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Abstract
This review article proposes the theory that liver fibrosis, the abnormal accumulation of excessive extracellular 
matrix, is not just an indicator of liver disease but also a negative reflection of overall systemic health. Liver fibrosis 
poses a heavy financial burden on healthcare systems worldwide and can develop due to chronic liver disease from 
various causes, often due to sustained inflammation. Liver fibrosis may not generate symptoms and become 
apparent only when it reaches the stage of cirrhosis and is associated with clinically significant portal hypertension 
and leads to decompensation events or promotes the development of hepatocellular carcinoma. While chronic viral 
hepatitis and excessive alcohol consumption were once the primary causes of chronic liver disease featuring 
fibrosis, this role is now increasingly taken over by metabolic dysfunction-associated steatotic liver disease 
(MASLD). In MASLD, endothelial dysfunction is an essential component in pathogenesis, promoting the 
development of liver fibrosis, but it is also present in endothelial cells of other organs such as the heart, lungs, and 
kidneys. Accordingly, liver fibrosis is a significant predictor of liver-related outcomes, as well as all-cause mortality, 
cardiovascular risk, and extrahepatic cancer. Physicians should be aware that individuals seeking medical attention 
for reasons unrelated to liver health may also have advanced fibrosis. Early identification of these at-risk individuals 
can lead to a more comprehensive assessment and the use of various treatment options, both approved and 
investigational, to slow or reverse the progression of liver fibrosis.

Keywords: Biomarkers, cancer, cardiovascular disease, diabetes, liver fibrosis, MASH, MASLD mortality, vibration-
controlled transient elastography

https://creativecommons.org/licenses/by/4.0/
https://www.oaepublish.com/mtod
https://orcid.org/0000-0001-9886-0698
https://orcid.org/0000-0002-8334-0400
https://orcid.org/0000-0003-3888-0931
https://dx.doi.org/10.20517/mtod.2024.42
http://crossmark.crossref.org/dialog/?doi=10.20517/mtod.2024.42&domain=pdf
http://www.oaepublish.com/mtod
mailto:a.lonardo@libero.it
https://orcid.org/0000-0002-1424-7894


Page 2 of Lonardo et al. Metab Target Organ Damage 2024;4:41 https://dx.doi.org/10.20517/mtod.2024.4221

DEFINITIONS, HISTORY, BURDEN, AND AIM
Liver fibrosis is defined as the accumulation of excessive collagen and other extracellular matrix (ECM) 
proteins[1]. It serves to preserve tissue integrity by circumscribing offending agents and results from ongoing 
liver insults of viral, toxic, autoimmune, genetic, or metabolic origin. Therefore, it is a final common 
outcome of all types of chronic liver disease (CLD) regardless of etiology[2,3]. Initially clinically silent and 
insidious, advanced liver fibrosis is associated with profoundly distorted hepatic architecture and markedly 
compromised liver physiology[1,4]. When it progresses to cirrhosis, advanced fibrosis predisposes to portal 
hypertension, liver failure, and hepatocellular carcinoma (HCC), and may necessitate liver transplantation 
in some cases[1].

Hepatic stellate cells (HSCs), also known as “Sternzellen” or “Ito cells”, were first described by von Kupffer 
in 1876 (as reported by Geerts et al. and Sufleţel et al.)[5,6] and well characterized in humans, fishes, monkeys, 
and rats by Ito et al. and Tanuma, et al. in the 1950s[7-10]. In the 1980s, HSCs were identified as the main 
collagen-producing intrahepatic cell types, with their dramatic phenotypic changes associated with cell 
activation and the development of fibrogenic activity[11]. However, other cell types, such as portal 
myofibroblasts and cells of bone marrow origin, have also been acknowledged to exhibit fibrogenic 
potential[12,13]. Clinically, liver fibrosis may progress with remarkable individual variability due to genetic and 
environmental risk modifiers that modulate the risk of developing fibrosis and the speed of its progression 
in the context of CLD of various etiologies[14].

Initially believed to be an irreversible condition, early cirrhosis has instead been proven to be reversible after 
the removal of the inciting agent[15-17]. This discovery has sparked the interest of clinical and translational 
researchers in identifying antifibrotic therapies that target HSCs in preclinical models, antifibrotic 
programs, and clinical trials involving patients with CLD[1,18].

The severe clinical outcomes associated with advanced liver fibrosis, namely portal hypertension, liver 
failure, and HCC, largely explain why cirrhosis represents a leading cause of mortality and impaired quality 
of life worldwide. It imposes a major and ever-increasing financial burden on healthcare systems 
globally[19-21].

It is widely acknowledged that the stage of fibrosis, ranging from F0 (absence of fibrosis) to F4 (cirrhosis), 
plays a crucial role in determining the prognosis of CLD and liver-related outcomes[3]. Therefore, this 
review article will specifically address the recent recognition that the presence and severity of liver fibrosis 
are strongly associated with, and probably determine, significant extrahepatic outcomes, such as the risk of 
developing cardiometabolic events and cancer.

ETIOLOGY AND PATHOMECHANISM OF LIVER FIBROSIS
Recently, we have witnessed major epidemiological trends owing to the prevailing burden of CLD due to 
metabolic dysfunction. These types of CLD, previously alluded to as nonalcoholic fatty liver disease 
(NAFLD) and nonalcoholic steatohepatitis (NASH), are now renamed metabolic dysfunction-associated 
steatotic liver disease (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH). NAFLD/
NASH is a diagnosis of exclusion (nonalcoholic), while MAFLD/MASH is a diagnosis based on positive 
criteria (metabolic dysfunction); additionally, the adjective “steatotic” replaces “fatty liver” to avoid any 
concerns regarding the risk of stigmatization[22]. Although NAFLD and MASLD are differently defined, they 
identify an almost identical patient population[23]. Therefore, these two nomenclatures will be used 
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interchangeably in the present review. While the global burden of cirrhosis is higher in men, the age-
standardized incidence and mortality rates of MASH cirrhosis in women are now comparable to those of 
men[24]. A study conducted in Sweden during the years 2004 to 2017 found a shift among the leading 
etiologies of cirrhosis, with an approximately 30% relative reduction in cirrhosis related to infection with 
Hepatitis C Virus (HCV) contrasted with a more than 150% increase in NAFLD-cirrhosis, while alcohol-
related cirrhosis maintained its leading position[25]. These findings clearly illustrate the notion that a 
complex mixture of sex, environmental factors (including higher rates of eradication of HCV infection with 
direct-acting antivirals), and lifestyle habits (i.e., drinking and eating habits, sedentary behavior) determine 
the outcomes of fibrosing CLD[26].

Mechanistic concepts of liver fibrosis
In acute liver injury, fibrosis is a self-limited and reversible multicellular repair mechanism that provides 
mechanical scaffolding to replace dead cells and guide reparative processes[27,28]. This response is 
characterized by the activation and transdifferentiation of HSCs into myofibroblasts[29]. In healthy livers, 
HSCs are non-proliferative perisinusoidal cells with a star-like shape and many cytoplasmic lipid 
droplets[30]. However, following liver injury, HSCs progressively lose their typical stellate morphology and 
lipid droplets while secreting abundant components of the ECM and pro-inflammatory mediators[3]. 
Persistent HSC activation leads to ECM deposition that overcomes fibrosis dissolution, resulting in the 
progression of liver fibrosis[31]. An essential trigger of HSC activation is the loss of tonic inhibition due to 
diminished availability of nitric oxide (NO) caused by endothelial dysfunction[32].

