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Abstract
The occurrence and risks of polychlorinated biphenyls (PCBs) in water, sediment, and fish from the Wupa River, 
Nigeria, were assessed in this study. Water, sediment, and fish were collected from five locations in the Wupa 
River in November 2019. After extraction with dichloromethane, hexane, and acetone, the PCBs were determined 
using gas chromatography equipped with a quadrupole mass spectrometer. The hazard index and total cancer risk 
models were used for risk evaluation of the detected PCBs. The results of this study show that the ∑28 PCB 
concentrations in the water, sediment, and fish ranged from 0.04-11.42 ng/L, 5032-10132 ng/g, and 64-4254 
ng/g, respectively. The hazard index values for children and adults were generally > 1, suggesting a potential non-
carcinogenic risk for humans exposed to PCBs from the river. However, the total cancer risk values were above 
1 × 10-6 and indicated that there is a carcinogenic risk for humans exposed to the PCBs from Wupa River.

Keywords: Polychlorinated biphenyls (PCBs), toxic equivalencies (TEQs), ecological risk, hazard index, total cancer 
risk

INTRODUCTION
Polychlorinated biphenyls (PCBs) are a group of chlorinated pollutants that have been produced and 
commercially accessible under different brand names since the 1920s[1]. PCBs include 209 congeners that 
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result from the variation in the number and location of the chlorine atoms joined to the biphenyl rings[2]. 
The high stability, electric insulation tendencies, and low inflammation of PCBs are remarkable and have 
extended their applications to hydraulic fuels, plastics, refrigerants, printing ink, paints, wax extension 
systems, lubricants, adhesive products, etc.[1,3,4]. PCBs are non-ionizable, largely non-polar, and highly 
hydrophobic in nature. They are known suppressors of immune system function and cause neurobehavioral 
alterations, motor immaturity, etc.[2,5]. The use of PCBs is prohibited, but because they are recalcitrant, PCBs 
still exist in environmental matrices, biota and humans[6].

PCBs enter rivers through industrial discharge, surface runoff from non-point and point sources, 
atmospheric wet and dry deposition, sediment desorption, etc. In aquatic ecosystems, PCBs are adsorbed by 
particulate matter and precipitate in the sediment[7]. Nevertheless, PCBs can be resuspended by sediments 
with favorable environmental factors, and adsorbed PCBs are then released again into the water, starting 
another round of contamination and ultimately bioaccumulating in aquatic biota such as fish[8,9]. Since rivers 
are important for fishing and transportation, in addition to being a source of water for drinking, domestic 
use, agriculture irrigation, and recreational purposes, humans may become exposed to PCBs through 
consumption of agricultural foods, fish, and other seafood, drinking water, and dermal contact during 
transportation, recreational, and domestic water use[10]. Therefore, the monitoring and assessment of PCBs 
in water, sediment, and fish can indicate the status of aquatic contamination.

The Wupa River, which is about 16 km in length, is located around the Idu Industrial Layout in Abuja, 
Nigeria [Figure 1]. It is a branch of the Jabi River and lies within latitude 09° 01' 37.2054" N to 09° 04' 
49.7215" N and longitude 07° 19' 22.7198" E to 07° 24' 45.0794" E. Next to the Wupa River is the Wupa 
Wastewater Treatment Plant (WWTP), Gosa dumpsite (GD), and the very busy Airport Road. The Wupa 
River receives effluents, waste discharges, and runoff from the WWTP, GD, and other industries sited in the 
Idu Industrial Layout. The Wupa River has been severely affected over the years by human activities along 
the river. Despite the length and intensity of these activities, there is limited information on the pollution 
status of the river. Thus, the objective of the present study was to assess the concentrations, sources, and 
risks of PCBs in the water, sediment, and fish from the Wupa River.

