
Roy et al. Art Int Surg 2024;4:427-34
DOI: 10.20517/ais.2024.69

Artificial 
Intelligence Surgery

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 
International License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, sharing, 
adaptation, distribution and reproduction in any medium or format, for any purpose, even commercially, as 

long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and 
indicate if changes were made.

www.oaepublish.com/ais

Open AccessCommentary

Clinical deployment of machine learning models in
craniofacial surgery: considerations for adoption
and implementation
Mélissa Roy1 , Russell R. Reid2, Senthujan Senkaiahliyan3, Andrea S. Doria4,5, John H. Phillips3, Michael
Brudno6,7,8,9, Devin Singh10

1Division of Plastic, Department of Surgery, McMaster University, Hamilton L8S 4L8, Canada.
2Section of Plastic Surgery, Department of Surgery, University of Chicago, Chicago, IL 60637, USA.
3Division of Plastic, Reconstructive and Aesthetic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada.
4Department of Medical Imaging, University of Toronto, Toronto M5T 1W7, Canada.
5Department of Diagnostic Imaging, Research Institute, The Hospital for Sick Children, Toronto M5G 1E8, Canada.
6Department of Computer Science, University of Toronto, Toronto M5S 2E4, Canada.
7Vector Institute, Toronto M5G 1M1, Canada.
8Digital Team and Techna Institute, University Health Network, Toronto M5G 2C4, Canada.
9Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto M5G 0A4, Canada.
10Department of Paediatrics, The Hospital for Sick Children, Toronto M5G 1X8, Canada.

Correspondence to: Dr. Devin Singh, Department of Paediatrics, The Hospital for Sick Children, 555 University Avenue, Toronto
M5G 1X8, Canada. E-mail: devin.singh@sickkids.ca

How to cite this article: Roy M, Reid RR, Senkaiahliyan S, Doria AS, Phillips JH, Brudno M, Singh D. Clinical deployment of 
machine learning models in craniofacial surgery: considerations for adoption and implementation. Art Int Surg 2024;4:427-34. 
https://dx.doi.org/10.20517/ais.2024.69

Received: 16 Aug 2024  First Decision: 24 Sep 2024  Revised: 11 Nov 2024  Accepted: 14 Nov 2024  Published: 13 Dec 2024

Academic Editors: Ernest S. Chiu, Andrew A. Gumbs  Copy Editor: Pei-Yun Wang  Production Editor: Pei-Yun Wang

Abstract
The volume and complexity of clinical data are growing rapidly. The potential for artificial intelligence (AI) and 
machine learning (ML) to significantly impact plastic and craniofacial surgery is immense. This manuscript reviews 
the overall landscape of AI in craniofacial surgery, highlighting the scarcity of prospective and clinically translated 
models. It examines the numerous clinical promises and challenges associated with AI, such as the lack of robust 
legislation and structured frameworks for its integration into medicine. Clinical translation considerations are 
discussed, including the importance of ensuring clinical utility for real-world use. Finally, this commentary brings 
forward how clinicians can build trust and sustainability toward model-driven clinical care.
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SURGERY: CONSIDERATIONS FOR ADOPTION AND IMPLEMENTATION
The volume and complexity of clinical data are growing rapidly across all fields of medicine. In parallel, 
computational power is expanding and becoming more accessible, while human resources continue to 
remain relatively stagnant and limited in healthcare[1]. It has been predicted that artificial intelligence (AI) 
and machine learning (ML) will be ubiquitous in future clinical care[1]. Significant areas of interest that 
could revolutionize care include processing of electronic health record data, image classification, and 
identification of medical errors[2,3]. The promising appeal to incorporate AI into clinical practice must be 
contextualized, and the intrinsic limitations to the use of ML algorithms acknowledged. Clinical translation 
of ML tools and prospective validation articles are scarce to date and a new set of considerations for 
adoption and implementation have been unveiled. This article reviews the current ML landscape in 
craniofacial surgery and highlights promises, challenges, and considerations for successful clinical 
translation.

Current landscape of ML in craniofacial surgery
The role of ML and AI in craniofacial surgery has previously been thoroughly reviewed[4-9]. In a scoping 
review by Mak et al. (2020), the authors identified numerous craniofacial-based studies developing ML 
models[4]. ML is particularly relevant to craniofacial surgery as it is a specialty that: (1) relies on imaging for 
diagnostic purposes; (2) uses standardized and universal anatomical landmarks (soft tissue and bony); (3) 
benefits from three-dimensional planning and surgical navigation; and (4) has variable outcomes and 
benefits from risk prediction[9]. Thus far, published craniofacial surgery studies using AI have been 
experimental and theoretical in nature, mostly relying on retrospective datasets with very limited sample 
sizes and generally single-centered.

