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Abstract
Breast cancer (BC) is the leading cause of cancer-related deaths in women worldwide. However, the majority of 
cancer mortalities can be attributed to cancer cell metastasis to distal organs/tissues rather than the primary tumor 
mass itself. The microenvironment surrounding the main tumor mass, as well as its final migration destination, plays 
a crucial role in the survival, growth, proliferation, and progression of BC. Intercellular stromal cells and components 
of the microenvironment surrounding a tumor comprise a nurturing cubicle that provides a communication network 
of cross-talk and signaling between the tumor cells and the extracellular matrix (ECM) and interstitial cells. This 
network connection enables the tumor cells to engage in metastatic-associated activities such as cell adhesion, 
invasiveness, mobility, migration, cell shape change, cell-to-cell contact, and basement membrane degradation. An 
untapped therapeutic approach that might disable the communication network between cancer and stromal cells 
could possibly aid in providing this unmet need in treating metastatic disease. The intravenous administration of 
select protein-derived peptides to patients might have the potential to occupy, saturate, and block receptors and 
binding proteins at the interstitial/ECM communication interface with tumors. 
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INTRODUCTION
Breast cancer (BC) and its metastasis are worldwide public health issues causing financial, economic, social, 
and personal lifestyle problems in addition to their high mortality rate. An increased metastatic potential in 



BC patients adds to their ultimate demise in both young and older women[1]. However, there exists an innate 
flaw in BC cell survival and metastasis regarding its dependence on the microenvironment that surrounds 
the malignant tumor[2]. This dependence presents a novel opportunity into an untapped therapeutic 
potential for BC patients with metastatic disease. The BC tumor mass maintains an intimate relationship 
with its microenvironment via a 2-way interchange of cross-talk and signaling communication cues between 
the two entities; this establishes a network-dependent connection[3]. When tumor growth outpaces its blood 
and nutrient supplies, cells detach from the primary mass seeking out new fertile “nesting” grounds. The 
process of cell detachment, migration, and dissemination is the hallmark of metastases with its widespread 
cell dispersion throughout the body; this results in an increased lethality more than the primary BC tumor 
itself. In 1889, Stephen Paget[4] proposed a “seed and soil” hypothesis in which break-away tumor cells seek 
out tissue/organ sites which are beneficial to resume new tumor growth in sites resembling their original 
microenvironments. Thus, migratory tumor cells seek out secondary nurturing destinations in which tumor 
cells grow unabated in distal target organs such as liver, lungs, bone marrow, and brain.

The tumor cells themselves first undergo an epithelial-to-mesenchymal transition that transforms the 
cell’s phenotypic identity to adopt a migratory and invasive behavior[5]. The dispersed migrating BC 
cells are attracted toward distal organ/tissue destinations under the influence of chemoattractant signals 
that determine their migratory gradient patterns and behavior. The chemotactic signals originate from a 
subfamily of secreted cytokines termed chemokines, most notably the CXCL12 ligand together with its 
cognate cell surface receptor, CXCR4. Such a 2-member complex is present on both tumor cells and stromal 
cells. Together, this chemokine/receptor complex forms an axis that can regulate cancer cell growth, 
proliferation, chemoresistance, angiogenesis, and metastasis[6]. Hence, both the directive and the objective of 
the present report are to address the cancer cell-to-microenvironment interaction as a potential therapeutic 
intervention strategy targeted toward disrupting the communication signaling network both at primary 
tumor and its metastatic sites.