MATERIALS AND METHODS
Reagents
All solvents used for extraction (acetone, dichloromethane, and n-hexane) were of pesticide grade and 
products of Merck (Darmstadt, Germany). The PCB standard solution containing 28 PCBs (PCB8, PCB18, 
PCB28, PCB44, PCB52, PCB60, PCB77, PCB81, PCB101, PCB105, PCB114, PCB118, PCB123, PCB126, 
PCB128, PCB138, PCB153, PCB156, PCB157, PCB167, PCB169, PCB170, PCB180, PCB185, PCB189, 
PCB195, PCB206, and PCB209) was used for calibration (AccuStandard Inc., CT, USA). Only 28 PCBs, 
including the 7 indicator PCBs, 12 WHO dioxin-like PCBs, and some common PCBs, were chosen since the 
study focused on the occurrence and human health risks of PCBs. The PCB surrogate standard solution 
containing six isotopically labeled PCBs (13C12 PCB28, -52, -118, -153, -180, and -209) was a product of 
Cambridge Isotope Laboratories Inc. (MA, USA). Alumina, copper powder, anhydrous sodium sulfate, and 
silica gel were of analytical grade and obtained from BDH Chemicals (Poole, UK).

Collection of samples 
Samples were collected in November 2019. Five water and sediment samples were collected from five 
different locations (SL1-SL5) along the Wupa River [Figure 1]. The grab sampling technique was used to 
collect water and sediment samples. At each location, three water and sediment samples were collected and 
combined to give a homogenous sample. Five different fish species were obtained from a local fisherman 
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Figure 1. Map of study area.

during sampling. comprising Cyprinus carpio (CC), Ethmalosa fimbriata (EF), Heterobranchus bidorsalis 
(HB), Clarias anguillaris (CA), and Oreochromis niloticus (ON). All samples were placed in amber 
containers, kept in an ice chest, and transported to the laboratory for analysis.

Extraction and cleanup of PCBs in water
The USEPA Method 3510 was used in the extraction of PCBs in water samples. About 100 mL of water 
sample was measured into a separating funnel containing 100 mL of dichloromethane (DCM). The mixture 
was extracted for 30 min and the extract was collected into a flask. The extraction process was repeated with 
another 100 mL of DCM and the extract was collected into the same flask. The combined extract was 
reduced to approximately 2 mL with a rotary evaporator (LabTech EV311H Rotary evaporator). The 
concentrated extract was cleaned in a column containing alumina-silica gel packed bottom to top with 4 g 
of neutral silica gel (5% deactivated), 2 g of neutral alumina (6% deactivated), and 5 g of anhydrous Na2SO4. 
The PCBs were subsequently eluted with 50 mL of hexane from the column, concentrated to 2 mL, and 
stored in a vial prior to chemical analysis.

Extraction and cleanup of PCBs in sediment and fish 
The USEPA Method 3540 C was used to extract the PCBs from the sediment and fish. A mass of 10.0 g of 
the sediment/fish was spiked with a mixed standard solution of isotopically labeled PCB congeners 
(200 ng g-1) and Soxhlet extracted with 120 mL of an acetone/dichloromethane/n-hexane mixture (1:1:1 v/v) 
for 18 h in a water bath at 65 °C. Then, 3 g of anhydrous Na2SO4 and 1 g of activated copper were added to 
eliminate the possible water and sulfur, respectively. The extract was reduced to about 2 mL with a rotary 
evaporator and cleaned in a multilayer alumina-silica gel column packed bottom to top with 4 g of neutral 
silica gel (5% deactivated), 2 g of neutral alumina (6% deactivated), and 5 g of anhydrous Na2SO4. The PCBs 
were eluted with 40 mL mixture of hexane and dichloromethane (3:1 v/v). The eluate was evaporated to 2 
mL and stored in a vial ready for chemical analysis.

Quantification of PCBs in samples
The concentrations of the 28 PCBs in the sample extracts were determined using an Agilent 7890A gas 
chromatograph interfaced with a 5876C mass selective detector (MSD) (Agilent Technologies Inc., Palo 
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Alto, CA, USA). The separation column was a HP5 (30 m × 320 µm × 0.25 µm). The mobile phase was high-
purity helium gas at a constant flow velocity of 1.2 mL/min. The initial temperature of the column was fixed 
at 85 °C, held for 1 min, stepped up to 200 °C at 35 °C/min, and then increased from 200 to 300 °C at 
10 °C/min. The injector temperature and that of the transfer line were maintained at 250 °C, while the 
injection volume was 1 µL. The mass spectrometer was operated at an electron impact energy of 70 eV and 
data acquisition was performed by selected ion monitoring (SIM). The PCB congeners were identified by 
matching the retention times of the PCBs in these samples with those obtained from authentic PCB 
standards.