The high number of activated HSCs and contractibility of myofibroblasts impair sinusoidal blood flow, 
leading to the depletion of oxygen and nutrients, which contributes to liver dysfunction in advanced stages 
of fibrosis[3]. Different subpopulations of macrophages (M1 expressing pro-inflammatory cytokines, and M2 
anti-inflammatory mediators) coincide in the liver and contribute to different phases of liver fibrosis[33]. The 
activation of macrophages fuels a closed circuit of ongoing inflammation by secreting cytokines to stimulate 
HSCs, which, in turn, produce pro-inflammatory cytokines to perpetuate pro-fibrotic macrophage 
activity[34]. Additionally, HSCs directly interact with immune cells via adhesion molecules, resulting in 
amplified pro-fibrogenic response[35]. Lymphocytes also participate in the fibrogenic process, as 
demonstrated by the finding that the depletion of intrahepatic lymphocytes results in impaired liver 
fibrosis[3]. It is increasingly recognized that HSC activation in MASLD involves mechanosensitive 
components from shear, compression, and stretch forces related to steatosis, hepatocellular ballooning, and 
inflammatory infiltration leading to impaired microcirculation, feedback amplification loops, and a pro-
fibrogenic milieu[36].

The role of endothelial dysfunction as a main driver of liver fibrosis is remarkable, since recognition of this 
relationship may offer preventive and therapeutic targets in early-stage MASLD. The sinusoidal 
endothelium holds a unique position as it is directly exposed to vasoregulatory, pro-inflammatory, 
immunogenic, and toxic substances from the gut microbiota via the portal circulation[37]. While liver 
sinusoids represent a highly specialized form of endothelium, liver sinusoidal endothelial cells (LSECs) 
share structural, functional, and regulatory features with endothelial cells of other organs such as the heart, 
lungs, and kidneys[38]. From a holistic perspective, vascular endothelium can be viewed as the gatekeeper of 
organ function, while its dysfunction is associated with a wide range of ailments, playing a prominent role 
in the pathogenesis of cardiometabolic disorders[39]. Arteriolar dysfunction and the propensity for 
atherosclerosis have been strongly associated with obesity, diabetes, dyslipidemia, and MASLD. Diabetic 
nephropathy is a vascular manifestation of metabolic dysregulation in the kidneys. Activation of angiocrine 
signaling pathways is a prerequisite for the continual growth of digestive cancers, disproportionately seen in 
obesity-associated disorders such as MASLD. The emergence of liver fibrosis from the dysfunction of LSECs 
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is, therefore, a plausible indicator of the overall health of the integrated endothelial system. In other words, 
the extent to which liver fibrosis reflects the disrupted sinusoidal homeostasis may also gauge the 
dysfunction of vascular endothelium across the entire organism.

Intestinal dysbiosis, defined as decreased diversity of intestinal microbiota, is involved in the progression of 
liver fibrosis through a variety of mechanisms including disrupted intestinal homeostasis, increased 
intestinal permeability, relative overgrowth of potentially pathogenic bacteria, delivery of pathogen-
associated molecular patterns, and intestinal deconjugation of bile acids, leading to increased production of 
secondary bile acids[3]. The so-called gut microbiota - bile acid axis is intricately involved with hepatic 
fibrogenesis[40]. For example, patients with liver fibrosis exhibit significant gut dysbiosis, and increased 
intestinal permeability allowing bacteria or bacterial antigens to reach the liver from the intestinal lumen via 
the portal blood, thereby contributing to fibrosis progression[41,42]. Additionally, subjects with liver fibrosis 
exhibit a dysregulated metabolism of bile acids, which is also involved in hepatic fibrogenesis via multiple 
signaling pathways[40]. Of interest, the gut microbiota affects bile acid metabolism by influencing both bile 
acid synthesis and conversion of primary bile acids to secondary bile acids via various catalyzed chemical 
reactions[43]. In their turn, bile acids affect the abundance and composition of the gut microbiota, and act as 
chemical messengers bridging the liver and intestine[44]. These fundamental changes do not occur in 
isolation; instead, they represent pathophenotypes[45] that impact other organs and overall health.

Studies have identified the molecular signaling pathways involved in liver fibrogenesis, paving the way for 
innovative therapeutics targeting sterile inflammation[46]. These pathways included platelet-derived growth 
factor (PDGF) signaling[47], transforming growth factor-β (TGF-β) signaling[48], oxidative stress, and the 
Inflammasome (NLRP3)-Caspase1 pathway, which have been described in detail elsewhere[3,49,50]. For 
example, the understanding that PDGF is produced by platelets suggests the use of direct oral 
anticoagulants and aspirin as antifibrotic agents[51-53].

ASSESSMENT OF LIVER FIBROSIS
Liver fibrosis can be either assessed invasively through liver biopsy or non-invasively using “wet” (fibrosis
biomarkers) or “dry” (elastography) techniques[54]. While liver biopsy is considered the “gold standard” for
diagnosing and evaluating the severity of liver disease, including staging liver fibrosis, it is expensive, not
always well-received by patients, and carries serious risks (3% hospitalization and 0.3% mortality)[55].
Additionally, there is a risk of sampling error in up to one-fourth of patients with MASLD, as
histopathological lesions may be evenly distributed in the liver[56]. Due to these limitations, liver biopsy is
not ideal for epidemiological studies or monitoring treatment responses over time in clinical settings. It
should be reserved for cases with diagnostic uncertainties or for patients at high risk of significant liver
fibrosis.

Biomarkers of liver fibrosis
Several liver fibrosis biomarkers are available. Some biomarkers, such as FibroTest, FibroMeter NAFLD,
enhanced liver fibrosis (ELF) test, and others, are based on the direct measurement of ECM products, but
they are not widely available and may incur payment as they are patented tools. Other freely and universally
available biomarkers are based on a combination of biometric and laboratory data, including the aspartate
to alanine amino-transferase (AST/ALT) ratio, AST-to-platelet ratio Index (APRI), fibrosis-4 (FIB-4) index,
Forns index, BARD score, and Hepamet fibrosis score (HFS)[4]. Almost all these biomarkers have achieved a
diagnostic accuracy of at least 0.80 for advanced fibrosis (F3-F4) compared to liver biopsy[4,57]. Liver fibrosis
biomarkers have a high negative predictive value (more than 80%-90%) in excluding advanced fibrosis/
cirrhosis, while their positive predictive value is suboptimal[57,58]. A relevant percentage of patients fall into
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an indeterminate zone between cut-off values ruling out or ruling in advanced fibrosis[55]. False positive 
results may occur in patients with normal alanine aminotransferase levels[58] and accuracy may be lower in 
diabetic patients[59]. FIB-4 is the best-validated fibrosis biomarker for MASLD patients[60].

