
Sampathkumar et al. Complex Eng Syst 2024;4:3
DOI: 10.20517/ces.2023.34

Complex Engineering
Systems

Research Article Open Access

Fuzzy inference system-assisted human-aware navi-
gation framework based on enhanced potential field
Shurendher Kumar Sampathkumar1, Daegyun Choi2, Donghoon Kim2

1Department of Mechanical and Materials Engineering, University of Cincinnati, Cincinnati, OH 45221, USA.
2Department of Aerospace Engineering and Engineering Mechanics, University of Cincinnati, Cincinnati, OH 45221, USA.

Correspondence to: Dr. Donghoon Kim, Department of Aerospace Engineering and Engineering Mechanics, University of Cincin-
nati, 2600 Clifton Ave, Cincinnati, OH 45221, USA. E-mail: Donghoon.Kim@uc.edu; ORCID: 0000-0003-3142-4458

How to cite this article: Sampathkumar SK, Choi D, Kim D. Fuzzy inference system-assisted human-aware navigation framework
based on enhanced potential field. Complex Eng Syst 2024;4:3. http://dx.doi.org/10.20517/ces.2023.34

Received: 29 Sep 2023 First Decision: 24 Nov 2023 Revised: 9 Dec 2023 Accepted: 21 Dec 2023 Published: 13 Jan 2024

Academic Editor: Hamid Reza Karimi Copy Editor: Fangling Lan Production Editor: Fangling Lan

Abstract
With the advent of Autonomous Mobile Robots (AMRs) in public areas such as malls and airports, their harmonious
coexistence with humans is crucial. AMRs must operate in a manner that ensures human safety, comfort, and ac-
ceptability to reduce stress. This is called Human Aware Navigation. This study introduces a framework for AMR
navigation that prioritizes safety and human comfort in such environments, utilizing an enhanced Potential Field ap-
proach augmented by Fuzzy Inference Systems. To achieve a smooth AMR trajectory, the framework employs these
systems based on AMR, human, and obstacle information. The proposed approach is tested across various scenar-
ios, including complex, cluttered environments that mimic practical situations. Simulation results demonstrate that
AMRs using the proposed method navigate human-rich environments safely and comfortably while mitigating com-
mon issues associated with Potential Field-based approaches, such as local minima and obstacles near the goal.

Keywords: HumanAwareNavigation (HAN), Potential Field (PF), Fuzzy Inference System (FIS), AutonomousMobile
Robot (AMR)

1. INTRODUCTION
Asimov’s first law of robotics [1] explicitly states that “A robotmay not injure a human being or, through inaction,
allow a human being to come to harm”, serving as a foundational principle in human-robot interaction. While
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this rule primarily concerns physical harm, the significance of safeguarding a person’s psychological well-being
cannot be understated. Currently, there is no established technology allowing robots to interpret the human
mind, but research has been ongoing since the early 2000s to understand how robot actions may influence
human psychological safety [2].

Traditionally, robots, especially Autonomous Mobile Robots (AMRs), have been utilized in factories and ware-
houses due to their efficiency in handling repetitive tasks [3]. However, recent years havewitnessed thewidespread
deployment of AMRs in diverse settings, including restaurants [4,5], airports [6,7], and hospitals [3,8]. Surpris-
ingly, despite the presence of humans in these environments, AMRs have often operated without due consid-
eration for human safety. Nevertheless, some researchers [9,10] have concentrated on two generalized levels of
safety: (i) physical safety, which involves avoiding collisions with humans; and (ii) psychological safety, which
entails adhering to specific human norms, such as maintaining a safe distance from humans [9] and refraining
from navigating certain areas near humans [10]. To mitigate the risk of collision with humans and alleviate
human discomfort caused by AMRs’ operation, proper navigation approaches for the AMRs are required.

In a typical AMR setup, the core components are often referred to as the “3P’s”, which play a critical role in its
functionality [11]: Perception, Prediction, and Path planning. Here, perception represents mapping the AMR’s
surrounding environment, while prediction involves forecasting the future states of all the agents within that
environment. Finally, path planning focuses on determining the safe course of action for the AMR to reach its
next state. Scholars have frequently explored the interplay of these three components in the context of AMRs.
For instance, Mateus et al. proposed a vision-based perception approach employing deep convoluted neural
networks [12] for pedestrian detection. Their work featured a convolutional neural network-based aggregate
channel features detector for pedestrian detection, alongside using asymmetric Gaussian functions to model
human-aware constraints. The path planning was accomplished using the A* algorithm. Similarly, Bruckschen
et al. delved into prediction, considering how humans navigate based on observations from the AMR and prior
knowledge of human interactions with objects [13]. Hansen et al. developed an adaptive method for detecting a
person’s interest in interacting with the robot, relying on case-based reasoning and two-dimensional (2D) laser
range measurements [14]. They further incorporated a time-dependent cost map for planning the AMR’s path
based on human future movement. In other works, such as the research by Ah et al. [15], a Probabilistic Road
Map (PRM)-based algorithmwas employed for the global path planner, while deep reinforcement learning was
used for the local planner. The results obtained after evaluation with different environments and pedestrian
behaviors exhibited improved AMR navigation with a reduced likelihood of colliding with humans.

In previous studies, it has become evident that the 3P’s are intricately interconnected. However, the focus
of this work predominantly centers on AMR’s path planning, emphasizing the critical aspect of collision-free
navigation while assuming the successful attainment of perception and prediction. In the domain of path plan-
ning research, diverse conditions and considerations have been employed by different researchers in designing
their algorithms, encompassing aspects such as the nature of humans, algorithms, Human-Aware Navigation
(HAN) models, and environmental factors. A summary of these variations is presented in Table 1.

The “nature of human” category relates to whether the human’s position and heading exhibit changes over time.
Meanwhile, the HANmodel encompasses various constraints, including considerations such as respecting the
human’s intimate zone [Proxemics (PR)], avoiding navigation in the human’s frontal space [Field of View (FV)],
or refraining from traversing the area immediately behind the human [Back Space (BS)].

For instance, in the research conducted by Korkmaz et al., emphasis was placed on utilizing the A* algorithm as
a primary planner, introducing a dynamic path planning method for HAN [16]. Their comparison between A*
and PRM as navigation bases revealed that PRM could function as a quicker planner for HAN in comparison
to A*. However, it often resulted in longer travel distances, steering the AMR away from humans. Notably, they
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Table 1. Comparison of related works

Ref. Nature of human
HAN model
considered

Algorithm Advantages Disadvantages

[16] Static PR PRM Fast path planning compared to A* Consideration of only static human and PR

[17] Dynamic PR A*
Natural behavior of AMR, reduced planning
time, time-dependent cost map

Consideration of PR only, planning timeout,
computational burden

[18] Dynamic PR, FV A*
Natural behavior of AMR, time-dependent
cost map

Planning time-out, higher computational
burden compared to [17]