Quality control and statistical analysis
Quality control and assurance were achieved with procedural blanks, recoveries of the 13C12-PCBs, and 
matrix spike methods. Procedural blanks (n = 3) were analyzed following all the analysis steps but omitting 
the samples. PCBs were not detected in the procedural blanks. For the matrix spiked recovery method, a 
known standard of the PCBs was added to chosen fresh aliquots of samples (n = 3) that had already been 
analyzed and followed all the analytical steps. The percent recoveries of PCBs from the spiked matrices 
ranged from 95.3%-107%, 98.6%-106%, and 91.2%-106% for water, sediment, and fish, respectively. The 
surrogate PCB recoveries were 92.5%-99.5%, 90.9%-98.1%, and 89.7%-94.2% for water, sediment, and fish, 
respectively. The quantification of the PCBs was achieved by using an external calibration method 
consisting of five-point calibration lines obtained as a plot of the congener peak areas versus the standard 
concentrations. The regression coefficients (r2) for the calibration lines ranged from 0.9992 to 0.9999. The 
limits of detection and quantification (3 and 10 times the noise levels of the baseline, respectively) for the 
PCBs were 0.01-0.4 and 0.03-1.2 ng L-1, respectively. The precision of the method for replicate analyses was 
less than 8% relative standard deviation (RSD). The LODs, LOQs, RSD, r2, and percentage recoveries of 
individual PCB congeners are shown in Supplementary Table 1.

One-way analysis of variance (ANOVA) was employed for the determination of significant variation 
(P < 0.05) in the PCB concentrations at the various sampling locations for each matrix. SPSS version 19.0 
(SPSS Inc., Cary, NC) was used for statistical analysis.

Assessment of ecological risk from PCBs in Water, Sediment and Fish
The ecological risk of the dl- PCBs in the three matrices from the Wupa River was obtained using their toxic 
equivalencies (TEQs). The TEQs was computed with Equation (1)[11]:

where C and TEF are the dl-PCB concentrations and toxic equivalence factors, respectively. The TEF values 
used are shown in Supplementary Table 2.

Assessment of human health risks
Assessment of the human health risk of PCBs in water, sediment, and fish from the Wupa River was done in 
terms of hazard index (HI) and total cancer risk (TCR), respectively, with the equations below[12,13].

For non-cancer risk,

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202209/5143-SupplementaryMaterials.pdf
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For cancer risk,

The meaning and values of each term and variable are shown in Supplementary Tables 2 and 3 respectively. 
For water, the health risk was evaluated using only two routes of exposure (ingestion and dermal contact). 
For sediment, three routes of exposure (ingestion, inhalation, and dermal contact) were used. For fish, only 
the ingestion route was used. Generally, HI values greater than 1 indicate the presence of non-carcinogenic 
risk of PCB exposure and vice versa, while total cancer risk values greater than 1.0 × 10-6 indicate that there 
is a carcinogenic risk from PCB exposure and vice versa[14].

RESULTS AND DISCUSSION
PCB concentrations in the Wupa River
The results of the 28 PCB congeners determined in the water, sediment, and fish from the Wupa River are 
shown in Table 1 and Figures 2-4. Analysis of variance (ANOVA) showed that the concentrations of PCBs 
in each of the three matrices from the Wupa River varied significantly (P < 0.05) among the sampling 
locations. The PCB concentrations in the Wupa River may be a result of the human activities and industrial 
processes around the river, considering factors such as total organic matter, velocity of water flow, and 
transportation characteristics of PCBs[3,4,15].