Elastometry
Elastographic techniques estimate liver fibrosis through liver stiffness measurement (LSM) and are more 
accurate than biomarkers for non-invasive staging of liver fibrosis[58,61]. There are three main LSM methods: 
(1) vibration-controlled transient elastography (VCTE) (patented as Fibroscan®); (2) shear wave 
elastography (SWE) including point-SWE (pSWE) such as acoustic radiation force impulse (ARFI) and 
two-dimensional-SWE (2D-SWE) such as supersonic shear imaging (SSI); and (3) magnetic resonance 
(MR) elastography (MRE)[62,63]. The accuracy of VCTE and SWE measurements may be limited by 
overweight/obesity, liver inflammation, congestion, and cholestasis, which can increase liver stiffness 
independently of fibrosis[62,63]. MRE has the highest accuracy among elastographic techniques and is not 
influenced by obesity or other confounders, but it is expensive and not widely available[58].

LSM by VCTE can be used to diagnose compensated CLD by ruling in (> 15 kPa) or ruling out (< 10 kPa) 
the condition, as well as to rule out clinically significant portal hypertension (< 15 kPa and normal platelet 
count) according to the Baveno VII consensus[64]. Available evidence suggests that combining biomarkers 
and elastographic techniques increases the accuracy of non-invasive assessment of liver fibrosis.

Current guidelines suggest that patients with MASLD who are at intermediate to high risk of advanced 
fibrosis (FIB-4 ≥ 1.3) and have a LSM ≥ 8 should be evaluated for liver biopsy or MRE. Those with low risk 
(FIB-4 < 1.3 or LSM < 8) do not need a referral and can be reassessed every 2 years[58,65,66]. FAST (FibroScan-
AST) score may improve the detection of fibrotic MASH[67]. A recent meta-analysis showed that a sequential 
combination of FIB-4 and LSM-VCTE with lower cut-offs to rule out advanced fibrosis (< 1.3; < 8.0 kPa) 
and upper cut-offs to rule in cirrhosis (≥ 3.48; ≥ 20.0 kPa) can reduce the need for liver biopsies from 33% to 
19% in MASLD patients[68].

Limitations and future directions
Historically developed to identify significant fibrosis in chronic hepatitis C, subsequently refined for use in 
NAFLD and further adapted for prognostication in CLD, those biomarkers discussed above have several 
limitations including variability, inadequate accuracy, and risk factors for error[69]. Of concern is that these 
biomarkers were not designed to reflect the dynamic process of fibrogenesis, accurately differentiate among 
adjacent disease stages, identify MASH, or longitudinally follow changes in fibrosis occurring because of 
either the natural course of disease or treatment[69].

Age is a confounding factor for the accurate diagnosis of advanced fibrosis with biomarkers[70]. Additionally, 
patients with type 2 diabetes (T2D) represent an area of specific concern and specific biomarkers of fibrosis 
should be used in this patient population, for whom a decreased accuracy of fibrosis biomarkers is noted[59]. 
Similarly, obesity impacts the accuracy of non-invasive diagnosis of liver fibrosis[71] and is a common reason 
for failures to measure liver elastometry, although the XL probe may permit successful measurements in 
most obese subjects[72].

Understanding the strengths and limitations of these non-invasive tests will enable more judicious 
interpretation in the clinical context, while prompting precision medicine approaches to identify the best 
technique to assess liver fibrosis in any given individual.
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LIVER FIBROSIS IMPACTS ALL-CAUSE AND CAUSE-SPECIFIC MORTALITY
The severity of liver fibrosis modulates the risk of some of the principal causes of death among MASLD 
patients, including cardiovascular disease, extrahepatic cancer, and liver-related conditions[73,74], as discussed 
below.

Liver fibrosis and all-cause mortality
It is universally acknowledged that liver fibrosis is strongly linked to liver-related outcomes[75]. However, 
given that MASLD has multifactorial pathogenesis (often associating genetic predisposition with endocrine 
and metabolic dysfunction) and multisystem extension[76], it is logical to postulate that surrogate markers of 
liver fibrosis are a barometer of general health status. In agreement, all-cause mortality was already 
associated with the extent of fibrosis by Dulai et al. in 2017[77]. Mechanistically, this finding is likely due to 
the association of liver fibrosis with cardiovascular mortality and extrahepatic cancers, as discussed below. 
Recent studies have pointed out an association of liver fibrosis with all-cause mortality [Table 1][78-81].

Liver fibrosis and cardiovascular mortality
A large body of evidence indicates that, irrespective of the method used to identify it, i.e., either algorithms 
or imaging techniques, liver fibrosis is associated with cardiovascular mortality in MASLD independent of 
confounding factors [Table 2][78,82-91].

Liver fibrosis and cardiovascular disease are interconnected through several mechanisms, primarily 
involving inflammation, oxidative stress, and metabolic dysregulation[92-94]. In liver fibrosis, the 
accumulation of ECM proteins leads to scar tissue formation, which can disrupt normal liver function. This 
condition often results in increased portal hypertension and systemic inflammation, contributing to 
endothelial dysfunction, a key factor in cardiovascular disease[95,96]. Additionally, liver fibrosis is associated 
with altered lipid metabolism and insulin resistance, which can exacerbate atherogenic processes and 
promote coronary artery disease[97]. Furthermore, the release of pro-inflammatory cytokines from fibrotic 
liver tissue can lead to systemic effects that increase the risk of cardiovascular events. Overall, the interplay 
between these two conditions highlights the importance of addressing liver health as part of cardiovascular 
disease prevention and management strategies.

Liver fibrosis and extrahepatic cancers
Compared to data pertaining to cardiovascular mortality, data on the association of NAFLD with 
extrahepatic cancers appear to be less robust [Table 3][98-106].

According to Thomas et al., unlike HCC, the higher risk of extrahepatic cancer in NAFLD occurs 
independent of the liver fibrosis stage[104,107]. Although evidence on the excess risk of extrahepatic cancer 
among NAFLD subjects compared to NAFLD-free controls is limited, the disproportionate burden of 
extrahepatic cancer relative to HCC in NAFLD should be emphasized[107] as this may shape precision 
medicine follow-up protocols. Accordingly, additional investigation is warranted.

ASSESSING LIVER FIBROSIS TO GAUGE CARDIOVASCULAR RISK
Liver steatosis of viral (such as HCV) and/or metabolic (such as MASLD) origin has been strongly 
associated with insulin resistance and cardiovascular risk[108,109]. A large meta-analysis (36 longitudinal 
studies; nearly 6 million middle-aged subjects; 6.5 years of follow-up) has shown that MASLD (diagnosed 
by imaging, ICD diagnosis coding, or histology) is associated with increased incidence of fatal or non-fatal 
cardiovascular disease (CVD) events, more pronounced in advanced MASLD, especially in higher fibrosis 
stages[110].
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Table 1. Recent studies illustrating the notion that surrogate biomarkers of liver fibrosis predict all-cause mortality

Author, year  
[ref] Study population

Indexes of 
liver 
fibrosis

Findings Conclusions

Ciardullo  
et al., 2024[78]

4,229 MASLD individuals (free 
from a medical history of heart 
failure) from the general 
population who participated in 
the 1999-2004 NHANES.