[19] Static PR, FV, BS APF
Smoothpath compared toA*, no path planning
timeout

Local minima and GNRON, consideration of
only static human

did not consider that human moves over time and solely relied on PR. Moreover, the paths generated by both
A* and PRM were found to be significantly influenced by the number of nodes [16,20]. Attempts to reduce the
number of nodes in the A* map to alleviate computational burdens could compromise the path’s smoothness.
Similarly, Kirby et al. implemented a conventional A* path planner enhanced with social conventions, such as
passing humans on the right [21]. Additionally, Kollmitz et al. designed a time-dependent deterministic planner
using A*, which accounted for human motion [17]. However, this method solely relied on PR for navigation.
They introduced a planning timeout within the algorithm, allowing it to stop after a fixed time and return
the least-cost path to the destination. While this aids in timely algorithm termination, it occasionally yields
sub-optimal paths or no path at all. Nonetheless, this algorithm ensures the AMR exhibits natural behaviors,
such as avoiding close proximity to humans,

waiting for humans to pass, and adjusting its path in response to humans. Moreover, Briamonte et al. ex-
plored the application of the time-dependent deterministic A* path planning method for AMRs navigating
in confined spaces around groups of humans, incorporating considerations of PR and FV [18]. However, their
study observed longer navigation times compared to [17]. In another study by Sampathkumar et al., the authors
adopted the Artificial Potential Field (APF) for path planning, integrating human-associated factors through
adjustable coefficients [19]. They optimized the path planning model using a genetic algorithm, fine-tuning
coefficients such as scaling factors and Potential Field (PF) orders to minimize the AMR’s path length while
adhering to human-prescribed rules. Despite these improvements, their APF-based approach still encoun-
tered challenges related to local minima and difficulties reaching goals due to nearby obstacles, termed as goal
non-reachable with obstacle nearby (GNRON) issues [22]. In short, the aforementioned studies include some
level of limitations, such as a lack of consideration of sufficient human factors or human movement, planning
timeout, or navigation issues (local minima and GNRON).

In light of these considerations, this work employs Enhanced PF (EPF) [23] as the foundational path planning
technique. Furthermore, three human factors (PR, BS, and FV) are considered in this study, along with no
planning timeout. The integration of EPFwithHANeffectively addresses the limitations of APFwhile adhering
to the principles of HAN in the AMR navigation. Additionally, the coefficients of EPF highly govern the
behavior of AMRs. Hence, this research incorporates a Fuzzy Inference System (FIS) to dynamically adjust
the coefficients within the HAN-EPF framework based on the system knowledge. This adaptive coefficient
adjustment equips AMRs to effectively navigate within dynamically changing environments, accommodating
the presence of humans with PR, BS, and FV considered human factors. The efficacy of the proposed approach
is subsequently evaluated based on the AMR’s ability to navigate to its destination while strictly adhering to
HAN constraints, ensuring proper human-robot interaction and safety.

Overall, the main contributions of this work are

• To design a diverse human factors-employed HAN framework based on EPF that effectively overcomes
local minima and GNRON issues.

• To employ the FISs to adaptively determine coefficients that enable the AMR to safely navigate in a dynam-
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Figure 1. Definition of frames representation of vectors.

ically changing human-rich environment.

The paper is structured as follows: Section 2 lays the groundwork by defining frames and providing a concise
overview of the EPF and FISs. Section 3 elaborates on the integration of HAN principles into the EPF frame-
work and outlines the design of the FISs. In Section 4, the authors present and explore simulation results aimed
at validating the performance of the proposed approach. Finally, Section 5 offers concluding remarks on this
work.

2. PRELIMINARIES
2.1. Definition of frames and states
To describe the motion of the AMR, the reference frames, as shown in Figure 1, are established. The inertial
frame is represented by n̂𝑘 for 𝑘 = 1, 2, and 3. The AMR’s body frame is denoted by r̂𝑘 , with its origin
centered on the center of mass of the AMR’s body. The AMR’s primary movement direction aligns with r̂1,
while r̂3 coincides with n̂3. Accordingly, r̂2 is determined using the right-hand rule. Similarly, the human’s
body frame is defined through ĥ𝑘 , with its origin situated at the center of mass of the human. Similar to the
AMR’s body frame, the forward direction of the human corresponds to ĥ1, and ĥ3 aligns with n̂3. It is important
to note that, given that the AMR generally lacks translational motion along n̂3 and rotational motion along n̂1
and n̂2, this study adopts a 2D position vector and accounts for a rotational component about n̂3.

The positions of the AMR, human, obstacle, and the AMR’s destination in the inertial frame are denoted as
𝑁p𝑚 ∈ R2, 𝑁pℎ ∈ R2, 𝑁p𝑜 ∈ R2, and 𝑁p𝑔 ∈ R2, respectively. Here, the superscripts 𝑁 , 𝑅, and 𝐻 denote that
the vector is represented in the inertial, AMR’s body, and human’s body frames, respectively. Note that the
position vectors for the human and obstacle expressed in the AMR frame are described as

𝑅pℎ = 𝐶𝑅𝑁
𝑁pℎ, (1)

𝑅p𝑜 = 𝐶𝑅𝑁
𝑁p𝑜 , (2)

where 𝐶𝑅𝑁 represents the rotation matrix that maps from the inertial frame to the body frame, defined as

𝐶𝑅𝑁 =

[
cos𝜓 sin𝜓
− sin𝜓 cos𝜓

]
. (3)

Here, 𝜓 represents the heading angle of the AMR, while the orientation of the human is denoted as 𝜙. Also,
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the relative angle between the AMR and the human in the AMR frame is expressed as 𝛿, and the relative angle
between the AMR and the obstacle within the AMR frame is defined as 𝛾, as shown in Figure 1.

2.2. Enhanced potential field
TheAPF serves as a widely adopted method for robot collision avoidance owing to its mathematical efficiency
and its capability to generate smooth obstacle-avoiding trajectories. This approach comprises two primary
components: attraction and repulsion. An AMR is steered toward its destination by an attractive PF while
being simultaneously pushed away from environmental obstacles through repulsive PFs. Consequently, a net
PF emerges, which is the sum of both attractive and repulsive PFs, influencing the AMR’s motion. The total
potential function, denoted as 𝑄𝑡 governing the PFs, is defined as [23]

𝑄𝑡 (𝑁p𝑚) = 𝑄𝑎 (𝑁p𝑚) +𝑄𝑟 (𝑁p𝑀 ), (4)

where

𝑄𝑎 (𝑁p𝑚) =
1
2
𝑘𝑎𝑑 (𝑁p𝑚 , 𝑁p𝑔)2, (5)

𝑄𝑟 (𝑁p𝑀 ) =


1
2 𝑘𝑟

(
1

𝑑 (𝑁p𝑚,𝑁p𝑜)
− 1

𝑑𝑜

)2
𝑑 (𝑁p𝑚 , 𝑁p𝑔)𝑛𝑔 , if 𝑑 (𝑁p𝑚 , 𝑁p𝑜) ≤ 𝑑𝑜,

0, if 𝑑 (𝑁p𝑚 , 𝑁p𝑜) > 𝑑𝑜 .
(6)

Here, 𝑄𝑎 (𝑁p𝑚) is the attractive potential function, 𝑄𝑟 (𝑁p𝑚) is the repulsive potential function, 𝑘𝑎 and 𝑘𝑟 are
the attractive and repulsive coefficients, respectively, 𝑛𝑔 is the potential order, 𝑑 (a, b) is the distance between
two generic position vectors a and b, and 𝑑𝑜 is the distance of influence. An essential improvement to note
in the presented equation is the inclusion of an additional term 𝑑 (𝑁p𝑚 , 𝑁p𝑔)𝑛𝑔 , which effectively addresses a
well-known issue of the conventional APF known as GNRON [23]. Also, by taking the negative gradient of the
respective terms, the total PF is derived as [23]

f𝑡 (𝑁p𝑚) = f𝑎 (𝑁p𝑚) + f𝑟 (𝑁p𝑚). (7)