THE TUMOR MICRO-ENVIRONMENT COMPONENTS
The micro-environment surrounding the primary tumor mass and that encompassing the metastatic 
destination site have similar shared communication networks. The tumor cell-to-microenvironment 
connection serves as a signaling bridge between tumor cells and interstitial stromal components which 
sponsor two-way communication systems. Such signaling activities include nutrient supply, angiogenesis, 
cell adhesion, migration, cell-to-cell contact, adherens cell junction maintenance, invasiveness, and 
basement membrane proteolysis[7]. Non-cellular constituents of the interstitium consists of multiple and 
diverse components such as: (1) metabolic by-products; (2) exosomes and microvesicles; (3) cell secreted and 
cell-surface proteins, co-factors and enzymes; (4) extracellular matrix components; (5) signaling molecules; 
and (6) endocrine and exocrine secretions such as cytokines. The non-malignant cell populations residing 
in the extracellular spaces and matrices consist of: (1) capillary and lymphatic cells of vessels and ducts; (2) 
extracellular matrix (ECM) cells; (3) stromal cells; (4) mesenchymal stem cells; (5) fibroblasts; (6) pericytes; 
(7) immune-associated cells (lymphocytes); (8) macrophages; (9) myofibroblasts; and (10) endothelial 
cells[3,8,9]. Some of these constituent cells express and secrete various proteins involved in growth, cell 
movements, apoptosis, membrane proteolysis, and integrin and growth factor signaling. Thus, the cellular 
and non-cellular components of the instititual and ECM spaces represent an untapped source of potential 
molecular and cellular targets for cancer therapy. These will be addressed below.

CELL SIGNALING IN THE MICROENVIRONMENT
The tumor-to-microenvironment intracellular spaces offer a little-recognized cluster of molecular 
signaling targets with no place to hide. Hematologic and solid tumors are known to interact through 
microenvironments via cell surface chemokine receptors and their cognate ligands. As discussed above, the 
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major components in the extracellular signaling arena are the chemokine receptor complexes present on 
both tumor and ECM cells, which activate diverse intracellular signaling transduction events as discussed 
above[10]. Such intracellular signaling systems can activate a variety of pathways such as ERK1/2, p38, JAC/
STAT, SAPK/JNK, NF-κB, mTOR, PI3K-AKT, and BT-kinases[11]. Chemokine receptors, such as CXCR4 
and CXCR7, represent members of the seven-transmembrane domain G-protein coupled receptor family 
that transmit intracellular activation of processes such as calcium flux, chemotaxis, transcription, cell cycle 
transition, and cell survival[13]. The disruption, blockage, or dysregulation of chemokine receptors and 
associated proteins could lead to aberrant off-target signaling and de-sensitization of the chemokine receptor 
transactivation apparatus.

At present, the increasing insight and appreciation of the functional role of the microenvironment to cancer 
growth and metastasis is prompting further research to more fully elucidate and investigate the tumor cell-
to-stoma cell dependency. The identification of metastasis-associated protein targets, both cell-bound and 
secreted, which occupy the extra-cellular matrix and spaces are key targets for disabling the communication 
lines between the tumor and the interstitium. The protein constituents which aid and abet this signaling 
complex display properties associated with processes such as cell adherence, cell-to-cell contact, 
invasion, immigration, matrix proteolysis, growth factor and receptor regulation, and ECM remodeling 
and restructuring. For example, a recent report has described the existence of a cancer cell-to-stromal 
macrophage EGF/CSF-1 paracrine signaling loop in the invasive spread of a primary rat mammary tumor 
[Figure 1]. The invasive response was inhibited by blocking the EGF and CSF receptors and/or macrophage 
function demonstrating that tumor migration invasiveness was dependent on the paracrine loop.

PROTEIN CONSTITUENTS OF THE TUMOR MICRO-ENVIRONMENT
The intrinsic pressure driving the metastatic process of tumor cells is the need for additional nurturing 
factors such as new blood vasculature and increased nutrients for the ever-expanding volume of the primary 
tumor cell mass. The disseminated tumor cells take advantage of the metastasis-associated proteins already 
residing in and on the cells of the ECM and interstitial spaces. These metastasis-associated proteins, so 
crucial for break-away tumor cells, are presented in the discourse listed below and in Table 1.

Cell adherence and cell-to-cell contact family proteins
Cell adherence and contact processes can be attributed to a gene superfamily termed the cadherins which 
consist of protocadherins, cadherins, desmocollins, desmogleins, contactins, and connexins[14] [Table 1]. 
Such proteins function in cell adhesion to other cells, and to ECM constituents, and to formation of adherin 
junctions between cells. Cadherin family members display calcium (Ca2+) binding repeat domains in their 
intrinsic polypeptide structure[15]. Different cadherin subfamily members can act in concert to join cells 
together in both homotypic and heterotypic types of attachments. Some family members (protocadherin 
Cad-13) serve to stabilize and maintain cell connections during oxidative stress, neural cell development, 
neurite outgrowth, cell signaling, invasion, and migration[16]. Other family members are involved in 
cell survival, potassium channel transmission, maintaining the microvasculature, KRAS signaling, and 
transmembrane activities. The PECAM, connexin, and contactin proteins play roles in gap junction 
maintenance, platelet adherence, and aged white blood cell removal and destruction[17].