FIB-4. At the LRA, elevated FIB-4 (≥ 2.67) and elevated 
NT-ProBNP levels (≥ 125 pg/mL) were both 
independently associated with higher risks of all-
cause mortality (HR: 2.2, 95%CI: 1.5-3.2 and HR: 1.6, 
95%CI: 1.4-2.0, respectively) irrespective of age, 
sex, and obesity.

In subjects with MASLD, 
both FIB-4 and NT-ProBNP 
were independently 
associated with higher 
mortality.

Collier  
et al., 2023[79]

UK retrospective cohort study 
of 12,589 patients, with follow-
up from January 2012 until 
November 2021.

FIB-4, NFS, 
and APRI.

The overall adjusted all-cause mortality HRs 
[95%CI: in the high-risk of fibrosis compared to low-
risk groups were 3.69 (1.95-2.75), 4, 2.32 (2.88-
4.70), and 3.92 (2.88-5.34) for FIB-4, NFS, and 
APRI, respectively].

All three fibrosis risk 
scores were positively 
associated with all-cause 
mortality in people with 
T2DM.

Choi  
et al., 2022[80]

7,702 Korean adults enrolled in 
the Dong-gu Study.

NFS, FIB-4, 
APRI, and 
BARD score.

Overall mortality increased in parallel with 
increasing NFS level (aHR: 4.3, 95%CI: 3.3-5.5 for 
high risk vs. low risk), increasing FIB-4 level (aHR: 
3.5, 95%CI: 2.9-4.4 for high risk vs. low risk), and 
increasing APRI level (aHR: 3.5, 95%CI: 2.1-5.8 for 
high risk vs. low risk) but not with BARD score.

NFS, FIB-4, and APRI 
showed a significant 
relationship with the 
overall mortality.

Vieira Barbosa 
 
et al., 2022[81]

Analysis of a cohort of 81,108 
subjects extracted from a US 
real-world nationwide 
database with data of 30 
million individuals.

FIB-4. At LRA, FIB-4 ≥ 2.67 was significantly and 
independently associated with all-cause mortality 
(HR: 2.49, 95%CI: 2.20-2.82, P < 0.001).

FIB-4 ≥ 2.67 strongly 
predicted all-cause 
mortality independently of 
confounding factors.

aHR: Adjusted hazard ratio; APRI: aspartate aminotransferase to platelet ratio index; BARD: body mass index, AST/ALT ratio, and presence of 
diabetes; CI: confidence interval; FIB-4: Fibrosis-4; HR: hazard ratio; LRA: logistic regression analysis; NFS: nonalcoholic fatty liver disease fibrosis 
score; NHANES: National Health and Nutrition Examination Survey; NAFLD: nonalcoholic fatty liver disease; NT-ProBNP: N-terminal pro-B-type 
natriuretic peptide; T2DM: type 2 diabetes mellitus; UK: United Kingdom; US: United States; AST: aspartate aminotransferase; ALT: alanine 
aminotransferase.

Liver biopsy
Two recent prospective histological studies investigated the association between liver fibrosis and 
cardiometabolic risk with positive findings. The first study, which included 285 MASLD patients with a 
median follow-up time of 5.2 years, found that F3-F4 fibrosis on biopsy and a higher NAFLD fibrosis score 
(but not FIB-4, AST/ALT, APRI) independently predicted incident CVD at multivariable analysis [sub 
hazard ratio (HR) 2.86, 95%CI: 1.36-6.04], after adjusting for traditional risk factors and cardiovascular risk 
scores[111]. The second study, which included an even larger sample (2,850 MASLD patients and 10,648 
controls) with a longer follow-up time (median 13.6 years), reported a significantly increased risk of 
incident major adverse cardiovascular events (MACE) in MASLD compared to controls (24.3 vs. 16.0/1,000 
person-years; adjusted hazard ratio (aHR) 1.63, 95%CI: 1.56-1.70), including coronary heart disease (CHD), 
stroke, heart failure (HF), or cardiovascular (CV) mortality rates. The risk of MACE increased progressively 
with worsening MASLD (MASH without fibrosis: Ahr = 1.52; non-cirrhotic fibrosis: aHR 1.67; cirrhosis: 
aHR 2.15)[112]. Conversely, a previous smaller study with a sample size of 603 biopsy-proven MASLD 
patients matched to 6,269 controls found that MASLD, but not histological parameters, independently 
predicted incident CVD (HR: 1.54, 95%CI: 1.30-1.83) during a mean follow-up of 18.6 years[113].

Fibrosis biomarkers
The association between non-invasively assessed liver fibrosis (specifically fibrosis biomarkers and 
elastographic techniques) and CVD has been extensively reviewed elsewhere[4].

Advanced fibrosis assessed by fibrosis biomarkers [FIB-4, Forns index, nonalcohol fatty liver disease fibrosis 
score (NFS), and HFS] as well as liver biopsy or LSM is associated with increased CV risk scores, such as 10-
year atherosclerotic cardiovascular disease (ASCVD) risk, Systematic COronary Risk Evaluation (SCORE) 
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Table 2. Recent evidence linking liver fibrosis to mortality owing to cardiovascular causes

Author, year 
[ref]

Study population and 
follow-up

Assessment of 
liver fibrosis Findings Conclusions

Baik et al., 
2020[82] 

2,504 patients with first-
ever IS or TIA recruited were 
followed for a median of 1.2 
years.

Advanced liver 
fibrosis was 
defined as a FIB-4 
> 3.25.

Advanced liver fibrosis was associated with 
an increased risk of all-cause mortality (HR: 
3.98, 95%CI: 2.40-6.59), CVM (HR: 4.48, 
95%CI: 1.59-12.65), and IS recurrence (HR: 
1.95, 95%CI: 1.05-3.65).

Advanced liver fibrosis is 
associated with unfavorable 
long-term prognosis, 
including increased risk of 
CVM and overall mortality.

Cao et al., 
2021[83] 

3,718 consecutive patients 
with previous MI were 
enrolled and followed for a 
mean of 47.4 ± 24.8 months.

FIB-4, NFS, Forns 
score, HUI score, 
and BARD score.

Regarding cardiovascular outcomes, aHRs of 
the highest group of FIB-4, NFS, Forns score, 
HUI score, and BARD score were 1.75 (1.32-
2.33), 2.37 (1.70-3.33), 2.44 (1.61-3.73), 1.58 
(1.16-2.14), and 1.27 (1.03-1.57), respectively, 
vs. the lowest score group. These liver fibrosis 
scores were also independent predictors of 
CVM and all-cause mortality.

Liver fibrosis scores 
independently predict CVM 
and all-cause mortality.

Jin et al., 
2021[84]

5,143 consecutive subjects 
with stable CAD were 
followed up for 7 years.

NFS, FIB-4. Subjects with intermediate and high NFS and 
FIB-4 values had a higher risk of CVEs and 
CVM.