Note that the attractive and repulsive PFs are found by

f𝑎 (𝑁p𝑚) = −∇𝑄𝑎 (𝑁p𝑚) = 𝑘𝑎𝑑 (𝑁p𝑚 , 𝑁p𝑔)
𝜕𝑑 (𝑁p𝑚 , 𝑁p𝑔)

𝜕 𝑁pm
, (8)

f𝑟 (𝑁p𝑚) = −∇𝑄𝑟 (𝑁p𝑚) =
{

f𝑟𝑜 (𝑁p𝑚) + f𝑟𝑔 (𝑁p𝑚), if 𝑑 (𝑁p𝑚 , 𝑁p𝑜) ≤ 𝑑𝑜,

0, if 𝑑 (𝑁p𝑟 , 𝑁p𝑜) > 𝑑𝑜,
(9)

where

f𝑟𝑜 (𝑁p𝑚) = −𝑘𝑟
𝑑 (𝑁p𝑚 , 𝑁p𝑔)𝑛𝑔

𝑑 (𝑁p𝑚 , 𝑁p𝑜)2

(
1

𝑑 (𝑁p𝑚 , 𝑁p𝑜)
− 1

𝑑𝑜

)
𝜕𝑑 (𝑁p𝑚 , 𝑁p𝑜)

𝜕 𝑁pm
, (10)

f𝑟𝑔 (𝑁p𝑚) = −1
2
𝑛𝑔𝑘𝑟𝑑 (𝑁p𝑚 , 𝑁p𝑜)𝑛𝑔−1

(
1

𝑑 (𝑁p𝑚 , 𝑁p𝑜)
− 1

𝑑𝑜

)2 𝜕𝑑 (𝑁p𝑚 , 𝑁p𝑔)
𝜕 𝑁pm

. (11)

Note that 𝜕𝑑 (𝑁p𝑚 , 𝑁p𝑔)/𝜕 𝑁pm is the direction from theAMR to the destination position, and 𝜕𝑑 (𝑁p𝑚 , 𝑁p𝑜)/𝜕 𝑁pm
is the direction from the AMR to the obstacle. Nonetheless, a persistent challenge with the APF approach is
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Figure 2. Schematic diagram of FIS.

the occurrence of local minima, particularly when one or more obstacles obstruct the AMR’s path symmetri-
cally. This issue stems from the criteria used to determine the direction of the repulsive PF. To mitigate this
challenge, the following modification is introduced, replacing f𝑟𝑜 (𝑁p𝑟 ) with a new term, as outlined in [23]:

f𝑟𝑒 (𝑁p𝑚) = −𝑘𝑟
𝑑 (𝑁p𝑚 , 𝑁p𝑔)𝑛𝑔

𝑑 (𝑁p𝑚 , 𝑁p𝑜)2

(
1

𝑑 (𝑁p𝑚 , 𝑁p𝑜)
− 1

𝑑𝑜

)
q̂, (12)

where q̂ ∈ R2 is a newly defined repulsive PF direction vector given by

q̂ =
q

| |q| | , (13)

where
q = 𝑅𝑒 (𝑁p𝑜 − 𝑁p𝑚). (14)

Note that 𝑅𝑒 ∈ R2𝑥2 is the rotation matrix given by

𝑅𝑒 =

{
𝑅, if 𝛾 < 0
𝑅T, if 𝛾 ≥ 0

, (15)

where

𝑅 =

[
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

]
. (16)

Here, 𝜃 represents a rotation angle responsible for altering the direction of the repulsive PF.

2.3. Fuzzy inference system
A FIS is an approach that employs a rule base and fuzzy set theory [24] to map inputs to outputs, as shown in
Figure 2. When numerical data is input into the FIS, it undergoes a transformation into fuzzy inputs through
fuzzification. This process involves assigning a degree of membership to each Membership Function (MF)
corresponding to the numeric value. An MF precisely defines the degree to which an input value belongs to
a fuzzy set. It maps input values from a precise domain onto a scale of the degree of membership, mostly
ranging between 0 and 1. This scale indicates how strongly an element is associated with the set, allowing for a
smooth transition between membership and non-membership states. Subsequently, the inference unit derives
outputs based on user-defined rules, typically expressed in linguistic form; for example, ”If Input 1 is Category
1 AND Input 2 is Category 2, then Output is Category 3”. These outputs are associated with varying degrees
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Figure 3. Representation of HAN factors with respect to a human.

of membership within output MFs. Finally, a process called defuzzification is employed to convert these fuzzy
outputs back into numerical outputs. In this study, Mamdani-type FISs [24] are used and are referred to as
FIS. One of the key advantages of FIS-based systems is their capacity to provide explainability, which can be
attributed to the linguistically defined rules and MFs [25].

3. METHODOLOGY
3.1. Human aware navigation
HAN represents the convergence of robot motion planning and human-robot interactions [9]. While the pri-
mary aim of robot motion planning is to guide the robot to its destination, HAN prioritizes AMR’s ability to
minimize stress and prevent harm to humans. Therefore, it can be defined as “navigation of the AMRs based
on human-centered PFs, aiming to minimize discomfort and prevent harm” [19].

Human discomfort stemming from AMRs can arise from various sources, including the robot’s appearance,
unnatural movement, production of discomforting noise, close proximity to humans, and failure to adhere to
cultural norms [9]. Kruse et al. classified discomfort in HAN into three main categories: human comfort, AMR
naturalness, and AMR sociability [9]. Human comfort revolves around ensuring maximum comfort and safety
for humans in the presence of AMRs. Examples include AMRs maintaining a specified distance from humans
at all times and refraining from traversing specific spaces near humans. AMR naturalness entails the robot’s
movement resembling that of humans, such as following smooth trajectories and having a friendly appearance,
thereby enhancing acceptance. AMR sociability implies that the robot should adhere to cultural norms, such
as traveling on a specific side (left/right) of humans depending on the country and overtaking humans along
a certain direction. Among these categories, this work primarily focuses on human comfort concerning AMR
navigation, as the robot’s appearance and noise levels are not significantly related to its navigation. Safety takes
precedence in this context.

This study introduces three important terms in HAN: PR, FV, and BS, as shown in Figure 3. PR signifies that
the AMR must not only maintain a predetermined relative distance from humans at all times but also avoid
collisions with them. BS denotes the region behind the human, where the presence of the AMR may cause
discomfort to humans when traversing. FV represents the region in front of the human where the AMR could
potentially obstruct the human’s path. Consequently, a successful HAN planner must ensure that the AMR
avoids these defined regions.