Water
The total PCB (∑28 PCB) concentrations in the water samples of Wupa River varied between 3.13 and 
11.42 ng/L. The maximum ∑28 PCBs was observed in sample W3, whereas sample W4 had the lowest 
concentration. The ∑28 PCB concentrations obtained in water samples of Wupa River may be a result of 
industrial releases from the industries in the Idu Industrial Layout of Abuja where the river is located. The 
water samples of the Wupa-Idu River have higher proportions of the more soluble, less chlorinated PCBs 
[Figure 2]. Similar observations have also been reported in the literature[16-18]. The occurrence pattern of the 
PCB homologs in the water samples of the Wupa River is shown in Figure 5. On average, the occurrence 
pattern was as follows: penta-PCBs > di-PCBs > hexa-PCBs > tetra-PCBs > tri-PCBs > hepta-PCBs > octa-
PCBs. Nona- and deca-PCBs were not detected. The concentrations of total PCBs in water samples of Wupa 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202209/5143-SupplementaryMaterials.pdf
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Table 1. PCB concentrations in water (ng/L), sediment (ng/g), and fish (ng/g) from the Wupa River

Water Sediment Fish
W1 W2 W3 W4 W5 S1 S2 S3 S4 S5 CC EF HB CA ON

PCB8 0.26 0.77 2.96 0.70 1.97 298 776 200 900 1200 550 152 328 92 20

PCB18 0.21 0.72 1.59 0.15 0.47 266 332 264 810 362 564 350 194 198 44

PCB28 ND ND ND ND ND 136 382 184 206 528 296 262 ND ND ND

PCB44 ND ND ND ND ND 274 744 116 246 704 ND 238 ND ND ND

PCB52 ND ND ND ND ND 268 246 144 258 526 180 54 ND ND ND

PCB66 0.85 0.71 0.6 0.40 ND ND 478 116 208 288 712 138 ND ND ND

PCB77 0.56 0.90 0.43 0.35 ND 236 168 190 406 136 38 140 ND ND ND

PCB81 ND 0.92 ND ND ND 474 126 110 48 210 70 50 ND ND ND

PCB101 0.11 ND ND ND 2.62 244 276 324 844 452 62 426 188 ND ND

PCB105 ND 0.18 0.35 ND ND 1432 ND 90 ND 522 ND 104 ND ND ND

PCB114 ND 0.99 ND 0.67 ND 528 140 278 234 296 ND ND ND ND ND

PCB118 ND 0.56 ND 0.86 ND 188 188 220 306 272 ND ND ND ND ND

PCB123 0.16 ND 1.47 ND 0.75 398 266 232 220 302 452 346 244 ND ND

PCB126 0.80 ND 0.13 ND 0.12 134 212 120 714 156 346 266 114 ND ND

PCB128 0.06 ND 0.10 ND 0.40 218 308 230 468 132 394 364 134 ND ND

PCB138 ND ND 1.3 ND ND 54 270 236 174 280 ND ND ND ND ND

PCB153 0.93 ND 0.14 ND 0.50 98 384 104 400 148 410 380 104 92 ND

PCB156 ND ND 0.44 ND ND 68 330 64 180 130 268 ND ND ND ND

PCB157 ND ND ND ND ND 108 254 60 760 114 ND ND ND ND ND

PCB167 ND ND ND ND ND 102 188 28 310 66 16 ND ND ND ND

PCB169 ND ND 1.52 ND ND 84 662 64 ND 188 42 ND ND ND ND

PCB170 ND ND 0.39 ND ND 154 622 60 78 254 40 ND ND ND ND

PCB180 ND ND ND ND 0.96 110 246 442 874 526 78 500 ND ND ND

PCB187 ND ND ND ND ND 126 110 ND 258 154 48 ND ND ND ND

PCB189 ND ND ND ND ND 212 134 74 ND 290 ND ND ND ND ND

PCB195 ND 0.91 ND ND ND 178 274 350 ND 228 ND 484 ND 20 ND

PCB206 ND ND ND ND ND 308 196 126 298 312 286 ND 286 ND ND

PCB209 ND ND ND ND ND 422 276 606 932 ND 248 ND 248 ND ND

TOTAL 3.94 6.66 11.4 3.13 7.79 7118 8588 5032 10132 8776 5100 4254 1840 402 64

Di-PCB 0.26 0.77 2.96 0.70 1.97 298 776 200 900 1200 550 152 328 92 20

Tri-PCBs 0.21 0.72 1.59 0.15 0.47 402 714 448 1016 890 860 612 194 198 44
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Tetra-PCBs 1.41 2.53 1.03 0.75 0.00 1250 1762 676 1166 1864 1000 620 0.0 0.0 0.0