NFS and FIB-4 scores are 
associated with CVEs and 
CVM. 

Oh et al., 
2021[85]

4,163 subjects from the 
KGES were followed 
biannually over 16 years.

FIB-4, NFS, and 
APRI.

Both FIB-4 and NFS were significantly 
associated with liver-specific mortality, 
particularly in subjects with BMI < 25 kg/m2, 
but not CVM. 

FIB-4 and NFS, while 
predicting liver-specific 
mortality, do not predict 
CVM.

Chung et al., 
2022[86]

1,607,232 T2DM subjects 
were enrolled and followed 
up for a mean of 6.9 years.

AAR. Compared to those with AAR < 0.8, overall 
mortality and CVM significantly increased in 
those with AAR ≥ 1.4 in both non-CKD (HR: 
2.16, 95%CI: 2.06-2.25 and HR: 1.93, 95%CI: 
1.73-2.15) and CKD groups (HR: 2.36, 95%CI: 
2.20-2.52 and HR: 2.57, 95%CI: 2.21-2.98).

High AAR is associated with 
CVM and overall mortality.

Yan et al., 
2022[87]

Metanalytic review 
comprising 12 cohort 
studies, totaling 25,252 
individuals with CVD.

FIB-4, NFS. The highest values of FIB-4 or NFS were 
associated with a greater risk of CVM (FIB-4, 
HR: 2.07, 95%CI: 1.19-3.61, I2 = 89%; NFS, 
HR: 3.72, 95%CI: 2.62-5.29, I2 = 60%) and 
all-cause mortality (FIB-4, HR: 1.81, 95%CI: 
1.24-2.66, I2 = 90%; NFS, HR: 3.49, 95%CI: 
2.82-4.31, I2 = 25%).

Among CVD patients, higher 
levels of FIB-4 and NFS are 
associated with a higher risk 
of CVM and all-cause 
mortality.

Mascherbauer 
et al., 2022[88] 

1,075 subjects were included 
(972 patients, 50 controls, 
53 participants with 
transient elastography). 
Follow-up duration: 58 ± 31 
months.

T1-times on 
standard CMR.

High hepatic T1-times were associated with a 
higher risk of events (aHR: 1.66, 95%CI: 1.45-
1.89) per 100 ms increase; P < 0.001), even 
when adjusted for confounding factors. On 
ROC analysis and RCS, a hepatic T1-time > 
610 ms was associated with excessive risk.

Hepatic T1-times > 610 ms on 
standard CMR scans 
independently predict  CVM.

Lee et al., 
2023[89]

35,531 individuals with 
suspected NAFLD, from the 
KNAHNES 2007-2015, and 
followed for a mean 8.1-year 
follow-up.

FIB-4, NFS. When NFS and FIB-4 were combined, the 
high NFS + high FIB-4 group was significantly 
associated with higher odds of all-cause 
mortality (HR: 1.85, 95%CI: 1.42-2.43) and 
CVN (HR: 2.04, 95%CI: 1.23-3.39) compared 
to the low NFS + low FIB-4 controls, although 
these associations were attenuated among 
those with high-quality diet.

In NAFLD, advanced liver 
fibrosis independently 
predicts all-cause mortality 
and CVM. However, this 
association is affected by a 
high-quality diet.

Seo et al., 
2023[90] 

46,456 individuals from the 
KNANHES database were 
included, with a median 
follow-up period of 8.6 
years.

FIB-4. FIB-4, ≥ 2.67 was associated with all-cause 
mortality (HR: 1.64, 95%CI: 1.23-2.18), CVM 
(HR: 2.96, 95%CI: 1.60-5.46), and LRM (HR: 
10.50, 95%CI: 4.70-23.44), but not cancer 
mortality, after adjusting for confounding 
factors. 

FIB-4 is strongly associated 
with all-cause, CVM, and 
LRM. 

Guan et al., 
2023[91]

Cross-sectional study of 
3,471 subjects with T2D 
from the NHANES database.

FIB-4. The risk of all-cause mortality (HR: 1.24, 
95%CI: 1.17-1.32) and CVM (HR: 1.17, 95%CI: 
1.04-1.31) increased with each FIB-4 SD 
increase after full adjustment. Stratified 
analysis showed that FIB-4 was a risk factor 
for individuals > 60 years old (HR: 1.14, 
95%CI: 1.01-1.29).

FIB-4 is associated with all-
cause and CVM in the T2D 
population, and this 
association is significantly 
affected by age.

4,229 MASLD subjects (free 
from a history of HF heart 
failure who participated in 
the 1999-2004 cycles of the 
NHANES and were followed 

Both FIB-4 and NT-ProBNP 
are independently associated 
with higher mortality among 
MASLD subjects, supporting 
the combined use of these 

Ciardullo et al., 
2024[78]

FIB-4. Both FIB-4 ≥ 2.67 and NT-ProBNP levels ≥ 
125 pg/mL were independently associated 
with higher all-cause mortality (HR: 2.1, 
95%CI: 1.2-3.7) and CVM (HR: 2.1, 95%CI: 
1.5-2.9) irrespective of age, sex, and obesity. 
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over a median of 15.6 years. biomarkers to risk-stratify 
patients.

AAR: AST/ALT ratio; aHR: adjusted HR; BARD: BMI, AST/ALT ratio, diabetes; APRI: aspartate aminotransferase to platelet ratio index; CAD: 
coronary artery disease; CKD: chronic kidney disease; CI: confidence interval; CMR: cardiac magnetic resonance; CVD: cardiovascular disease; 
CVEs: cardiovascular events; CVM: cardiovascular mortality; FIB-4: Fibrosis 4; HF: heart failure; HR: hazard ratio; HUI: health utility index; IS: 
ischemic stroke; NHANES: National Health and Nutrition Examination Survey; KNHANES: Korea National Health and Nutrition Examination 
Survey; KGES: Korean Genome and Epidemiology Study; KTRs: kidney transplant recipients; LRM: liver-related mortality; MI: myocardial 
infarction; NFS: nonalcohol fatty liver disease fibrosis score; NT-ProBNP: N-terminal pro-B-type natriuretic peptide; RCS: restricted cubic splines; 
ROC: receiver operating characteristic; SD: standard deviation; TIA: transient ischemic attack; T2D: type-2-diabetes; AST: aspartate 
aminotransferase; ALT: alanine aminotransferase.

model, and the Framingham risk score (FRS)[57,114,115]. Advanced fibrosis assessed by liver fibrosis biomarkers
(FIB-4 and NAFLD fibrosis score) has been significantly and independently associated with subclinical
atherosclerosis [high-risk carotid intima-media thickness (cIMT) ≥ 1.2 mm] in patients with biopsy-proven
MASLD. The diagnostic performance of biomarkers was like that of histological fibrosis staging[116].
Interestingly, two recent large sample meta-analyses have shown that FIB-4 and NFS independently
predicted incident CVD in MASLD patients, as well as in subjects with established CVD, including CHD,
nonvalvular atrial fibrillation (AF), and HF[87,117].