3.2. Proposed approach: HAN-EPF

http://dx.doi.org/10.20517/ces.2023.34
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3.2.1 Definitions of HAN factors
The primary focus of this study centers on the integration of factors associated with humans into the nav-
igation of the AMR. To streamline collision-free path planning, it is assumed that the relative positions of
humans with respect to the AMR are known, as this information can be obtained through optical or infrared
sensors equipped with perception algorithms. Similarly, the relative position information of obstacles is ob-
tained through lidar sensors. Note that obstacles are represented as a collection of points resembling cloud
points. Data from the sensor, in the form of cloud points, is utilized to outline the boundaries of obstacles
within the sensor’s range. To account for HAN factors related to humans, this work introduces virtual cloud
points surrounding a human. These virtual points are positioned along the perimeters of the HAN factors. To
illustrate the formation of these virtual cloud points, Figure 4 depicts a parametric representation of the HAN
factors in relation to a human, as introduced in the previous section.

The threshold distance for PR can vary considerably, depending on factors such as human age, the type of social
interaction, and cultural norms [26]. However, in this work, PR is treated as a constant 𝛼𝑃𝑅 around the human
center, in alignment with relevant studies [9,12,13]. Furthermore, the dimensions of the BS are defined using 𝛼𝐵𝑆1

and 𝛼𝐵𝑆2 , determined based on survey results [13]. Similarly, the angle and distance parameters for FV (𝛼𝐹𝑉1

and 𝛼𝐹𝑉2) are chosen considering the characteristics of human vision. Beyond a certain limit, known as the
monocular vision area, human vision reduces to approximately one-fifth of normal human vision, leading to
limited 3D perception and difficulty in viewing [27]. It is important to note that the generation of virtual cloud
points for each HAN factor depends on the position and orientation of the human. Consequently, when the
AMRdetects a humanwithin its sensing range, it generates virtual cloud points around the humans, taking into
account the relevant HAN factors. These virtual cloud points for each HAN factor, as illustrated in Figure 4,
are compactly formulated as [

𝑓𝑥
𝑓𝑦

]
= 𝐷 𝑗 Ω 𝑗 , (17)

where 𝑓𝑥 and 𝑓𝑦 are the 𝑥 and 𝑦 coordinates of the virtual cloud point, respectively, 𝐷 𝑗 encompasses the
geometric formulations involving varying 𝛿 angle, and Ω 𝑗 contains the dimensional information for each
HAN factor, denoted as 𝑗 and covering 𝑃𝑅, 𝐵𝑆, and 𝐹𝑉 . Here, Ω 𝑗 for each 𝑗 is defined as Ω𝑃𝑅 = 𝛼𝑃𝑅 ,
Ω𝐵𝑆 =

[
𝛼𝐵𝑆1 0.5𝛼𝐵𝑆2

]T, and Ω𝐹𝑉 = 𝛼𝐹𝑉2, and 𝐷 𝑗 is defined as

𝐷𝑃𝑅 =

[
cos 𝛿
sin 𝛿

]
for 0 ≤ 𝛿 < 2𝜋, (18)

𝐷𝐵𝑆 =



[
0 0
0 0

]
, if 𝛿 < 𝜋

2 or 𝛿 > 3𝜋
2 ,[

− tan(𝛿 − 𝜋/2) 1
0 0

]
, if 𝛿 ≥ 𝜋

2 or 𝛿 < 𝜋
2 + tan−1

(
𝛼𝐵𝑆1

0.5𝛼𝐵𝑆2

)
,[

tan(𝛿 − 𝜋/2) −1
0 0

]
, if 𝛿 > 3𝜋

2 − tan−1
(

𝛼𝐵𝑆1
0.5𝛼𝐵𝑆2

)
or 𝛿 ≤ 3𝜋

2 ,[
0 0
−1 1/tan(𝛿 − 𝜋/2)

]
, if 𝛿 ≥ 𝜋

2 + tan−1
(

𝛼𝐵𝑆1
0.5𝛼𝐵𝑆2

)
or 𝛿 ≤ 3𝜋

2 − tan−1
(

𝛼𝐵𝑆1
0.5𝛼𝐵𝑆2

)
,

(19)
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𝐷𝐹𝑉 =



[
cos 𝛿 sin 𝛿

0 0

]
, if 𝛿 ≤ 𝛼𝐹𝑉1

2 or 𝛿 ≥ 2𝜋 − 𝛼𝐹𝑉1
2 ,[

0 0
0 0

]
, if 𝛼𝐹𝑉1

2 < 𝛿 < 2𝜋 − 𝛼𝐹𝑉1
2 .

(20)

To generate a specific virtual cloud point within the FV region, denoted as ( 𝑓𝑥 , 𝑓𝑦), the parameters Ω𝐹𝑉 and
𝐷𝐹𝑉 are used. Likewise, virtual cloud points for PR and BS are obtained based on the relative angle between
the human and the AMR in the AMR frame.

3.2.2 Formulation of HAN-EPF
To account for human comfort in the AMR’s navigation, an additional repulsive PF term is incorporated into
the total PF. Consequently, the total PF of the HAN-EPF is expressed as

f𝑡 (𝑁p𝑚) = f𝑎 (𝑁p𝑟 ) + f𝑟 (𝑁p𝑚) + fℎ (𝑁p𝑚), (21)

where fℎ (𝑁p𝑚) is the repulsive PF associated with humans, serving as an additional component. The definition
of fℎ (𝑁p𝑚) is as follows:

fℎ (𝑁p𝑚) = fℎ𝑔 (𝑁p𝑚) + fℎ𝑒 (𝑁p𝑚), (22)

where

fℎ𝑔 (𝑁p𝑚) = −1
2
𝑛𝑔𝑘ℎ𝑑 (𝑁p𝑚 , 𝑁p 𝑓 )𝑛𝑔−1

(
1

𝑑 (𝑁p𝑚 , 𝑁p 𝑓 )
− 1

𝑑𝑜

)2
𝜕𝑑 (𝑁p𝑚 , 𝑁p𝑔)

𝜕 𝑁pm
, (23)

fℎ𝑒 (𝑁p𝑚) = −𝑘ℎ
𝑑 (𝑁p𝑚 , 𝑁p𝑔)𝑛𝑔

𝑑 (𝑁p𝑚 , 𝑁p 𝑓 )2

(
1

𝑑 (𝑁p𝑚 , 𝑁p 𝑓 )
− 1

𝑑𝑜

)
q̂. (24)

It is important to note that, at any given time step, only the closest virtual cloud point related to human factors
and the closest obstacle point are considered. For instance, in Figure 5, all the HAN factors are detected in the
left figure. However, the AMR is closer to FV than PR and BS. Hence, only FV is considered when generating
fℎ (𝑁p𝑚). Similarly, the obstacle point that is closer to AMR is used to compute f𝑟 . In the right figure, only BS
is considered among the HAN factors.

TheHAN-EPF contains several unknownparameters, but the dominant factors influencing theAMR’s collision
avoidance behavior are the coefficients 𝑘𝑎 , 𝑘𝑟 , and 𝑘ℎ. As determining proper suitable scaling factors typically
involves trial and error and is a time-consuming process, this study introduced new variables, specifically the
scaling factors 𝜇𝑟 and 𝜇ℎ, to reduce the number of parameters and analyze the AMR’s behavior concerning
changes in those parameters. These variables replace 𝑘𝑟 and 𝑘ℎ and are defined as follows:

𝑘𝑟 =
𝑘𝑎
𝜇𝑟

, (25)

𝑘ℎ =
𝑘𝑎
𝜇ℎ

. (26)

Note that 𝑘𝑟 and 𝑘ℎ are only dependent on the scaling factors once 𝑘𝑎 is fixed. In this work, the scaling factors
𝜇𝑟 and 𝜇ℎ, along with the coefficient 𝑘𝑎 , are determined through the FISs proposed.