Penta-PCBs 1.07 1.73 1.95 1.53 3.49 2920 1082 1264 2318 2000 860 1142 546 0.0 0.0

Hexa-PCBs 0.99 0.00 3.50 0.00 0.90 732 2396 786 2292 1058 1130 744 238 92.0 0.0

Hepta-PCBs 0.00 0.00 0.39 0.00 0.96 602 1112 576 1210 1224 166 500 0 0 0

Octa-PCBs 0.00 0.91 0.00 0.00 0.00 178 274 350 0 228 0 484 0 20 0

Nona-PCBs 0.00 0.00 0.00 0.00 0.00 308 196 126 298 312 286 0 286 0 0

Deca-PCBs 0.00 0.00 0.00 0.00 0.00 422 276 606 932 0 248 0 248 0 0

LC-PCBs 2.95 5.75 7.53 3.13 5.93 4876 4334 2588 5400 5954 3270 2526 1068 290 64

HC-PCBs 0.99 0.91 3.89 0.00 1.86 2242 4254 2444 4732 2822 1830 1728 772 112 0

CC: Cyprinus carpio; CA: clarias anguillaris; EF: ethmalosa fimbriata; HB: heterobranchus bidorsalis;  ON: oreochromis niloticus; PCB: polychlorinated biphenyl.

River were below the USEPA permissible limit of 500 ng/L PCBs in drinking water[19]. The National Oceanic and Atmospheric Administration (NOAA) set a 
maximum concentration (CMC) of 2000 ng/L and continuous concentration (CCC) of 14 ng/L for PCBs in water. The total PCB concentrations in water 
samples of Wupa River were below the CMC and CCC values. The PCB concentrations in water of the Wupa River were comparable to those reported for 
other rivers in the literature [Table 2].

Sediment
The ∑28 PCB concentrations in the sediment of the Wupa River ranged from 5032 ng/g for S3 to 10,132 ng/g for S4. All 28 PCB congeners except PCB66 were 
detected in sample S1. Only PCB105 and PCB187 were below their detection limits in samples S2 and S3, respectively. PCB105, PCB169, PCB189, and PCB195 
were under their detection limits in sample S4, whereas all 28 PCBs were found in sample S5. The PCB congener distribution in the sediments of the Wupa 
River showed an even spread across chlorination levels, which indicated the presence of several different aroclors. The higher concentration of PCB8 in 
samples S2, S4, and S5 may be due to dechlorination or possibly an inadvertent PCB source. PCB209 was not only detected in all sediment samples but also in 
high proportions; in some samples (S3 and S4), it was the dominant congener. This is highly indicative of an incidental PCB source. On average, the 
occurrence pattern followed the order: penta-PCBs > hexa-PCBs > tetra-PCBs > hepta-PCBs > tri-PCBs > di-PCBs > deca-PCBs > nona-PCBs > octa-PCBs 
[Figure 5]. The lower chlorinated (LC) PCBs (di-PCBs to penta-PCBs) were the dominant PCBs in the sediment. The domination of the LC-PCBs in the 
sediments of the Wupa River may result from reductive dechlorination of higher chlorinated PCBs in the absence of free oxygen[3]. The ∑28 PCB 
concentrations in the sediment of the Wupa River were above the Dutch action value and Australia and New Zealand Ecological Investigation Level of 1000 
ng/g[41,42], the Canadian Soil Quality Guideline value of 1300 ng/g[43], and the US EPA health-based screening level for total PCBs of 200 ng/g[44]. The ∑28 PCB 
concentrations obtained in the sediment of the Wupa River are compared with those reported elsewhere in Nigeria and other countries in Table 2. The PCB 
concentrations obtained in sediments of the Wupa River were comparable to the range of 226-31,900 ng/g reported for Escravos River[4] but higher than those 
reported for the Niger, Ase, Forcados, Nicholas, Ona, New Calabar, Ethiope, and Benin Rivers in Nigeria. They were also higher than the PCB concentrations 
reported for sediments from rivers in other countries. The PCB concentrations in the sediment of the Wupa River were in the same range of 3400-50200 ng/g 
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Table 2. Comparison of PCBs in water and sediment of the Wupa River with those in other rivers

