

(YZrU)C 15.211 -8.8405 -8.9249 23.174 23.610 167.46

Figure 3. Temperature dependence of heat capacity of benchmark binary carbides together with available reported data. (A) Constant 
volume heat capacity Cv; (B) Constant pressure heat capacity Cp. The values for comparison are derived from the theoretical results 
reported by Aliakbari[93], Zhang[94], Yang[57], Mankad[95], and Iikubo[96].

transformation of such materials. The equilibrium entropy is calculated using S = -(∂F)V, and the results are 
presented in Figure 4D. It can be observed that the entropy curves of those two middle entropy ceramics are 
close at low temperatures, but (YZrU)C displays a higher entropy than that of (TaZrU)C at high 
temperatures. Attributing to the differences in the atomic radius and the valence electrons between Ta and 
Y, these Y atoms in (YZrU)C play a greater influence than Ta when revealing the coupling effects of lattice 
vibrations and thermal electron contributions to entropy. Based on the relationship between Gibbs free 
energy Figure 4E and entropy (G = U + PV - TS), it can be concluded that (YZrU)C will be more stable at 
high temperatures.

The theoretical thermal conductivity can be calculated according to the following equation[92]:

where A = 3.04 × 10-8, Mα is the atomic mass of the atom, θα is the Debye temperature, δ3 is the volume per 
atom, and γ is the Gruneisen parameter. Figure 5 shows the corresponding graphs of the thermal 
conductivities of (TaZrU)C and (YZrU)C. It can be seen from the obtained results that the thermal 
conductivity trends of (TaZrU)C and (YZrU)C are similar to each other. For the heavier element Ta, the 
thermal conductivity of the compound (TaZrU)C is larger than that of (YZrU)C. Moreover, the difference 
in thermal conductivity decreases at high temperatures, and the thermal conductivity of (TaZrU)C is larger 
than that of (YZrU)C. The reason for this is that the strength of Ta-C bonds is higher than that of Y-C 
bonds in similar crystal structures, and the covalent interactions in (YZrU)C are weaker than those in 
(TaZrU)C.
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Figure 4. The predicted temperature-dependent thermodynamic properties of (TaZrU)C and (YZrU)C. (A) Constant volume heat
capacity - CV; (B) Constant pressure heat capacity - Cp; (C) Isothermal bulk modulus - B; (D) Entropy - S; (E) Gibbs free 
energy; (F) Equilibrium volume.

Basic physical properties and mechanical properties
Lattice distortion is a crucial microstructural feature that affects the mechanical properties of materials, 
especially in high-entropy materials. From the perspective of bond charge density, the mechanical and 
chemical effects of lattice distortion/misfit caused by constituent atoms can be comprehensively 
characterized. Figure 6 shows the isosurface of bonding charge densities of MECs with Δρ = 0.016 e -Å-3, 
demonstrating the electronic rearrangement caused by solute atoms and lattice distortion. The red color 
indicates the loss of electrons, while the green color represents the gain of electrons. Additionally, 
Figure 7A-D presents the electron gain and loss situations for (TaZrU)C and (YZrU)C, respectively. The 
results demonstrate that chemical disorder and lattice distortion in MECs can disturb the electronic 
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Figure 5. The temperature-dependent lattice thermal conductivity of (TaZrU)C and (YZrU)C.

Figure 6. The chemical bonding of investigated medium entropy carbides (MECs) characterized by the 3D and 2D views of bonding
charge density isosurfaces (Δρ = 0.016 e -Å-3), (A) (TaZrU)C; (B) (YZrU)C. The green and the pink colors are utilized to highlight 
those atoms presenting the negative and the positive charge, respectively.

contributions. In those investigated medium entropy ceramics, metal atoms exhibit different degrees of 
electron gain and loss, with the order of the metal atoms receiving electrons being U > Y while the order of 
metal atoms losing electrons being Ta > Zr. This observation suggests that metal atoms in MECs experience 
varying degrees of electron gain and loss, which increase as their atomic size decreases. Since the higher Δρ 
density corresponds to the stronger chemical bonds, it can be inferred that the hardness of (TaZrU)C is 
larger than that of (YZrU)C, which is consistent with the analysis of the partial bulk modulus B0 in the 
previous section on thermodynamic properties.