3.3. Preliminary study for understanding HAN-EPF
Before designing the FISs for the scaling factors, it is crucial to gain insights into how these scaling factors
influence the AMR’s behavior. This foundational understanding is essential for creating the MFs and rules for
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Figure 4. Virtual cloud points for each HAN factor (left - PR, middle - BS, right - FV).

Figure 5. Illustrations for selecting HAN factors.

the proposed FISs. To achieve this, preliminary simulation studies were conducted to investigate the AMR’s
behavior in terms of its path length and relative distance from obstacles during avoidance maneuvers, with a
focus on changes in the scaling factors. These preliminary results serve as the basis for designing the proposed
FIS and help to establish reasonable ranges for the scaling factors. The simulation parameters introduced in
Section 4 were utilized for these preliminary studies. Note that the coefficient 𝑘𝑎 in the attractive PF was set to
1 to specifically observe how the AMR’s behavior changes with varying 𝜇𝑟 values. The following observations
were made from these preliminary studies. When the value of 𝜇𝑟 decreases beyond a certain value, the AMR’s
position starts to oscillate, as illustrated in Figure 6 (left). This oscillation occurs because the AMR traverses
the boundary of the obstacle’s distance of influence (𝑑𝑜). On the other hand, increasing 𝜇𝑟 beyond a certain
value causes the AMR to collide with the obstacle, as shown in Figure 6 (right). A threshold distance of 0.5 m
was assumed to indicate a physical collision.

Due to the dominant attractive PF compared to the repulsive PF, the AMR is not effectively repelled from the
obstacle. Consequently, when 𝜇𝑟 is high, the AMR travels closer to the obstacle, while a low 𝜇𝑟 results in a
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Figure 6. AMR’s trajectory with very small 𝜇𝑟 (left) and relative distance between the AMR and the obstacle with very high 𝜇𝑟 (right).

longer path for the AMR, as shown in Figure 7.

It is noteworthy that the appropriate range for 𝜇𝑟 was found to be between 0.01 and 55, where neither collisions
nor oscillations occurred. These preliminary simulations maintained 𝑘𝑎 at 1 and the fixed distance of influence
(𝑑𝑜) at 25 m, reflecting typical lidar sensor sensing ranges. In addition, these analysis results can be applied to
the scaling factor 𝜇ℎ for humans, employing the same scaling factor range.

3.4. FIS design
This study employs three FISs to determine the coefficient 𝑘𝑎 and scaling factors 𝜇𝑟 and 𝜇ℎ. The first step in
designing these FISs involves defining the appropriate inputs and outputs for each FIS.The structure of the FISs
considered in this work is illustrated in Figure 8. For FIS 1, which determines the coefficient 𝑘𝑎 (the output
of the FIS 1), two inputs are selected: the relative distance between the AMR and the destination position
and the relative distance between the AMR and either the obstacle or the human (whichever is closer). This
choice is made because the magnitude of the attractive PF is closely tied to the AMR’s motion toward the
goal position. FIS 2 is responsible for determining the scaling factor 𝜇𝑟 , which governs the repulsive PF for
obstacle avoidance. The inputs selected for FIS 2 include the relative distance of the AMR from the obstacle
and the relative angle between the AMR’s heading and the direction to the obstacle. These inputs are chosen
to appropriately determine 𝜇𝑟 in relation to obstacle avoidance. FIS 3 derives the scaling factor 𝜇ℎ, which is
associated with interactions involving humans. The inputs for FIS 3 consist of the relative distance between
the AMR and the human and the relative velocity of the AMR in relation to the human. These inputs are used
to determine 𝜇ℎ, which, in turn, influences the repulsive PF concerning human interactions.

For each input and output of the FISs, three MFs are considered, which are Low, Medium, and High. In
particular, this work considers two sets of the MFs, as shown in Figure 9. The first set of the MFs in Figure 9
(left) is used for the inputs of all three FISs. These MFs normalize input numeric values within the range of
0 to 1. This normalization allows the FISs to be applicable across different environments and AMR velocities,
provided that the maximum values are known. For FIS 1, the output uses the first set of MFs. On the other
hand, the outputs of FIS 2 and FIS 3 use the second set of MFs defined in Figure 9 (right). The range of these
output MFs, ranging from 0.01 to 55, is determined based on the preliminary studies described in the previous
section.

The next step in designing the FISs is to build the rules that define the relationship between the inputs and
outputs for each FIS, aiming to achieve the desired behavior of the AMR. As stated previously, FIS 1 determines
the magnitude of the attractive PF. For example, if the AMR is in close proximity to obstacles or humans while

http://dx.doi.org/10.20517/ces.2023.34


Page 12 of 21 Sampathkumar et al. Complex Eng Syst 2024;4:3 I http://dx.doi.org/10.20517/ces.2023.34

Figure 7. Minimum relative distance and the travel distance with respect to the scaling factor.

Figure 8. Structure of each FIS.

Figure 9. Two sets of the MFs considered.

being far from the goal position, it is desirable for theAMR to generate a smaller attractive PF than the repulsive
one to avoid collisions, even if the relative distance to the goal is large. Conversely, if the AMR is far from both
the destination and obstacles, it should generate a large attractive PF, which corresponds to a large value of 𝑘𝑎 .
Based on knowledge of the desired behavior of the AMR, the rules for FIS 1 are defined as shown in Table 2.
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The next step in designing the FISs is to establish the rules for FIS 2, which determines 𝜇𝑟 and, consequently,
𝑘𝑟 for the obstacle-associated repulsive PF. In contrast to FIS 1, FIS 2 takes into account the relative angle
between the AMR and the obstacle. When the AMR is in close proximity to the obstacle and the relative angle
is small, the AMR should generate a strong repulsive PF because a small relative angle indicates that the AMR
is approaching the obstacle head-on. Consequently, 𝜇𝑟 should be set to “Low”, resulting in a high value of 𝑘𝑟 .
The rules for FIS 2 are defined in Table 3 based on the desired avoidance maneuvers of the AMR.

Similar to FIS 2, FIS 3’s rule matrix is designed to govern the desired avoidance maneuver of the AMR with
respect to humans. For instance, when the AMR is in close proximity to a human and the relative velocity is
high, a significant repulsive PF is needed. In such a case, where the human is approaching the AMR’s direction,
the AMR should have the capability to maneuver without violating HAN rules. This significant repulsive PF
can be generated by setting 𝜇ℎ to a small value. The rule matrix for FIS 3 is defined based on the AMR’s motion
concerning the input values, as shown in Table 4.

The entire process is summarized in the flowchart, as shown in Figure 10. Initially, once the parameters are
defined, the human positional information is utilized to generate the virtual cloud points. Concurrently, the
parameters used in the calculations concerning the AMR frame are inputted into the FIS to derive the outputs:
𝑘𝑎 , 𝜇𝑟 , and 𝜇ℎ. These resulting outputs, alongwith the virtual cloud points, are then fed into the EPF framework
to calculate the total PF exerted on the AMR.