Matrices River System Concentrations Reference

Water (ng/L) Wupa-Idu River, Nigeria 3.13-11.4 This Study

River Niger, Nigeria 456-1139 [19]

River Ethiope 0.0015-0.015 [20]

Benin River 0.00003-0.00293 [20]

River Nile, Egypt 0.014-0.02 [21]

Pearl River Estuary, China 0.02-14.8 [22]

Yangtze River, China 3.77-61.79 [22]

Tonghui River of Beijing, China 31.58-344.9 [22]

Minjiang River Estuary, China 204-2473 [22]

Houston Ship Channel, USA 0.49-12.5 [23]

Mississippi River, USA 22.2-163 [23]

Delaware River, USA 0.42-1.65 [23]

Hudson River, USA <9.3-164.3 [23]

Johannesburg River, South Africa 0.021-0.121 [23]

Ebro River, Spain 43.2-108 [23]

Bay of Bengal Coast, Bangladesh 32.17-199.4 [16]

Sediment (ng/g) Wupa-Idu River, Nigeria 5032-10132 This Study

Nigeria

Escravos River Basin, Nigeria 226-31900 [4]

River Niger 13.5-277 [3]

Ase River ND-1633 [3]

Forcados River 1.9-78.4 [3]

Ogun River, Nigeria 323-2003 [24]

Ona river, Nigeria 589-1354 [24]

New Calabar River, Nigeria 210-2160 [25]

Forcados River, Nigeria 2.7-202.3 [26]

River Niger and Nicholas River 741-2964 [27]

Ethiope River 0.73-6.7 [20]

Benin River 0.35-15.15 [20]

Africa

Umgeni River, South Africa 103-430 [28]

Pangani River and its tributaries, Tanzania 0.36-11 [29]

Lake Qarum, Egypt 1.48-137.2 [30]

Lake Maryut, Egypt 3.06-388 [30]

Lake Manzala, Egypt 2.53-76.37 [30]

Monaslir Bay, Tunisia 1.1-9.3 [31]

Congo River basin, Congo Nd-1.4 [32]

Other countries of the World

Ankara creek, Turkey 3.7-743.3 [33]

Haihe River and Estuary, China 0.177-253 [34]

Cienfuegos Bay, Cuba 2.50-15.49 [35]

Chenab River, Pakistan 9.33-144.23 [36]

Lianjiang River, China 4.70-743 [37]

Lake Michigan, USA 53-35,000 [38]

Northwest Persian Gulf, Iran 3400-50200 [39]

Belford Harbor, Massachussets, USA 2800-109000 [40]

PCB: Polychlorinated biphenyl.



Page 9 of Okoh et al. J Environ Expo Assess 2022;1:19 https://dx.doi.org/10.20517/jeea.2022.13 17

Figure 2. PCB congener profiles in water samples. PCB: Polychlorinated biphenyl.
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Figure 3. PCB congener profiles in sediment samples. PCB: Polychlorinated biphenyl.
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Figure 4. PCB congener profiles in fish samples: (A) cyprinus carpio; (B) ethmalosa fimbriata; (C) heterobranchus bidorsalis; (D) clarias
anguillaris; and (E) oreochromis niloticus. CC: Cyprinus carpio; CA: clarias anguillaris; EF: ethmalosa fimbriata; ON: oreochromis niloticus; 
PCB: polychlorinated biphenyl.
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Figure 5. Occurrence profiles of PCBs in the water, sediment, and fish from the Wupa River. CC: Cyprinus carpio; CA: clarias anguillaris; EF: 
ethmalosa fimbriata; ON: oreochromis niloticus; PCB: polychlorinated biphenyl.

reported by Zahed et al. for the sediment of the Persian Gulf, Iran, 2800-109,000 ng/g reported for the 
sediment of Belford Harbor, MA, USA, and 53-35,000 ng/g reported for the sediment of Lake Michigan, 
USA[39,40].