ECM family proteins
The ECM family of proteins include the integrins, zinc matrix metalloproteases (MMPs), A distingrin and 
metalloproteinase (ADAM) family, collagenases, gelatinases, and annexins[18] [Table 1]. The MMPs are 
synthesized as nonactive precursor proteins which require proteolytic cleavage exposing catalytic hemopexin 
domains utilized for collagen degradation. The MMPs play key roles in development, metabolic disorders 
and diseases, immune and autoimmune disorders, and in cancer. In comparison, the ADAM family 
members function as transmembrane-anchored proteins resembling snake venom disintegrins which are 
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involved in cell mobility, migration, adhesion, platelet aggregation, and cell-to-cell contact; such processes 
occur during reproduction, neurogenesis, muscle development, and tumorigenesis[19]. The collagenases 
and gelatinases are family members involved in tissue remodeling, bone mineralization, reproduction, 
autoimmune diseases, inflammation, and cancer development[20]. The integrins are composed of alpha/beta 
chain proteins that participate in cell adhesion/contact and ECM-to-cell membrane inside-out signaling[21]. 
Finally, annexins are Ca2+ and phospholipid binding proteins that serve in blood coagulation processes[22].

The growth factor receptor family proteins
The growth factor receptors associated with the tumor microenvironment and metastatic sites are largely 
G-coupled seven-transmembrane receptors containing kinase domains required for intracellular signaling 
and cross-talk between adjacent pathways[23] [Table 1]. These receptors bind growth factors such as fibroblast 

Figure 1. Peptide disruption of tumor to stroma communication. The peptide disruption of the tumor-to-stromal cell communication 
network is displayed together with the connective tissue layers, cell components, and signaling pathways. Note that the top half of the 
diagram displays the communication network connection indicated by the dashed lines (---) between tumor/stromal cells; while the 
bottom second half demonstrates the blocked linkage(←--X-→) due to peptide disruption of tumor-to-stoma communication (see text 
for references and Ref.[45])
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growth factor, laminin, somatostatin, ephrin, IL-8, and KISSIR[24]. The receptor-mediated activities 
encompass angiogenesis, mitogenesis, growth enhancement, differentiation, kinase function, cancer 
genesis and maintenance. These receptors can further activate, influence, and regulate cell cycle transitions, 
mitogenesis, cell motility, migration, and metastasis. Some receptors contain tyrosine kinase domains 
that enhance or influence growth in multiple tissues including the blood vasculature. The somatostatin 
receptors regulate the release of various hormone and secreted proteins, while the ephrin receptors are 
involved in tissue formation, cell migration and contact, stem cell differentiation, and cancer growth[25,26]. 
Finally, the G-coupled receptor-54 functions as a receptor for the KISS gene product, a cancer metastatic 
suppressor protein which when mutated, induces chemotaxis and invasion in numerous cancer cells. Thus, 
the metastasis-associated growth factor receptors are heavily involved in cell-to-ECM adhesion, invasion, 
migration, cancer growth and metastatic activities.

Growth factor and regulator family members
The microenvironment and metastasis-associated proteins encompass a wide range of growth factors and 
kinase enzymes that include transforming growth factor, vascular endothelial growth factor, MTSS1, p53 cell 

Table 1. Selected metastasis-associated protein constituents of the tumor microenvironment are listed as four major 
functional groups. Such proteins are involved in cell activities such as adherence, mobility, growth, migration, invasiveness, 
angiogenesis, signaling, and proteolytic degradation 