4. SIMULATION STUDIES
To validate the effectiveness and the performance of the proposed approach, simulation studies are performed,
considering different environments using the parameters listed in Table 5.

To make the simulation realistic, the maximum human velocity is limited to 1.2 m/s, which is the preferred
walking speed of humans [28]. In addition, in all scenarios, a threshold distance of 0.5m is maintained between
the AMR and obstacles or virtual cloud points. Crossing this threshold is considered a collision. This work
considers three scenarios in the simulation studies. In Scenario 1, the AMR encounters three well-known
issues sequentially: local minima, GNRON, and a moving human at distinct time steps. Scenario 2 takes into
consideration a complex environment where the AMR encounters both obstacles and humans. Scenario 3
mimics a crowded real-life environment, such as an airport, where the AMR needs to navigate amidst many
humans and obstacles, similar to a real-world infrastructure.

4.1. Scenario 1
In this scenario, theAMRmaneuvers in an environment designed to introduce challenges such as localminima,
GNRON, and the presence of a moving human. The environment includes a circular obstacle placed to block
the AMR’s head-on, causing a local minima issue, and a rectangular obstacle positioned near the destination
position to create a GNRON issue. The parameters for the position information of the AMR and human are
listed in Table 6.

Figure 11 (left) shows the AMR’s trajectory in Scenario 1, demonstrating that the AMR adaptively avoids both
the obstacle and the human during its travel. Also, Figure 11 (right) provides a visual representation of the
scenario, highlighting that the AMR successfully maintains a relative distance greater than the collision thresh-
old value of 0.5 m from both obstacles and the human. The closest relative distance between the AMR and
the obstacle (purple dot) is 1.6 m, while the closest distance to the virtual cloud points (red dot) is 1.07 m.
Furthermore, Figure 12 shows a close-up view of the AMR’s interaction with the human. At 41 s, the AMR
starts a maneuver when it encounters the human. Notably, the closest virtual cloud point corresponds to the
FV, and based on the relative angle 𝛿, the AMR navigates towards the back of the human. At 42 s and 44 s,
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Table 2. Rule matrix for FIS 1

𝒌𝒂
Relative distance to the goal

LOW MEDIUM HIGH

LOW Medium Medium Low
Relative distance to the obstacle MEDIUM Medium Medium High

HIGH High High High

Table 3. Rule matrix for FIS 2

𝝁𝒓
Relative distance to the obstacle

LOW MEDIUM HIGH

LOW Low Low Low
Relative angle to obstacle MEDIUM Low Medium Medium

HIGH High High High

Table 4. Rule matrix for FIS 3

𝝁𝒉
Relative distance to the virtual cloud point

LOW MEDIUM HIGH

LOW Low Low Low
Relative velocity to human MEDIUM Low Medium Medium

HIGH High High High

after navigating away from FV, the AMR successfully avoids PR and BS, respectively. Hence, throughout the
simulation, the AMR reaches the destination position while avoiding the human and navigating safely without
violating any HAN rules.

4.2. Scenario 2
Scenario 2 presents a more complex environment compared to Scenario 1, involving obstacles and moving
humans. This environment consists of two humans, one inmotion and the other rotating to change gaze, along
with three obstacles. The parameters related to the positions of the AMR and human are given in Table 7.

Figure 13 displays the trajectory traveled by the AMR in Scenario 2. Despite facing two humans simultaneously
near a static obstacle, the AMR adeptly navigates through this complex situation. Following this maneuver,
the AMR safely reaches its destination while avoiding two static obstacles. Figure 13 (right) provides a visual
representation of the relative distance between the AMR, obstacles, and humans. It can be observed that the
closest relative distance between the AMR and the obstacles and the virtual cloud points are 1.15 and 1.06
m, respectively, both exceeding the collision threshold distance. Consequently, no collision occurs during the
maneuver.

Figure 14 (top left) depicts the initial encounter between the AMR and human-1, who starts to rotate the AMR
approaches. The AMR spends a significant portion of time navigating close to the FV of human-1, primarily
because of the continuous rotation of their gaze. In response, the AMR adjusts its path, avoiding human-1
and subsequently encountering a rectangular obstacle near 58 s, as shown in Figure 14 (top right). When
encountering the rectangular static obstacle, the robot prioritizes avoiding collision with it. Depending on the
relative angle, the robot adjusts its navigation towards the right to circumvent the obstacle. Around 60 s, as
shown in Figure 14 (bottom left), the AMR approaches a moving human and successfully navigates to the right
side of the human, even though the human is moving toward the AMR. Note that the closest relative distance
between the AMR and human-2 is highlighted by a red dot in Figure 13 (right), which occurs near the FV of
human-2. Finally, at 70 s, as shown in Figure 14 (bottom right), the AMR bypasses human-2 and proceeds
toward its destination, encountering both the rectangular obstacle and the circular obstacle along the way.
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Table 5. Simulation parameters for the proposed HAN-EPF approach

Description Value (unit)

Time interval, Δ𝑡 0.1 (s)
Order of potential, 𝑛𝑔 2
Distance of influence, 𝑑𝑜 25 (m)
Collision threshold distance 0.5 (m)
Repulsive field rotational angle, 𝜃 45 (deg)
Sensing range 25 (m)
Maximum AMR velocity 1 (m/s)
Maximum human velocity 1.2 (m/s)
Proxemics range, 𝛼𝑃𝑅 4 (m)
Back space range, 𝛼𝐵𝑆1 5 (m)
Back space width, 𝛼𝐵𝑆2 2.4 (m)
Field of view angle, 𝛼𝐹𝑉1 120 (deg)
Field of view range, 𝛼𝐹𝑉2 6 (m)

Table 6. Simulation parameters - Scenario 1

Description Value (unit)

AMR start position
[
90 160

]T
(m)

AMR destination position
[
90 40

]T
(m)

Human start position
[
47 34

]T
(m)

Table 7. Simulation parameters - Scenario 2

Description Value (unit)

AMR start position
[
10 110

]T
(m)

AMR destination position
[
110 10

]T
(m)

Human-1 start position
[
38 79

]T
(m)

Human-2 start position
[
100 57

]T
(m)

Table 8. Simulation parameters - Scenario 3

Description Value (unit)

AMR start position
[
20 10

]T
(m)

AMR destination position
[
5 65

]T
(m)

Human-1 start position
[
55 40

]T
(m)

Human-2 start position
[
60 70

]T
(m)

Human-3 start position
[
30 58

]T
(m)

Human-4 start position
[
12.5 5

]T
(m)

Human-5 start position
[
10 50

]T
(m)

Human-6 start position
[
62.5 15

]T
(m)

Table 9. Closest relative distance from the AMR to humans and obstacles for each scenario

Scenario Closest distance to human (m) Closest distance to obstacles (m)

Scenario 1 1.07 1.6
Scenario 2 1.06 1.15
Scenario 3 0.55 0.89

4.3. Scenario 3
Scenario 3 considers a more realistic environment, resembling an airport setting with various humans and
infrastructure-like obstacles. Circular obstacle-1 and circular obstacle-2 can be envisioned as pillars in an
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Figure 10. Overall procedure of the proposed approach.

Figure 11. AMR’s trajectory and relative distance from the AMR to obstacles and humans (Scenario 1).