Fish
The total PCB (∑28 PCBs) concentrations in the fish samples from the Wupa River varied between 64.0 and 
5100 ng/g. The highest ∑28 PCB concentration was obtained in Cyprinus carpio, whereas the lowest 
concentration was obtained in Oreochromis niloticus. In Cyprinus carpio, PCB congeners 105, 114, 118, 157, 
189, and 195 were below their detection limit. Similarly, in Ethmalosa fimbriata, PCB congeners 114, 118, 
156, 167, 169, 170, 187, 189, 206, and 209 were under their detection limit. However, in Heterobranchus 
bidorsalis PCB congeners 8, 18, 101, 123, 126, 128, 153, 206, and 209 were detected. In Clarias anguillaris, 
only PCB congeners 8, 18, 153, and 195 were detected, while in Oreochromis niloticus, only PCB8 and 
PCB18 were detected.

The occurrence pattern of the PCBs was as follows: penta-PCBs > hexa-PCBs > tri-PCBs >tetra-PCBs > di-
PCBs > hepta-PCBs > nona-PCBs > octa-PCBs >deca-PCBs [Figure 5]. The permissible limit of PCBs in fish 
set by the United States Food and Drug Administration (USFDA) and Swedish Food Regulation (SFR) is 
2000 ng/g. The ∑28 PCB concentrations in Cyprinus carpio and Ethmalosa fimbriata were above the USFDA 
and SFR permissible limits. The ∑28 PCB concentrations obtained in fish from the Wupa River were 
comparable to the concentrations range of 20-6000 ng/g reported for fish from the Michigan River[45], 
4300-10,000 ng/g reported for some fish species from the Great Lakes[46], 50-3500 ng/g reported for different 
Luxembourg River fish[47], 333-2531 ng/g reported for fish from Eleyele Reservoir, Southwestern Nigeria[22], 
560-2940 ng/g in fish from Lagos Lagoon[48], and 290-110,000 ng/g in fish from Galveston Bay, TX[49]. The 
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total PCB concentrations obtained in fish from the Wupa River in this study were higher than the 
undetected range of 94 ng/g reported for freshwater fish from Luxembourg[50], 1.50-280 ng/g for fish from 
the Belgian North and Western Scheldt Estuary[51], 0.24-1.4 ng/g in marine fish from Zhoushan City, 
China[52], 4.7-11.4 ng/g in different marine fish species in Nanjing city, China, 0.44-86 ng/g in marine fish 
from tsunami-stricken areas of Japan[53], and 7.20-90.19 ng/g in marine fish from the Persian Gulf[54].

Toxicity of dl-PCBs in Water, Sediment, and Fish
The computed dl-PCBs TEQs for the three matrices from the Wupa River are presented in Table 3. The 
TEQs ranged from 8.09.0 × 10-5 to 8.01 × 10-2 ng TEQ2005 g-1 in 80% of the water samples, from 16.2 to 71.5 ng 
TEQ g-1 in sediment, and from 11.4 to 35.9 ng TEQ2005g-1 in fish. The TEQ values obtained for the sediment 
of the Wupa River were more than the 21.5 pg TEQ g-1 limit stipulated by the Canadian Council of 
Ministers of the Environment (CCME) [43]. This implies that there are potential toxic effects as a result of 
PCB exposure in the Wupa River. With the exception of Clarias anguillaris and Oreochromis niloticus 
samples, the TEQs recorded in these fish samples from the Wupa River were greater than the upper limit of 
6.5 pg TEQ2005 g-1 stipulated by the European Food Safety Authority (EFSA)[55] for dl-PCBs in fish, indicating 
that it is dangerous to consume these fish. PCB126 was the major donor to the TEQs obtained for these 
matrices from the Wupa River.

Human health risks
The computed non-cancer and cancer risks of PCBs in the three matrices from the Wupa River are 
displayed in Supplementary Tables 4-6. For water and sediment, the HQIng was greater than HQDerm, and 
HQinh was the lowest. The HI values of PCBs in the Wupa River for children and adults ranged from 14.8-
14,512 and 4.43-4344, respectively for water, 3.07 × 105-1.82 × 106 and 4.30 × 104-2.55 × 105, respectively for 
sediment and 2.17 × 104-6.58 × 104 and 5.42 × 103-1.65 × 104, respectively for fish. The HI values for the three 
matrices were > 1, signifying the existence of non-cancer risk for individuals exposed to PCBs in the water, 
sediment, and fish from the Wupa River. However, the HI values for fish samples of the Wupa River were < 
1, indicating that there is no adverse non-cancer risk for humans eating fish from the Wupa River.