  Group-I proteins: cell adherence and cell-to-cell contact
     1. Protocadherin-Beta-1 (Q9Y5F3)
     2. Cadherin-6 (AAH00019)
     3. Cadherin-13 (NP_001248)
     4. Cadherin-22 (CAB51587)
     5. Contactin-3 (N_P387504)
     6. Neural Cell Adhesion Molecule (NP_000606)
     7. Platelet Endothelial Adhesion Molecule (NP_000433)
     8. Connexin GJA5 (AAH13313)
     9. Neuratropic tyrosine kinase R-3 (NP_001012338
  Group-II proteins: matrix metalloproteases (MMP) and ADAMS
     1. MMP-2 (ABD38929)
     2. MMP-9 (CAC10459)
     3. MMP-10 (AAH02591)
     4. MMP-13 (AAH74808)
     5. ADAM-22 (NP_068368)
     6. Integrin Alpha-6 (AAH50585)
     7. Integrin Alpha-2 (NP_002194)
     8. Annexin-A8 (P13928)
     9. Collagen IV, Alpha-3 (CAA56335)
  Group-III proteins: growth factor receptors - cell surface
     1. Fibroblast Growth Factor Receptor (P22455)
     2. G-protein Coupled Receptor-54 (QT69F8)
     3. Interleukin-8 Receptor (NP_001548)
     4. FMS-like Tyrosine Kinase Receptor (AAB23636) 
     5. Laminin Receptor (AAC50652)
     6. TSH-associated Receptor (AAD31568)
     7. Somatostatin Receptor-2 (NP_001041)
     8. Ephrin Receptor-2B (CA122899)
     9. C-Met Hepatocyte Growth Factor Receptor (NP_000236)
  Group-IV proteins: growth factors and regulators
     1. Transforming Growth Factor B-1 (NP_000651)
     2. Vascular Endothelial Growth Factor (CAC19516)
     3. Retinoblastoma-Assoc. Protein-1 (NP_000312)
     4. p53 Protein Tumor Cell Antigen (NP_000537)
     5. Tyrosine Protein Phosphatase Non-Receptor-7 (NP_002823)
     6. C-terminal (CTB) Binding Protein (AAD14597)
     7. NME-Nucleoside-Disphosphate Kinase (CAG46912)
     8. Metastasis Suppressor Protein MTSS-1 (AAF15947)

See Table 3 for Metastasis-associated functional activities, text, and Ref.[14-31]. Parenthesis indicates National Center for Bioinformatics 
(NCBI) Accession number. ADAM: A disintegrin and metalloproteinase gene family
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tumor antigen (phosphoprotein-53), tyrosine (tyr) protein-phosphate non-receptor type-7 protein, among 
others[28,29] [Table 1]. These proteins function in activities such as angiogenesis, tumorigenesis, metastasis, 
cancer proliferation, signal transduction, and cell cycle progression. Some of these proteins contain kinase 
enzyme domains which are contained in their polypeptide structure; other proteins act as regulators 
of cell cycle transition and tumor growth. The p53 cell antigen is a phospho-protein, which in the non-
mutated state, normally function as tumor suppressors that protect the genome. The tyr (tyrosine) protein 
phosphatase non-receptor-7 is a signaling molecule involved in cell transformation, cell cycle transition, 
growth, and proliferation both in non-cancer and in malignant cells[30]. This latter protein further interacts 
with lymphokine-secretory cells and exhibits MAP kinase activity. Another family member of this group 
can phosphorylate the C-terminal end of the SRC family kinases, while the NDPK protein is involved with 
cell growth, proliferation, development, signal transduction, and G-protein coupled receptor activities[16]. 
Finally, the MTSS1 protein functions, in it’s non-mutated state, as a metastasis suppressor protein that 
contains an actin binding (cytoskeletal) segment involved in cell migration[16].

Naturally-occurring protein-derived fragments
There exists an extensive reserve of natural protein-derived peptide segments encrypted within the 
polypeptide structure of circulating blood proteins and ECM/interstitial cell-secreted proteins[31,32]. The 
proteome of both humans and other mammals contain precursors and preproteins that when cleaved by 
proteolysis, release peptide fragments with diverse biological activities. Although not widely mentioned, this 
containment fraction of active peptide fragments are derived from naturally-occurring sources such as blood 
proteins, growth factors, hormones, clotting factors, ECM proteins, and angiogenic factors. Such peptide 
fragments constitute segments from precursor derived proproteins or preproproteins which are produced 
following proteolytic enzyme degradation (i.e., trypsin); they can also be produced by cleavage in the 
laboratory using agents such as cyanogen bromide. Some of nature’s most potent anti-angiogenic peptides 
are derived from abundant plasma proteins, growth factors, and ECM and stromal proteins[33,36] [Table 2]. 
Such peptide fragments are garnering attention in the biomedical literature due to their functioning in 
signal transduction, receptor cross-talk, growth regulation, vasodilation/vasoconstriction, hormone release, 
blood clotting and inf lammation[16]. Some peptide fragments can be cleaved from the amino-terminal 