Figure 12. AMR’s trajectories near humans (Scenario 1): (left) 41 s, (middle) 42 s, and (right) 44 s.

airport hallway, with humans following the convention of moving along the right side. In addition, there are
two rectangular obstacles that represent passenger waiting regions. The simulation includes six human agents,
and their positions are listed in Table 8.

From Figure 15 (right), one can observe that throughout the simulation, the AMR never crosses the collision
threshold. The minimum relative distance between the AMR and obstacles, as well as the virtual cloud points
around humans, are 0.89 m and 0.55 m, respectively. Figure 16 (top left) shows the initial encounter between
the AMR and human-1, where the AMR maneuvers to the right at 10.5 s. However, it becomes evident that
human-1 is moving faster than the AMR at 14.5 s, as shown in Figure 16 (top right). Consequently, the AMR
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Figure 13. AMR’s trajectory and relative distance from the AMR to obstacles and humans (Scenario 2).

Figure 14. AMR’s trajectories near obstacles and humans (Scenario 2): (top left) 42 s, (top right) 58 s, (bottom left) 65 s, and (bottom
right) 70 s).

stops and maneuvers to the left to avoid a collision at 20 s, as shown in Figure 16 (middle left). Subsequently,
the AMR prioritizes steering away from pillar-1 by choosing to navigate toward the left side. At around 35 s,
the AMR faces human-2, who moves into its path and gazes in the AMR’s direction, as shown in Figure 16
(middle right). The AMR successfully navigates the gap between FV of human-2 and the circular obstacle-1
during this maneuver, as depicted in Figure 16 (bottom left). Since the gap is small, the closest relative distance
occurs during this maneuver of the AMR when the AMR encounters the FV of human-2. At 45 s, the AMR
steers clear of human-2, as shown in Figure 16 (bottom left), and Figure 16 (bottom right) shows that at 65 s,
it encounters human-3, who is moving in the same direction as the AMR but at a slower pace. Consequently,
the AMR overtakes human-3 and reaches its destination. Note that human-4, located near the destination,
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Figure 15. AMR’s trajectory and relative distance from the AMR to obstacles and humans (Scenario 3).

presents a situation similar to GNRON.

To summarize the findings of the simulation study, the closest relative distances from the AMR to humans and
obstacles obtained are tabulated in Table 9. Upon comparing various scenarios, it is observed that the relative
distance from the AMR to humans is smaller than the distance from the AMR to obstacles. Since humans
are moving, unlike static obstacles, during the operation of the AMR, there is a high possibility that the AMR
navigates around humans closely. Furthermore, it is observed that the AMR comes closest to both humans
and obstacles in Scenario 3 compared to the others. These results are natural as the AMR must navigate in a
complex environment, dealing with dynamically moving humans and multiple static obstacles. Despite these
challenges, it is noteworthy that in all scenarios, the AMR adeptly navigates to the destination position without
violating any HAN constraints.

5. CONCLUSIONS
In this study, the authors introduce a HAN approach for AMRs through the integration of an EPF framework,
referred to as HAN-EPF.TheHAN-EPFmethod is designed by incorporating a repulsive PF that considers the
impact of social constraints on human comfort during navigation. The concept of virtual cloud points is intro-
duced when the AMR detects a human presence, effectively addressing these social constraints and ensuring
safe and respectful interactions with humans. To simplify parameter selection, the coefficients of the repul-
sive PF are redefined in terms of the coefficient of the attractive PF and analyzed based on minimum relative
distances and travel distances. Three FISs are employed to adaptively determine these redefined coefficients,
guided by the design of MFs and rules based on analysis results. The approach’s validation through simulation
studies in diverse scenarios demonstrates effective AMR navigation, adherence to HAN rules, and avoidance
of collisions with obstacles. Summarizing the important contributions of this work:

• Introducing the EPF as a foundational method for path planning, considering human factors, specifically
PR, BS, and FV.

• Designing the FISs for the determination of the EPF’s coefficients, assisting the AMR in successfully navi-
gating in a human-populated environment that undergoes continuous changes.

In the future, the integration of a global planner alongside HAN-EPF as a local planner will be considered.
This exploration involves testing this combined setup in environments characterized by an increased number
of static obstacles.

Additionally, future plans involve delving into parameter optimization for the developed FISs using learning
capabilities offered by optimization algorithms to achieve optimal routes for AMRs while adhering to the
principles of the HAN framework.
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Figure 16. AMR’s trajectories near obstacles and humans (Scenario 3): (top left) 10.5 s, (top right) 14.5 s, (middle left) 20 s, (middle right)
35 s, (bottom left) 45 s, and (bottom right) 65 s.

DECLARATIONS
Authors’ contributions
Made substantial contributions to the conceptualization, methodology, and analysis: Sampathkumar SK, Choi
D, Kim D
Contributed to approach validation, software simulation, and writing - original draft preparation: Sampathku-
mar SK, Choi D
Contributed to the investigation, supervision, and writing - review and preparation: Kim D

Availability of data and materials
Not applicable.

Financial support and sponsorship
None.

http://dx.doi.org/10.20517/ces.2023.34


Page 20 of 21 Sampathkumar et al. Complex Eng Syst 2024;4:3 I http://dx.doi.org/10.20517/ces.2023.34

Conflicts of interest
All authors declared that there are no conflicts of interest.

Ethical approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Copyright
©The Author(s) 2024.

REFERENCES
1. Robertson N. The future of teaching? Asimov’s three laws and the hypothetical robot teacher. PRISM J 2022;4:29-40. DOI
2. Butler JT, Agah A. Psychological effects of behavior patterns of a mobile personal robot. Auton Robot 2001;10:185-202. DOI
3. Fragapane G, Hvolby HH, Sgarbossa F, Strandhagen JO. Autonomous mobile robots in hospital logistics. In: IFIP international conference

on advances in production management systems. Cham: Springer; 2020. pp. 672-79. DOI
4. Guo P, Shi H, Wang S, Tang L, Wang Z. An ROS architecture for autonomous mobile robots with UCAR platforms in smart restaurants.

Machines 2022;10:844. DOI
5. Hasan OA, Alhakeem ZM, Armash MK, et al. Designing smart restaurant for reopening during the relaxation of lockdown in the time

of corona pandemic. In: 2022 5th international conference on information and communications technology (ICOIACT), Yogyakarta,
Indonesia; 2022. pp. 301-6. DOI

6. Wang J, Meng MQH. Path planning for nonholonomic multiple mobile robot system with applications to robotic autonomous luggage
trolley collection at airports. In: 2020 IEEE/RSJ international conference on intelligent robots and systems (IROS), Las Vegas, NV, USA;
2020. pp. 2726-33. DOI

7. Tran HT, Vo TC, Nguyen QNA, et al. A novel design of a smart interactive guiding robot for busy airports. Int J Smart Sens Intell Syst
2022;15. DOI

8. Cheng L, Zhao N, Wu K, Chen Z. The multi-trip autonomous mobile robot scheduling problem with time windows in a stochastic
environment at smart hospitals. Appl Sci 2023;13:9879. DOI

9. Kruse T, Pandey AK, Alami R, Kirsch A. Human-aware robot navigation: a survey. Robot Auton Syst 2013;61:1726-43. DOI
10. Nonaka S, Inoue K, Arai T, Mae Y. Evaluation of human sense of security for coexisting robots using virtual reality - 1st report: evaluation

of pick and place motion of humanoid robots. In: IEEE international conference on robotics and automation, New Orleans, LA, USA;
2004. pp. 2770-75. DOI

11. Xin L. Dynamic path planning of multiple mobile robots. 2007. pp. 1-140. Available from: http://scholarbank.nus.edu.sg/handle/10635/
13405 [Last accessed on 27 Dec 2023].