A longitudinal study of the UK Biobank cohort consisting of 325,129 participants with a median follow-up
of 12.8 years, revealed that metabolic dysfunction-associated fatty liver disease (MAFLD) as defined by fatty
liver index (FLI) significantly predicted the occurrence of myocardial infarction (MI) (HR: 1.35, 95%CI:
1.29-1.41) and stroke (HR: 1.26, 95%CI: 1.18-1.33). Importantly, there was a clear association between liver
fibrosis biomarkers (NFS/FIB-4) and the risk of MI and stroke within specific MAFLD subtypes, such as
diabetics and overweight patients with metabolic abnormalities[118].

Some studies have specifically explored the association between biomarkers of liver fibrosis and CVD in
patients with type 2 diabetes mellitus (T2DM). In a population of 120,256 patients with new-onset T2DM,
persistent advanced liver fibrosis determined by the BARD score was associated with increased risk of CVD
(such as stroke and HF) and mortality. Conversely, regression of liver fibrosis was associated with a
decreased risk of CVD and mortality[119]. Higher FIB-4 scores have been significantly associated with various
CVD events such as MACE, hospitalization for HF/CV death, CV death, and hospitalization for HF among
8,246 patients with T2DM and ASCVD included in a post-hoc analysis of the Evaluation of Ertugliflozin
Efficacy and Safety Cardiovascular Outcomes Trial (VERTIS CV)[120].

Cross-sectional studies have found that target organ damage in T2DM, such as diabetic nephropathy,
retinopathy, or neuropathy, was independently associated with liver fibrosis staging assessed by FIB-4[121,122].

A milestone meta-analysis showed that MASLD is associated with an increased risk of prevalent AF
(overall) and incident AF (only in T2DM)[123]. Recent data suggest that liver fibrosis may drive AF risk in
patients with fatty liver. Higher FIB-4 has been significantly associated with an increased risk of AF
independently of cardiometabolic risk factors (aOR 2.26; 95%CI: 1.74-2.92) in MASLD patients[124].
Intermediate-high NFS and FIB-4 independently predicted AF recurrence in NAFLD patients[125]. Advanced
baseline liver fibrosis assessed by NFS has been significantly associated with incident new-onset AF among
patients with preserved ejection fraction HF[126].

MASLD is associated with an increased risk of incident HF, as confirmed by recent meta-analytic
studies[127,128]. The FIB-4 score has been positively and significantly correlated with serum BNP levels,
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Table 3. Recent studies addressing the risk of extrahepatic cancers among those with NAFLD

Author, year  
[Ref]

Method Types of cancers associated with NAFLD Conclusion

Kim  
et al., 2017[98] 

Historical cohort study of 25,947 
subjects (33.6% of whom with 
NAFLD) followed up for a median of 
7.5 years at a tertiary hospital in 
South Korea.

Further to HCC, NAFLD was strongly associated with 
CRC in males (HR: 2.01, 95%CI: 1.10-3.68; P = 0.02) 
and BRC in females (HR: 1.92, 95%CI: 1.15-3.20, P = 
0.01).

A high NFS and a high FIB-4 score 
showed a strong association with 
the development of all cancers and 
HCC.

Peleg  
et al., 2018[99]

Single-center retrospective study of 
32 subjects followed up for a mean 
time of 100 months.

At MVA, the occurrence of malignancies was 
associated with higher APRI (P < 0.001), FIB-4 (P < 
0.001), and NFS (P = 0.008) scores, but not with 
histologically determined advanced fibrosis (P = 
0.105).

In NAFLD patients, non-invasive 
scoring systems are good 
predictors of the development of 
hepatic and EHCs.

Liu  
et al., 2020[100] 

Meta-analysis of 26 studies. CRC and adenomas (OR: 1.72, 95%CI: 1.40-2.11 and 
OR: 1.37, 95%CI: 1.29-1.46, respectively).  
ICC and ECC (OR: 2.46, 95%CI: 1.77-3.44 and OR: 
2.24, 95%CI: 1.58-3.17, respectively). 
BRC (OR: 1.69, 95%CI: 1.44-1.99) was associated 
with NAFLD. 
Additionally, NAFLD was also tightly associated with 
the risk of GC, PAC, PRC, and EC.

NAFLD is one of the influencing 
factors during the clinical 
diagnosis and treatment of EHCs.

Lee  
et al., 2020[101]

Retrospective analysis of 8,120,674 
Koreans (11.5% of whom had 
NAFLD defined with FLI ≥ 60), 
followed up for 7.2 years.

Compared to NAFLD-free controls, all-cause 
mortality in patients with EC (HR: 1.46, 95%CI: 1.28-
1.67), GC (HR: 1.26, 95%CI: 1.18-1.34), and CRC (HR: 
1.16, 95%CI: 1.10-1.22) was significantly increased in 
subjects with NAFLD.

NAFLD is burdened with excess 
mortality owing to EHCs.

Veracruz  
et al., 2021[102]

Meta-analysis of 13 studies. Significant heterogeneity in assessing EHCs 
prevented applying meta-analysis methods. 
However, NAFLD seemed to be associated with an 
increased risk of BRC and CRCs.

There appears to be an increased 
risk of BRC and CRC.

Mantovani  
et al., 2022[103]

Meta-analysis of 10 cohort studies, 
totaling 182,202 middle-aged 
individuals (24.8% with NAFLD) 
and 8,485 incident cases of EHCs 
over a median follow-up of 5.8 
years.

NAFLD was significantly associated with a nearly 1.5-
fold to 2-fold increased risk of developing EC, GC, 
PAC, or CRC. 
Furthermore, NAFLD was associated with an 
approximately 1.2-fold to 1.5-fold increased risk of 
lung, breast, gynecological, or urinary system 
cancers. 
All risks were independent of confounding factors.

This large meta-analysis suggests 
that NAFLD is associated with a 
moderately increased risk of 
developing certain EHCs over a 
median follow-up period of 6 
years.

Thomas  
et al., 2022[104]

64 studies involving 41,027 patients 
were eligible for analysis of EHC 
incidence.

The pooled extrahepatic cancer incidence rate was 
10.58 per 1,000 person-years (95%CI: 8.14 to 13.02, 
I2 = 97.1%). 
The most frequently occurring extrahepatic cancers 
were uterine, breast, PRC, CRC, and lung cancers. 
However, EHC incidence rates were not higher 
among NAFLD subjects with advanced liver fibrosis 
or cirrhosis.

Extrahepatic cancers are over 
eight-fold more frequent than 
HCC in NAFLD and not associated 
with liver fibrosis stage.

Muhamad  
et al., 2023[105]

Meta-analysis of 11 studies totaling 
222,523 adults and 3 types of 
cancer: HCC, BRC, and other types 
of EHC.

NAFLD and breast cancer had the highest prevalence 
out of the 3 forms of cancer at 30% (95%CI: 14%-
45%), while the pooled prevalence for NAFLD and 
other cancers was 21% (95%CI: 12%-31%).

NAFLD subjects may be exposed 
to a higher risk of cancer not only 
of the liver but also of the breast 
and bile ducts.

Xie  
et al., 2024[106] 

Two-sample MRA to assess the 
causal effects of NAFLD on 22 
EHCs.