The risk levels from PCB exposure in the water and sediments followed the same trend as the HQ. The TCR 
values of PCBs in the Wupa River for children and adults ranged from 1.33 × 10-3-1.32 and 2.09 × 10-4-2.07 × 
10-1, respectively, for water, 3.24 × 101-1.65 × 102 and 2.50-1.27 × 101, respectively, for sediment and 1.97-6.21 
and 2.71 × 10-1-8.54 × 10-1, respectively for fish. The TCR values for the three matrices from the Wupa River 
were above the 1 × 10-6 risk level, indicating the presence of potential cancer risk from PCB exposure in the 
Wupa River. However, the small sample size from which the risk data were derived is somewhat a limitation 
to this study and is well acknowledged.

CONCLUSION
The occurrence and risks of PCBs in water, sediment, and fish from the Wupa River, Nigeria, were assessed 
in this study. The concentrations of total PCBs in all the water samples from the Wupa River were below the 
USEPA permissible limit of PCBs in drinking water, while the concentrations of total PCBs in 60% of the 
fish samples were less than the USFDA and SFR permissible limits of PCBs in fish. However, the PCB 
concentrations in the sediments were above the Dutch action value, Australia and New Zealand Ecological 
Investigation Level, Canadian Soil Quality Guideline value, and the USEPA health-based screening level. 
PCB209 was the dominant PCB in some sediment profiles and is associated with the inadvertent PCB 
production. The risk assessment indicated that there are possible ecological and human health risks to biota 
and humans exposed to PCBs in the Wupa River.

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202209/5143-SupplementaryMaterials.pdf
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Table 3. Toxic equivalence (ngTEQ2005 g-1) of PCBs in water, sediment, and fish from the Wupa River

Marices Samples PCB77 PCB81 PCB105 PCB114 PCB118 PCB123 PCB126 PCB156 PCB157 PCB167 PCB169 PCB189 TTEQ

Water W1 5.60E-05 0 0 0 0 4.80E-06 8.00E-02 1.80E-06 0 0 0 0 8.01E-02

W2 9.00E-05 2.76E-04 5.40E-06 2.97E-05 1.68E-05 0 0 0 0 0 0 0 4.18E-04

W3 4.30E-05 0 1.05E-05 0 0 4.41E-05 1.30E-02 3.00E-06 1.32E-05 0 4.56E-02 0 5.87E-02

W4 3.50E-05 0 0 2.01E-05 2.58E-05 0 0 0 0 0 0 0 8.09E-05

W5 0 0 0 0 0 2.25E-05 1.20E-02 1.20E-05 0 0 0 0 1.20E-02

Sediment S1 0.024 0.142 0.043 0.016 0.006 0.012 13.4 0.002 0.003 0.003 2.52 0.006 16.2

S2 0.017 0.038 0 0.004 0.006 0.008 21.2 0.01 0.008 0.006 19.9 0.004 41.2

S3 0.019 0.033 0.003 0.008 0.007 0.007 12 0.002 0.002 0.001 1.92 0.002 14.0

S4 0.041 0.014 0 0.007 0.009 0.007 71.4 0.005 0.023 0.009 0 0 71.5

S5 0.014 0.063 0.016 0.009 0.008 0.009 15.6 0.004 0.003 0.002 5.64 0.009 21.4

Fish CC 3.80E-03 2.10E-02 0 0 0 1.36E-02 3.46E+01 8.04E-03 0 4.80E-04 1.26 0 35.9

EF 1.40E-02 1.50E-02 3.12E-03 0 0 1.04E-02 2.66E+01 0 0 0 0 0 26.6

HB 0 0 0 0 0 7.32E-03 1.14E+01 0 0 0 0 0 11.4

CA 0 0 0 0 0 0 0 0 0 0 0 0 0.0

ON 0 0 0 0 0 0 0 0 0 0 0 0 0.0
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