Cleft surgery
The potential benefit of integrating AI into cleft care spans numerous facets of clinical care due to the varied 
presentations (from cleft lip to velopharyngeal insufficiency and dentoalveolar discrepancies) and evolution 
over patients’ growth and development. A scoping review identified previously explored areas for 
implementation of AI in cleft care[10]: prediction of risk of developing cleft lip or palate, diagnosis (prenatal 
cleft presence), severity of morphological deformities of nose[11], speech evaluation (presence of 
hypernasality, assessment of intelligibility)[12], surgical planning (estimation of volumetric defect of alveolar 
cleft), prediction of need for orthognathic surgery, and more.

Orthognathic surgery
Orthognathic surgery lands itself well to be augmented by AI, although few studies have been published 
thus far. A review of possible applications demonstrated areas of interest for future studies, including[13]: 
complex diagnoses (superimposing numerous diagnostic tools for measurement of upper airways and 
management of obstructive sleep apnea), common diagnoses (lateral cephalogram review), treatment 
planning (taking into account the symbiotic relationship with orthodontic changes), creation of custom 
dental appliances, and much more. An early study (2019) within the field of orthognathic surgery proposed 
a proof of concept that AI (specifically convolutional neural networks) can be used in order to score facial 
attractiveness and apparent age in orthognathic surgery patients[14]. Assistance in diagnosis and surgical 
planning has also been proposed using CT scan images and comparing discrepancies in cephalometric 
measures between the AI-generated plan and the postoperative images[15].

Craniosynostosis and head shape difference
Head shape differences are ubiquitous, and the rarity of craniosynostosis and the clinical ramifications of 
later diagnosis generate huge diagnostic importance, which can be aided by AI. A review from 2023 
explored the existing literature on the topic, highlighting that most studies thus far have used two-
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dimensional photographs for model building in which image orientation had a large impact on outcome[16]. 
A team at the Hospital for Sick Children, Toronto, is also developing a model compatible with three-
dimensional photographic analysis for diagnostic purposes and is validating it into a mobile capture for 
widespread use and patient empowerment[17].

Craniofacial trauma
The detection of facial trauma on imaging has been an area of interest for the introduction of AI[18]. Overall 
performance of models being developed, such as the DeepCT, has been excellent with high reported 
sensitivity (89%) and specificity (95%) while using two-dimensional models with CT scan images[19]. 
Detection of facial fractures using three-dimensional images is also being explored within the biotechnology 
literature[20]. Various models have been used, including CNNs and deep learning systems using a one-stage 
detection called you only look once (YOLO)[18,21,22].

Facial reanimation
Thus far, AI represents a great promise of revolutionizing outcomes assessment for facial reanimation. 
Traditionally, researchers and surgeons have used static images of smile commissure excursion using 
various tools to provide an outcome assessment[23]. With the use of ML technology, facial expression 
tracking and, therefore, dynamic facial assessment are becoming possible. Video analysis of cross-facial 
nerve graft (CFNG) and free gracilis muscle patients took place in a proof of concept study by Boonipat 
et al.[24]. This methodology enabled the authors to analyze symmetry, excursion, and overall facial 
movements via the review of more than 500 facial landmarks. Another aspect of facial reanimation surgery 
that has remained difficult to capture with existing outcome measures includes smile spontaneity. 
Dusseldorp et al. compared controls with patients having undergone CFNG, masseter nerve coaptation, and 
dual innervation to assess the feasibility of using such a tool to review spontaneity[25]. Although promising 
innovative outcomes analyses are being developed, the surgical reconstruction of facial palsy focuses on the 
lower face and smile, whereas AI technology considers the face as a whole.

Clinical promises
To many clinicians, AI represents a new technological advancement that can revolutionize their practice, 
yet also a poorly understood and intimidating one. Such paradoxical perceptions of AI can be explained by 
the power that is inherent to it and the often lack of transparency behind its use on our electronic devices, 
social media, and more. Transparency, safety, and methodological rigor are central to evidence-based 
medicine and can be enabled with established reporting standards tools. A new initiative, the MINimum 
Information for Medical AI Reporting (MINIMAR), proposes such reporting standards[2]. MINIMAR 
highlights four fundamental areas of transparency and reporting: (1) study population and setting; (2) 
patient demographic characteristics; (3) model architecture; and (4) model evaluation. This concept is 
further explored by research done by Sendak et al. with the “Model Facts” label[26]. To maximize the effective 
and positive implementation of an AI model, adherence to such standards of reporting is highly 
recommended.