Genetically predicted NAFLD was significantly 
associated with female breast cancer (OR: 15.99, 
95%CI: 9.58-26.69); with cervical and laryngeal 
cancers using the inverse variance weighting method, 
and the ORs were 2.44 (95%CI: 1.43-4.14) and 1.94 
(95%CI: 1.35-2.78), respectively. 
PNPLA3 -driven and TMSF2-driven NAFLD forms 
were associated (P < 0.05) with increased risks of 
leukemia, lung cancer, and PRC.

Genetically predicted NAFLD is 
associated with an increased risk 
of female BRC, cervical, laryngeal, 
leukemia, lung, and PRC.

APRI: AST to platelet ratio index; BRC: breast cancer; CRC: colorectal cancer; EC: esophageal cancer; EHC: extrahepatic cancer; ECC: extrahepatic 
cholangiocarcinoma; FIB-4: Fibrosis 4; FLI: fatty liver index; GC: gastric cancer; HCC: hepatocellular carcinoma; ICC: intrahepatic 
cholangiocarcinoma; MRA: mendelian randomization analysis; MVA: multivariate analysis; NFS: nonalcoholic fatty liver disease fibrosis score; 
NAFLD: nonalcoholic fatty liver disease; PAC: pancreatic cancer; PNPLA3: patatin-like phospholipase domain-containing protein 3; PRC: prostate 
cancer; HR: hazard ratio; OR: odd ratio; CI: confidence interval.

suggesting it may serve as a risk marker for HF development[129].
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Elastography
Liver stiffness has recently been reviewed as a cornerstone in assessing CVD risk[130]. In a study of 3,276 
adult subjects from the Framingham Heart Study, liver fibrosis assessed by VCTE was independently 
associated with multiple cardiometabolic risk factors. These factors included low high-density lipoprotein 
cholesterol (OR: 1.47), metabolic syndrome (OR: 1.49), hypertension (OR: 1.52), obesity (OR: 1.82), and 
diabetes (OR: 2.67; 95%CI: 1.21-3.75), after adjusting for demographic variables, physical activity, smoking 
status, alcohol intake, aminotransferases, and liver steatosis as assessed by controlled attenuation parameter 
(CAP)[131].

Liver fibrosis severity, as defined by VCTE, has been associated with various ultrasonographic 
cardiovascular structure and function parameters, including subclinical atherosclerosis evaluated with 
cIMT. This association remained significant even after adjusting for traditional cardiovascular risk factors in 
a prospective study conducted on a population-based cohort of young adults[132]. Moreover, the severity of 
liver fibrosis, as assessed by VCTE, was found to be directly correlated with the ultrasonographic burden of 
carotid and systemic atherosclerosis in a small cohort of patients aged 40 to 64 years[133].

Evidence on the association between liver fibrosis severity, as assessed by VCTE-LSM, and CVD has been 
somewhat conflicting in patients with MASLD who do not have T2DM[4,134-137]. However, in patients with 
T2DM, cross-sectional and longitudinal studies suggest that VCTE-LSM can independently predict the risk 
of diabetic macro-microvascular complications[4].

VCTE-LSM but not ultrasonographic fatty liver disease was associated with AF (OR: 1.09 per kPa, 95%CI: 
1.03-1.16) in a large prospective cohort (Rotterdam Study)[138]. However, this association persisted only 
among those without fatty liver (OR: 1.18 per kPa, 95%CI: 1.08-1.29). It was hypothesized that venous 
congestion due to AF, rather than fibrosis, may have caused increased LSM in these subjects.

Conversely, studies using MR imaging have consistently found an association between liver fibrosis severity 
and CVD. In the large prospective Multi-Ethnic Study of Atherosclerosis (MESA) study, a subsample of 
subjects underwent T1-mapping MR after 10 years. Liver fibrosis indicators (higher extracellular volume 
fraction and native T1) were associated with the development of HF, AF, and CHD. However, the latter 
relationship was weakened after adjusting for the coronary artery calcium score[139]. Another recent 
retrospective study on 428 patients showed that moderate to advanced fibrosis increased the risk of CVD, 
while cirrhosis decreased it, with cirrhosis conversely having the highest risk of liver-related events such as 
HCC and decompensation[140].

In conclusion, evidence from histological, biomarker measurements, and elastographic studies taken 
collectively strongly supports the association of liver fibrosis with an increased cardiometabolic risk.

ASSESSING LIVER FIBROSIS TO GAUGE THE RISK OF EXTRAHEPATIC CANCERS
In the setting of MASLD, liver fibrosis is a significant factor in determining the risk of developing HCC. 
However, MASLD-HCC often occurs in individuals with non-cirrhotic MASLD[141]. Notably, the cancer risk 
among MASLD patients also includes extrahepatic cancers, with evidence supporting a link between 
NAFLD and colorectal cancer (CRC) where the risk is approximately 50% higher compared to MASLD-free 
controls[142,143]. Other extrahepatic cancers linked to MASLD comprise cancers of the gastrointestinal and 
urinary tracts, lungs, and the female genital tract[144,145].
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It has been hypothesized that MASLD shares a pro-inflammatory systemic environment with extrahepatic 
cancers, associated with metabolic derangements as a common precursor. Alternatively, it is suggested that 
MASLD plays an active role in the initiation, development, and progression of cancer[144]. Among the 
various pathomechanisms involved, liver fibrosis is considered a major factor, along with genetics, obesity, 
insulin resistance, oxidative stress, cardiovascular risk, socio-demographic characteristics, and hormonal 
status[145].

The connection between liver fibrosis and extrahepatic malignancies, such as CRC, is increasingly 
recognized in medical research[146,147]. Liver fibrosis, often resulting from CLD such as hepatitis or alcohol 
abuse, creates a pro-inflammatory environment characterized by elevated cytokines and growth factors that 
can influence tumorigenesis beyond the liver. This inflammatory milieu may promote systemic changes, 
including alterations in immune surveillance and increased oxidative stress, which can facilitate the 
development of cancers in other organs[148]. Specifically, patients with advanced liver fibrosis often exhibit 
metabolic syndrome features - such as obesity and insulin resistance - that are also risk factors for CRC[148]. 
Additionally, the gut-liver axis plays a crucial role; dysbiosis associated with liver disease can lead to 
increased intestinal permeability and translocation of bacterial products, further heightening the risk of 
CRC through mechanisms such as inflammation and immune modulation[149]. Consequently, individuals 
with liver fibrosis may have an elevated risk of developing extrahepatic malignancies, underscoring the need 
for vigilant screening and management strategies in this population. The association of MASLD with 
extrahepatic cancers has been extensively covered in other sources[103,143-145].

CONCLUSION AND RESEARCH AGENDA
Diagnosis and management of conventional CVD risk factors such as low-density lipoprotein (LDL)-
cholesterol, blood pressure, and glycemia are crucial in cardiovascular medicine[150]. However, there remains 
a “residual CVD risk”, which refers to the odds of recurrent vascular events that persist despite achieving 
target treatment of traditional risk factors[151]. Could assessing liver fibrosis provide additional insights into 
this “residual CVD risk”? Or could liver fibrosis potentially replace conventional CVD risk factors 
altogether[152]? While traditional CVD risk factors are still important, incorporating liver-specific parameters 
shows promise in enhancing risk assessment and guiding targeted interventions to reduce the significant 
burden of CVD in high-risk populations[152].