Table 2. Selected examples of naturally occurring protein-derived peptides (small proteins) are displayed together with their 
amino acid sequence numbers and protein of origin

Name of peptide Number of amino 
acids in sequence Host protein of origin (pre-protein)      Peptide biological activity, function

1. Angiostatin 184 Plasminogen Blocks blood vessel growth
2. Endostatin 330 Collagen Type XVIII Angiogenesis inhibitor
3. Vasostatin 180 Calreticulin Angiogenesis inhibitor
4. Constatin 150 Collagen Type IV Inhibits endothelial cell growth
5. Tenacin 220 Fibronectin Repeat Domain Anti-adhesion Function
6. Fragment of GHRH 15 GHRH Stimulates Lipogenesis
7. Angiotension II 8 Angiotensinogen 22 Globulin Increases Vasopressin Production
8. Bradykinin 9 Kininogen Precursor Contracts Smooth Muscle
9. Oxytocin 9 Oxytocin Precursor Uterine Contracting Hormone
10. Endothelin 21 Pre-Pro-Endothelial Potent Vasoconstrictor
11. TRH 3 242 Amino Acid Polypeptide Precursor Governs Release of TSH
12. GIP* 34 Alpha-fetoprotein polypeptide (609 

amino acids)
Suppresses growth of hormone and non-hormone dependent 
growth and proliferation (normal and cancer growth)

GIP Sub-fragments:*
(1) P149a
(2) P149b
(3) P149c

12
14
8

AFP AA#464-475
AFP AA#476-488
AFP AA#489-496

Inhibit platelet aggregation and blood factors 
Blocks metastasis-assoc. proteins and cancer growth
Inhibits estrogen-dependent growth

Note that many peptides are derived from blood and extra-cellular matrix proteins. Naturally-occuring peptides can number in the 
hundreds of amino acids, while synthetic peptides are limited to 50 amino acids or less. *Synthetic peptides. AA: mino acid; AFP: alpha 
fetoprotein; GIP: growth inhibitory peptide; P149a: AAs; LSEDKLLACGEG (12 mer); P149b: AAs; AADIIIGHLCIRHE (14 mer); P149c: AAs; 
EMTPVNPG (also known as AFPep) (8-mer; both linear and cyclic). Data extracted from Ref.[33-38]. GHRH: growth hormone releasing 
hormone; TRH: thyroid releasing hormone; GIP: growth inhibitory peptide; TSH: thyrotrophin stimulating hormone
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or carboxy-terminal ends of various proteins, while others can be exposed following a conformational 
change in the proteins’ tertiary structure. Such a conformational change in a protein can be induced by 
environmental events such as stress, shock, oxidative state changes, osmotic pressure, pH, and high ligand 
concentrations[31,32]. Once identified in nature, single peptide fragments can be synthesized in the laboratory.

Examples of protein-derived fragments from the amino- or carboxy- ends of natural large proteins 
encompass a growing list of candidates. Such fragments include: angiotensin from angiotensinogen; 
endothelin from pre-pro-endothelin; bradykinin from kininogen, and others [Table 2]. Some examples 
of internal peptides encrypted within the chain of a protein include: Tenacin-C from fibronectin-III, 
angiostatin from plasmin, and endostatin from collagen-III [Table 2]. The chemically-synthesized peptides 
are usually restricted to less than 50 amino acids (AA) due to technical synthesis limitations, while naturally 
produced peptides can exceed 100 AAs. An example of a conformationally-exposed peptide segment 
from Table 2 is the growth-inhibitory peptide (GIP) derived from the full-length alpha-fetoprotein (AFP) 
molecule[37-40]. The GIP segment is uncovered on the AFP molecule following exposure of the protein to high 
concentrations of estrogens, fatty acids, and growth factors. The GIP-exposed form of AFP is a transitory 
(molten globular) form which can refold back to its natural tertiary structure following removal of the high 
ligand concentrations. The encrypted GIP segment on AFP is normally concealed within a hydrophobic cleft 
of the tertiary-folded AFP molecule. Moreover, GIP and its sub-fragments have been chemically synthesized, 
purified, and characterized in multiple assays of biological activities including anti-cancer growth and 
metastasis inhibition in both in vitro and in vivo models[37,38].