Some of the highly anticipated promises of AI are centered around the optimization of patient-centered care 
and outcomes. The hope is that detailed and precise ML algorithms can help enhance a clinician’s 
diagnostic, management, and prognostic capabilities, as well as monitor and decrease medical errors. AI 
may also allow patients to have a sense of improved ownership of their data and empower them with the 
ability to interpret their health information[1]. Such optimization of care would have a system-level impact 
and could allow for more efficient workflow, better resource allocation, and improved clinical outcomes, to 
name a few[1].
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Clinical challenges
Some of the most feared consequences of AI are the potential for patient harm and the increased 
accountability for clinicians. At baseline, introducing new technology into the medical field requires close 
monitoring and auditing. In the case of AI, a flawed algorithm can lead to the dissemination of iatrogenic 
harm, medical errors, and malpractice[1]. Incorrect model outputs leading to adverse patient outcomes also 
increase the potential liability for physicians. This can deter healthcare professionals from utilizing AI as it is 
currently not essential to the delivery of care. Beyond an inaccurate algorithm also exists a black box one, or 
one for which the operations and output cannot be explained and is at the center of much controversy[27,28]. 
In the current climate, careful model validation, prospective auditing, and algorithm enhancements are 
therefore necessary, as well as human support and oversight upon deployment of any AI models[1]. 
Transparency regarding model development and data sources used, algorithms and overall methodological 
disclosure according to the MINIMAR reporting guidelines can mitigate some of these challenges[2].

The Gender Shades project further underscores the importance of reporting guidelines to ensure rigorous 
bias assessments are completed[29]. The study highlights significant racial and gender bias in commercial 
facial recognition technologies. Their research revealed that AI systems from companies like IBM, 
Microsoft, and Face++ were less accurate at identifying gender in darker-skinned individuals, particularly 
women, with error rates of up to 34.7% for darker-skinned females, compared to less than 1% for lighter-
skinned males. This disparity is linked to the underrepresentation of diverse phenotypes in the datasets used 
to train these models, which overwhelmingly consist of lighter-skinned individuals.

These findings are particularly relevant for photo-based AI applications in craniofacial surgery. As these 
technologies become integrated into surgical planning and diagnostics, biases could disproportionately 
affect individuals with darker skin tones, potentially leading to misdiagnoses or improper treatment 
recommendations. It underscores the necessity of using diverse and balanced datasets in the development of 
AI models in craniofacial surgery as well as conducting detailed subgroup bias assessments on gender, age, 
race, ethnicity, and in some instances, skin tone (for image/photography-based applications). Of note, 
transparency to patients on how a model is expected to work specifically for them, based on these subgroup 
bias assessments, is important to facilitate genuine informed consent. It is expected that variations in 
performance will occur, and with transparency in understanding the limitations of a model, risk can be 
mitigated to ensure care delivery remains equitable even when a model may not perform equally across 
various populations.

While large data pools are required to create reliable and generalizable ML models, the acquisition of such 
information may lead to concerns regarding health data ownership, privacy, and security[30,31]. Possible 
malicious uses of AI technology have been reviewed and could include: breaches of data security and 
privacy, hacking of algorithms with the intent to harm, manipulation of data, and much more[32]. 
Governance bodies should seek to define best practices, to mitigate security and safety threats, and to have 
action plans in case a malicious event occurs[32]. Guidance navigating expectations and consequences of the 
use of ML models in healthcare should be encouraged at all levels (patient, physician, institutions, and 
governing bodies). Excessive or absolute dependence on experimental models should be avoided until 
robust foundations and infrastructures are in place to mitigate risks associated with AI.

Clinical translation: real-world introduction
Watson et al. conducted semi-structured interviews with American Academic Medical Centers regarding 
their use of predictive modeling and ML techniques within clinical care[33]. The team identified specific 
barriers to the adoption and implementation of such models that encompassed several themes: culture and 
personnel, clinical utility, financing, technology, and data. Overall, multidisciplinary development teams 
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were found to be essential to ensure the integration of ML tools into the clinical workflow. A well-defined 
clinical utility with clinically relevant parameters and actionable alerts ensured the usefulness of the ML 
tools. Securing funding was seen as a significant challenge to overcome to support all phases of ML model 
development and deployment. Partnerships with vendors could be considered to help overcome challenges 
associated with translation and the long-term sustainability of model deployment[33].