12. Mateus A, Ribeiro D,Miraldo P, Nascimento JC. Efficient and robust pedestrian detection using deep learning for human-aware navigation.
Robot Auton Syst 2019;113:23-37. DOI

13. Bruckschen L, Bungert K, Dengler N, Bennewitz M. Human-aware robot navigation by long-term movement prediction. In: 2020
IEEE/RSJ international conference on intelligent robots and systems (IROS), Las Vegas, NV, USA; 2020. pp. 11032-37. DOI

14. Hansen ST, Svenstrup M, Andersen HJ, Bak T. Adaptive human aware navigation based on motion pattern analysis. In: RO-MAN
2009-The 18th IEEE international symposium on robot and human interactive communication, Toyama, Japan; 2009. pp. 927-32. DOI

15. Ah Sen N, Carreno-Medrano P, Kulić D. Human-aware subgoal generation in crowded indoor environments. In: Lecture notes in computer
science. Cham: Springer; 2022. pp. 50-60. DOI

16. Korkmaz M. Human-aware dynamic path planning. In: 2021 international conference on INnovations in intelligent sysTems and applica-
tions (INISTA), Kocaeli, Turkey; 2021. pp. 1-5. DOI

17. Kollmitz M, Hsiao K, Gaa J, Burgard W. Time dependent planning on a layered social cost map for human-aware robot navigation. In:
2015 European conference on mobile robots (ECMR), Lincoln, UK; 2015. pp. 1-6. DOI

18. Briamonte A. Human-aware robot navigation around groups in narrow spaces. 2020. pp. 1-80. Available from: http://kth.diva-portal.org/
smash/record.jsf?pid=diva2%3A1470222&dswid=-8798 [Last accessed on 27 Dec 2023].

19. Sampathkumar SK, Chhabra A, Choi D, Kim D. Optimization of artificial potential field using genetic algorithm for human-aware
navigation of autonomous mobile robots. In: North American fuzzy information processing society annual conference. Cham: Springer;
2023. pp. 160-71. DOI

20. Zhang Y, Li Ll, Lin HC, Ma Z, Zhao J. Development of path planning approach using improved A-star algorithm in AGV system. J Int
Technol 2019;20:915-24. Available from: https://jit.ndhu.edu.tw/article/view/2069 [Last accessed on 27 Dec 2023].

21. Kirby R, Simmons R, Forlizzi J. COMPANION: a constraint-optimizing method for person-acceptable navigation. In: RO-MAN 2009 -
The 18th IEEE international symposium on robot and human interactive communication, Toyama, Japan; 2009. pp. 607-12. DOI

22. Khatib O. Real-time obstacle avoidance for manipulators and mobile robots. Int J Robot Res 1986;5:90-8. DOI

http://dx.doi.org/10.20517/ces.2023.34
https://doi.org/10.24377/prism.ljmu.0401214
https://doi.org/10.1023/A:1008986004181
https://doi.org/10.1007/978-3-030-57993-7_76
https://doi.org/10.3390/machines10100844
http://dx.doi.org/10.1109/ICOIACT55506.2022.9972084
http://dx.doi.org/10.1109/IROS45743.2020.9341403
http://dx.doi.org/10.2478/ijssis-2022-0017
http://dx.doi.org/10.3390/app13179879
http://dx.doi.org/10.1016/j.robot.2013.05.007
http://dx.doi.org/10.1109/ROBOT.2004.1307480
http://scholarbank.nus.edu.sg/handle/10635/13405
http://scholarbank.nus.edu.sg/handle/10635/13405
http://dx.doi.org/10.1016/j.robot.2018.12.007
http://dx.doi.org/10.1109/IROS45743.2020.9340776
http://dx.doi.org/10.1109/ROMAN.2009.5326212
http://dx.doi.org/10.1007/978-3-031-24667-8_5
http://dx.doi.org/10.1109/INISTA52262.2021.9548618
http://dx.doi.org/10.1109/ECMR.2015.7324184
http://kth.diva-portal.org/smash/record.jsf?pid=diva2%3A1470222&dswid=-8798
http://kth.diva-portal.org/smash/record.jsf?pid=diva2%3A1470222&dswid=-8798
http://dx.doi.org/10.1007/978-3-031-46778-3_15
https://jit.ndhu.edu.tw/article/view/2069
http://dx.doi.org/10.1109/ROMAN.2009.5326271
http://dx.doi.org/10.1109/ROBOT.1985.1087247


Sampathkumar et al. Complex Eng Syst 2024;4:3 I http://dx.doi.org/10.20517/ces.2023.34 Page 21 of 21

23. Choi D, Kim D, Lee K. Enhanced potential field-based collision avoidance in cluttered three-dimensional urban environments. Appl Sci
2021;11:11003. DOI

24. Mamdani EH. Application of fuzzy algorithms for control of simple dynamic plant. IET 1974;121:1585–88. DOI
25. Choi D, Chhabra A, Kim D. Collision avoidance of unmanned aerial vehicles using fuzzy inference system-aided enhanced potential field.

Reston, VA: AIAA; 2022. p. 0272. DOI
26. Rios-Martinez J, Spalanzani A, Laugier C. From proxemics theory to socially-aware navigation: a survey. Int J Soc Robot 2015;7:137-53.

DOI
27. Wheelwright B, Sulai Y, Geng Y, et al. Field of view: not just a number. In: Digital optics for immersive displays, Strasbourg, France;

2018. DOI
28. Shaganan T, Liu R, Yuen C, et al. Follow a human using a mobile robot regardless of the walking speed. In: 2018 3rd international

conference on advanced robotics and mechatronics (ICARM), Singapore; 2018. pp. 351-56. DOI

http://dx.doi.org/10.20517/ces.2023.34
http://dx.doi.org/10.3390/app112211003
http://dx.doi.org/10.1049/piee.1974.0328
http://dx.doi.org/10.2514/6.2022-0272
http://dx.doi.org/10.1007/s12369-014-0251-1
http://dx.doi.org/10.1117/12.2307303
http://dx.doi.org/10.1109/ICARM.2018.8610666

	1. Introduction
	2. Preliminaries
	2.1. Definition of frames and states
	2.2. Enhanced potential field
	2.3. Fuzzy inference system

	3. Methodology
	3.1. Human aware navigation
	3.2. Proposed approach: HAN-EPF
	3.2.1 Definitions of HAN factors
	3.2.2 Formulation of HAN-EPF

	3.3. Preliminary study for understanding HAN-EPF
	3.4. FIS design

	4. Simulation studies
	4.1. Scenario 1
	4.2. Scenario 2
	4.3. Scenario 3

	5. Conclusions
	Declarations
	Authors’ contributions
	Availability of data and materials
	Financial support and sponsorship
	Conflicts of interest
	Ethical approval and consent to participate
	Consent for publication
	Copyright