Table 3. Selected cell adherence and cell-to-cell contact protein superfamily members are listed with their functional activities 
together with their third domain alpha-fetoprotein binding/interaction sites

Selected Protein Name Functional Activities AFP Amino Acid 
Sequence Numbers

AFP Amino Acid 
Sequence**

Cell adherence and cell-to-cell contact proteins
   (1) Cadherin-6 Calcium dependent cell adhesions and 

connections
AA#285-292
AA#500-507

FQTENPLE
CTSSYANR

   (2) Cadherin-22 Cell adhesion, K+ channel-associated AA#481-488
AA#516-524

LGHLCIRH*
VDETYVPP

   (3) Connexin GJA5 Transmembrane GAP Junction Protein AA#413-421
AA#529-537

KRSCGLFQ
DKFIFHKD

Matrix metallo proteases and ADAM family proteins
   (4) MMP-9 Degrades ECM proteins, cell migration AA#409-417

AA#444-452
GALAKRSC
SELMAITR

   (5) ADAM-22 Cell-to-cell and matrix interaction AA#429-437
AA#481-489

NAFLVAYT
IGHLCIRH*

   (6) Integrin alpha-2 An interacting protein for laminin, collagen and 
fibronectin

AA#433-441
AA#485-493

VAYTKKAP
CIRHEMTP*

Growth factor receptors - cell surface
   (7) Fibroblast growth factor receptor Regulate cell growth, proliferation AA#401-408

AA#477-485
LQKYIQES
ADIIIGHL*

   (8) Ephrin receptor Receptor for cell migration and angiogenesis AA#453-461
AA#477-485

KMAATAAT
ADIIIGHL*

   (9) G-protein coupled receptor-54 Receptor for metastasis kiss peptide-4 AA#481-489
AA#500-507

IGHLCIRH*
CTSSYANR

Grow factors and regulators
   (10) Vascular endothelial grow 
   factor

Stimulates vascular permeability for 
angiogenesis

AA#477-485
AA#497-505

ADIIIGHL
QKLISKTR

   (11) Metastasis suppressor protein 
   MTSS1

Tumor metastasis; acts to bind actin AA#425-433
AA#444-452

YYLQNAFL
SELMAITR

   (12) Tyrosine phosphate 
   non-receptor type-7

Regulates cell growth and cell cycle AA#421-429
AA#477-485

KLGEYYLQ
ADIIIGHL

**AFP amino acid sequence (single letter code); *growth inhibitory peptide (GIP) sequences. AFP: alpha-fetoprotein; ADAM: A disintegrin 
and metalloproteinase protein family; MMP: matrix metalloproteinases; Data extracted from Ref.[16,31,37-39]
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In the AFP derived GIP fragment example, a normal growth enhancing AFP molecule is converted to 
a growth inhibitory full-length protein capable of blocking normal and cancer growth and metastasis. 
Aside from GIP, other protein-derived peptide sites on the AFP third domain have since been identified 
and mapped; some such peptide segments have been found to bind and/or interact with other proteins 
such as metastasis-associated family members of the ECM, interstitial, and stromal proteins of tumor 
microenvironments[16].