The generalizability of ML models to the real-world clinical realm can be limited despite rigorous internal 
and external validation studies. It has been shown that the real-world introduction of ML models sometimes 
leads to lower accuracy and higher false positives[34]. This discrepancy between experimentation and reality 
can be partially due to the datasets used. Research datasets have been shown to be constrained by stringent 
inclusion and exclusion criteria[35,36]. Clinical deployment, therefore, requires close model and output 
monitoring, followed by adjustments. Another aspect of validation can be the challenges in data sharing. In 
that regard, “federated learning” could enable the use of large multi-institution datasets by decentralizing 
data analysis and sharing computational models rather than data[37].

A disconnect between developers and users may sometimes occur. The technical expert team developing 
craniofacial surgery ML models may not be versed in the clinical needs and settings in which the technology 
will be deployed. An in-depth understanding of the clinical environments is key for both the development 
and translation of the ML tools to the bedside. Are there support team members available to perform data 
entry? Is the information obtained novel or more accurate than the one recorded from conventional clinical 
assessment? Can the outputs be easily interpreted? Are the output results clinically relevant and helpful in 
guiding the management of patients?[35]. The clinical utility of ML models needs to be properly estimated 
and clinical needs should therefore guide model development and tool creation.

Fostering clinical trust
Beyond weighing the recognized benefits and risks of the introduction of ML and AI in their practices, 
surgeons may experience a distrust toward AI systems and their outputs. This skepticism may come from a 
lack of transparency or understanding of the processes. The explainability factor is important for users in 
the context of clinical decision support systems[38,39]. Explainable AI (XAI) is an emerging field bridging 
humans with machines by enabling a better understanding of how a model’s decisions and predictions were 
made[40,41]. For clinicians to trust AI and ML models, such bidirectional dialogue and reasoning is crucial. 
Using XAI involves significant trade-offs, such as the cost of its incorporation. Costs mostly come from the 
computation required to create a dialogue and learning capabilities between the model and clinician. 
Another identified trade-off lies between performance and interpretability. It appears that the models 
offering the best performance metrics are also often the least explainable[42]. As medicine strives for the best 
clinical performance and outcomes, deployment of explainable yet less performant models may be 
questionable. Ultimately, surgeons will have to justify clinical decisions with models that they trust and can 
understand in order to provide optimal machine-augmented care. Explainability can help answer some 
ethical, societal, and regulatory apprehensions and requirements if paired with rigorous model validation 
techniques and bias assessments[38]. To sustainably translate ML models into clinical practice, XAI appears 
to be a fundamental investment that requires further attention and development. However, it is important 
to note that model explainability is not a substitute for model evaluation following evidence-based medicine 
best practices and robust statistical validation.

Sustainability after clinical translation
The long-term sustainability of ML in practice requires financial support for data quality and access, 
governance, security, continuous model validation, and operational deployment. The implementation of AI 
models in clinical practice may also require the creation of new roles to facilitate the adoption and 
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maintenance of AI algorithms, such as data scientists and machine learning operations (MLOps) engineers. 
For example, MLOps engineers will help create systems that continuously monitor models to ensure a 
decline in model performance does not occur without clinical and operational teams being aware. This is 
critical as models can decline in performance based on data drift and other changes in the clinical real-
world environment. To support this, business models and associated governance structures should be 
created[43]. They may vary in size and range from innovation clusters, combining local expertise in AI, 
translational research, digital health, statistics, and more, to centers of excellence in large organizations[44].

Final thoughts
As we enter an age of increased intersections between society, data, and technology, we will notice the rapid 
proliferation of ML models migrating from development labs into real-world surgical settings. We 
recommend craniofacial surgeons be open and enthusiastic about upcoming ML models and tools but also 
aware of their numerous limitations. Clinical deployment of such models is arduous yet promising for the 
advancement of surgical care at the patient, team and system levels. Successful and safe integration of these 
models into practice requires input from surgeons. Although clinical expertise cannot be replaced at this 
time, it can be augmented by ML models, and surgeons should not be afraid of being innovators or early 
adopters if they are equipped with knowledge and awareness.

The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge - Stephen Hawking
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