In order to gain a deeper understanding of the bonding behavior of the two MECs, we conducted an 
analysis of the charge density distribution on the (001) plane, and contour plots are shown in Figure 8. It 
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Figure 7. The chemical bonding of investigated medium entropy carbides (MECs) in the views of individual positive and negative 
modules of bonding charge density isosurfaces, (A) and (C) the negative and positive charge of (TaZrU)C, respectively; (B) and (D) the 
negative and positive charge of (YZrU)C, respectively.

can be seen from the figure that the charge distribution is strongly perturbed by the chemical disorder. In 
particular, we observed significant hybridization between the carbon and TM atoms, which suggests the 
formation of covalent bonds between them. Interestingly, the charge overlap region between TM atoms and 
non-metal atoms in (TaZrU)C is noticeably wider and more delocalized than that in (YZrU)C. 
Additionally, the color between TM and carbon atoms in (TaZrU)C is orange, whereas it is yellow and 
green in (YZrU)C. This observation suggests that the enhanced bonding charge densities among those 
atoms in (TaZrU)C result in increased bonding strength between TM and carbon atoms. As a consequence, 
the hardness of (TaZrU)C will be further enhanced, which is consistent with the findings from the analysis 
of Δρ from both 3D and 2D perspectives.

The DOS is a crucial quantity in theoretical chemistry as it helps to understand the internal chemical bond 
interactions and the stability mechanisms of a compound structure. To gain a deeper understanding of the 
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Figure 8. The contour plots of bonding charge density distributions of (001) plane of medium entropy carbides (MECs), (A) (TaZrU)C 
and (B) (YZrU)C. In order to get a clearer view of the electron distribution in the diagram, only the position of metal atoms has been 
marked, while the position of C atoms has not been marked, which is between two metal atoms. Plots are generated by the 
Visualization for Electronic and Structural Analysis (VESTA) package.

electronic structure, bonding, and properties of (TaZrU)C and (YZrU)C, their total (TDOS) and partial 
DOS (PDOS) are shown in Figure 9. The vertical blue line in the figure marks the Fermi energy (EF) which 
has been set to zero. Figure 9A shows that both MECs have TDOS values above zero at the Fermi energy 
level N(EF), indicating clear metallic behavior. However, (YZrU)C exhibits a smaller deviation between its 
Fermi level and pseudo-gap, and the DOS at the Fermi level is also smaller than (TaZrU)C. This indicates 
that (YZrU)C is more stable, as a lower DOS at the Fermi level N(EF) means higher stability. Due to the 
similarities in the PDOS details between (TaZrU)C and (YZrU)C, (TaZrU)C is chosen as the prototype for 
further analysis. As shown in Figure 9B, the two main peaks are located between -3 and 1 eV, with the 
Fermi energy approximately in the middle of this range. The primary bonding peaks located between -5 and 
-3 eV are predominantly derived from the valence electrons of the C(p), U(f), Ta(d), and Zr(d) orbitals. 
Meanwhile, the bonding peaks between -3 eV and 1 eV are generated through the hybridization of the C(p), 
U(f), Ta(d), and Zr(d) orbitals, with a minor contribution from the U(d), Ta(p), and Zr(p) orbitals. These 
PDOS features indicate the presence of covalent-like bonds in (TaZrU)C. Similarly, (YZrU)C exhibits the 
same PDOS features.

CONCLUSION
In the present work, the electronic and thermodynamic properties of (TaZrU)C and (YZrU)C have been 
investigated by first-principles calculations, referring to the traditional binary carbides, such as TaC, ZrC, 
UC, and YC, and presenting a good agreement with available experimental or theoretical results in the 
literature. It is found that the equilibrium volume and energy of (TaZrU)C and (YZrU)C are positively 
correlated with the size of each solute atom. Due to the random occupation of TM elements, local lattice 
distortion occurs, leading to changes in the charge distribution and chemical bonds. The electron DOS 
(eDOS) displays the bonding ability of the two MECs, showing significant hybridization between the carbon 
and the TM atoms near the Fermi level, indicating the formation of covalent bonds. The predicted bonding 
structures in view of bonding charge density indicate that (TaZrU)C and (YZrU)C exhibit covalent 
characteristics accompanied by ionicity, with (TaZrU)C showing stronger covalent interactions. Based on 
the Debye-Grüneisen model, several fundamental properties of (TaZrU)C and (YZrU)C were further 
studied, including constant volume and constant pressure heat capacities, bulk modulus, thermodynamic 
entropy, Gibbs free energy, volume, and thermal conductivity. While the high-temperature softening 
behavior is similar in those investigated carbides, (TaZrU)C has stronger chemical bonds and greater 
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Figure 9. (A) Total electron density of states (TDOS) and (B) Partial electron density of states (PDOS) of (TaZrU)C and (YZrU)C. The 
blue vertical dotted lines at 0 eV dictate the Fermi level.

hardness due to its larger volume modulus and thermal conductivity, making it more suitable for 
engineering applications. Since the entropy was found to increase significantly with temperature for both 
carbides, (YZrU)C becomes more stable at high temperatures due to its greater contribution from entropy. 
Therefore, the present work provides some reference value for the optimization and application of future 
medium entropy ceramic NTP fuels.
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