Liver fibrosis, the often-dysfunctional wound-healing hepatic response, may be triggered by metabolic 
dysfunction, among other inciting stimuli. Liver fibrosis is typically defined histologically and is a strong 
predictor of various liver-related clinical outcomes such as cirrhosis, clinically significant portal 
hypertension, liver failure, transplantation, and HCC, as well as liver-related mortality[153]. Revolutionizing 
previous paradigms of risk prediction, the severity of liver fibrosis is also associated with increased 
cardiovascular risk and all-cause mortality. Moreover, liver fibrosis can now be identified by imaging 
techniques or accurate biomarkers. The utilization of fibrosis as an emerging non-invasive biomarker of all-
cause mortality in MASLD-associated cirrhosis, where the primary cause of death is cardiovascular disease, 
is therefore a highly relevant question.

We may wonder if there is a direct connection between cardiovascular disease and liver fibrosis. Mendelian 
Randomization analysis (MRA) studies published so far have provided conflicting results regarding the 
association between MASLD and CVD[154-156]. Among these, the study by Ren et al. stands out as the most 
methodologically robust[156]. These investigators conducted a two-sample MRA analysis to evaluate the link 
between genetically predicted MASLD, such as chronically elevated serum alanine aminotransferase levels 
(cALT), and imaging-based and biopsy-confirmed MASLD, and the risk of CVD. Interestingly, after 
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excluding genes associated with impaired very-low-density lipoprotein (VLDL) cholesterol secretion that 
are protective against CVD, the authors consistently found associations between genetically predicted 
MASLD (regardless of the diagnostic method used). Despite some uncertainty, the strongest evidence that 
more advanced liver fibrosis stages are linked to a higher long-term risk of fatal or non-fatal CVD events 
comes from the updated meta-analytic review by Mantovani et al.[110]. This review was based on 36 studies 
globally involving 5,802,226 middle-aged individuals who were followed up for a median of 6.5 years, 
during which 99,668 incident cases of fatal and non-fatal CVD events occurred.

The mechanistic relationship between liver fibrosis and the increased risk of CVD remains incompletely 
understood. One important factor to consider is that endothelial dysfunction caused by metabolic factors 
may serve as a common link between liver disease and CVD. Endothelial cells are specialized for the unique 
functions of different tissues, with each vascular bed having its own structural and functional properties[38]. 
However, there are general characteristics that suggest the importance of considering vascular endothelium 
at an organismal level, which could explain shared features between metabolic dysfunction-related liver and 
cardiovascular issues. Discussions about disease trajectories in MASLD have traditionally focused on the 
process of liver cell injury followed by fibrogenesis, with less attention given to vascular compromise. 
However, progressive damage of the hepatic microvasculature is likely fundamental to disease progression 
in metabolic dysfunction. Small-vessel obstruction plays a crucial role in CLD and may lead to congestion 
and sinusoidal portal hypertension. Furthermore, compromised sinusoidal capillary flow due to external 
compression, capillarization, and interstitial edema bears resemblance to the primary vascular lesions seen 
in atherosclerosis underlying CVD[157].

LSECs play a crucial role in maintaining the microvascular health of the liver through various 
mechanisms[158,159]. The liver serves as the primary organ responsible for collecting and processing 
information from digested food and the gut microbiota[160,161]. LSECs act as a vital filter for nutrition-derived 
and microbiota-associated biomolecules that enter the liver. These cells have multiple scavenger receptors 
that can become impaired in cases of metabolic dysfunction[162]. This impairment can expose other liver cell 
components to pathogen-associated and damage-associated molecular patterns, leading to the activation of 
the innate immune system and processes that may contribute to disease progression. Furthermore, insulin 
resistance, atherogenic dyslipidemia, and the increased synthesis and release of various bioactive lipids into 
the bloodstream (such as fatty acyl-coenzyme A molecules, diacylglycerides and ceramides), along with 
proatherogenic, procoagulant, pro-inflammatory factors, hepatocyte-derived extracellular vesicles 
containing microRNAs and dysregulated secretion of hepatokines (such as fetuin A, fibroblast growth factor 
21, follistatin, selenoprotein P, and liver-derived coagulation factor XI) may either predict or facilitate CVD 
events[163]. Finally, the discovery that aspirin may specifically protect against both CVD events and liver 
fibrosis provides indirect evidence for a role played by platelets and PDGF[52]. Together, these studies 
support a “common soil” that predisposes individuals to both fibrosing MASLD/MASH and CVD, 
suggesting that MASLD may precede incident CVD both chronologically and mechanistically.

Endothelial dysfunction may be a common factor in the development of both hepatic and cardiovascular 
diseases. Fibrosis can be considered a useful biomarker for monitoring chronic vascular changes and 
reparative processes, thus serving as an indicator of cardiovascular risk. With our current methodological 
armamentarium, it is more challenging to detect and track changes in sinusoidal microvasculature than to 
detect and follow the severity of fibrosis. Importantly, recent technological advances in the non-invasive 
detection of liver fibrosis may make it a non-inferior marker of CVD risk compared to the traditional 
parameters established by cardiologists for risk assessment.
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We may also need to consider the possibility that fibrosis is not the best liver-related predictor of non-liver 
disease compared to other biomarkers derived from inflammation or increased portal pressure. Therefore, 
we should approach investigations with an open mind, exploring all possible directions. It is important to 
remember that, in addition to fibrosis, other fundamental components of the pathobiology of MASLD, such 
as steatosis and steatohepatitis, may also play such a role[164-168]. The idea that portal hypertension could lead 
to accelerated atherogenesis was first suggested many years ago based on experimental evidence[169]. This 
concept should be further explored using new insights from mechanobiology[36,170].

The endothelial cell, as a potential origin of commonalities between pathological changes in hepatic and 
systemic circulation, also has important implications for the management of cardiovascular disease 
associated with metabolic dysfunction and advanced liver fibrosis. Any pharmaceutical intervention that 
can reduce intrahepatic venous resistance and sinusoidal pressure may prove beneficial[170,171]. This strategy, 
which may protect LSECs and mitigate endothelial dysfunction with statin use, has been increasingly 
recognized and applied in the management of advanced liver disease associated with MASLD and other 
etiologies[171]. It is likely to augment the beneficial impact of anti-inflammatory medications that reduce the 
degree of microcirculatory damage and interstitial fluid collection.

The astute physician should promptly recognize individuals who, while seeking medical advice for non-
hepatic conditions such as MACE, diabetic retinopathy, diabetic neuropathy, or chronic kidney disease, 
may also have unsuspected advanced liver fibrosis[2]. Early identification of at-risk syndromic 
representations can aid in developing comprehensive multi-organ assessments, determining surveillance 
protocols, and utilizing a wide range of licensed and investigational diagnostic strategies and management 
options[2,19,172-174].
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