Third-domain derived AFP peptide-interactions with ECM proteins
As displayed in Table 2, the third domain of AFP provides an example of naturally occurring protein-
derived peptides segments with biological activities of significance. The AFP third domain houses multiple 
peptide segments (8-10 or more amino acids) that have been identified by “in silico” prediction tools and 
molecular modeling; these were verified by in vitro cell-based assays and the AFP-derived peptides were 
found to bind various proteins[16,41,42]. Recent examples of confirmed protein-to-peptide binding interactions 
between AFP peptides and natural proteins include the scavenger receptor proteins, immune dendritic 
cells, mucin proteins, retinoic acid receptors, and metastasis-associated proteins in both cancer and non-
malignant models[42]. Logic would dictate that disruption and/or interference of cross-talk and signaling 
pathways between tumor cells and their surrounding proteins (both free and cell bound) located in the 
microenvironment might serve to hamper or obstruct this crucial linkage. As discussed above, the tumor 
microenvironment contains 4 or more protein families of metastasis-associated proteins relate to tumor 
cell detachment, adhesion, contact, and migration via the ECM. By use of the AFP receptor and protein 
binding third domain peptides as displayed in Table 3, it can be noted that such peptides might be capable 
of disabling and/or disrupting communication lines between the tumor primary mass and/or metastasis 
nesting sites. The identities of these potential protein-to-AFP peptide interaction sites with the metastasis-
associated proteins from tumor micro-environments are addressed below.

Interaction of metastasis-associated proteins with AFP-derived peptides
It has previously reported that metastasis-associated proteins are capable of binding and/or interacting 
with AFP-derived peptides of the third domain[16,42]. In that report, members of the cell adhesion/contact 
protein family, such as cadherins, contactins and connexins were identified “in silico” to interact with AFP 
derived peptide sites on the amino-terminal half of domain-3, AA#401-500. The same was true for the ECM-
associated proteins of the MMP and ADAM family proteins being clustered from AA# 409-480; moreover, 
these results showed interaction sites with AFP AA# 504-558 in the carboxy end of domain-3. The third 
group of interacting proteins, the growth factor receptors, demonstrated two cluster interaction sites on 
AFP-3D; the first group at AA#s 433-477 and the second grouping at AA# 512-550. Finally, the last class of 
AFP interacting proteins, the growth factors and regulators, consisted of two distinct interaction regions; 
the first extending from AA# 413-487, while the second encompassed sites at AFP AA#s 508-522. It can be 
concluded from these data that metastasis-related proteins are potentially capable of interaction with various 
AFP peptide segments on both the 1st and 2nd halves of the AFP domain-3[16].

CONCLUSION
It can be concluded from the above discourse that both naturally occurring protein-derived and 
synthetic peptides, ranging from 8-50 AA or larger, might be candidates capable of disabling tumor-to-
microenvironment communications. Such network connections are essential for supplying blood vascular 
and nutrient supplies from the ECM to the tumor, critical locations required for tumor survival and 
subsequent metastasis. The microenvironmental compartments surrounding tumors are required for 
successful cell detachment from the primary mass and taking advantage of migration and adhesion factors 
already present in the extracellular and stromal cell areas.

The present study further highlighted the many natural protein-derived peptides in human beings, whose 
activities involved cell adhesion, mobility, contact, angiogenesis, blood clotting, and tumorigenesis. In 
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some instances, the derived peptide displayed an opposite action from its host protein such as angiogenic 
inhibition versus enhancement of new blood vessel growth. In another type of protein-derived peptide, the 
amino acid segment is not cleaved from the preproprotein, but rather exposed following a conformational 
change of the tertiary folded polypeptide. As an example, metabolic stresses of excessive ligand 
concentrations can temporarily convert the growth enhancing AFP molecule into a growth inhibitory 
protein. The transitory AFP molecule then refolds back to its tertiary form, and full length AFP once again 
displays the property of growth enhancement.

In the future, it might be feasible to administer short peptides to metastatic patients by injection, infusion, 
and osmotic pumps, or via sublingual routes to patients in early and/or late metastatic disease. Such peptides 
are also capable of down-regulating the expression of metastasis-associated proteins as previously described 
for GIP[44]. Peptides are short half-life molecules with good targeting properties, and adequate target binding 
(loading/off- loading) affinities[43]. Natural or synthesized peptides might potentially serve as treatment 
adducts in combination with next generation therapeutic cancer drugs. Peptide binding, occupation, down-
regulation, and saturation of ECM proteins in the interstitium may possibly serve to disable and sever the 
primary tumor and/or metastatic nesting sites from their ECM communication networks.
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