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Abstract
Laser surface treatment (LST) is essential for advanced manufacturing but is extremely energy intensive. Being 
energy-aware is imperative as the industry pays increasing attention to energy management and environmental 
protection. However, existing literature mainly focuses on the laser-material interaction in LST, while few studies 
have considered energy consumption when investigating the processing quality. In this article, three metamodels 
(Kriging, RBF, and SVR) are integrated into an ensemble of metamodels (EM) by suitable weight coefficients, and 
the EM incorporates the predictive advantages of different metamodels. The EM establishes the relationship 
between laser process parameters (laser power, scan speed, and defocusing amount) and three outputs (total 
energy consumption, surface roughness, and depth-width ratio of LST track). The effectiveness of the presented 
prediction approach is validated by the leave-one-out method and additional experiments. Furthermore, the main 
influences of process parameters on the three outputs are studied. According to the technique for order preference 
by similarity to an ideal solution (TOPSIS), the optimal process parameter is Group No. 2, with the relative 
closeness of 78.04%, while the worst one is Group No. 13, with the relative closeness of 2.21%. The presented 
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prediction approach can serve as a reliable foundation in the energy-aware application of laser processing.

Keywords: Laser surface treatment, energy consumption, ensemble of metamodels, prediction approach, 
processing quality

INTRODUCTION
Recent years have witnessed the growing importance and urgency of energy-saving and environmental 
protection in manufacturing. Statistics from the International Energy Agency (IEA) indicate that, among 
energy-consuming industries, manufacturing activity contributes over 33% of the total energy consumption 
in countries of the Organization for Economic Cooperation and Development (OECD)[1,2]. In addition, 
manufacturers are urged to make tangible efforts to enhance energy efficiency to gradually achieve green 
manufacturing, and related legislation is being introduced to promote this transition[3]. Therefore, energy 
awareness in processing is becoming increasingly critical, and further understanding of energy consumption 
should be uncovered to enhance economic gains while minimizing environmental influences.

Laser surface treatment (LST) is recently one of the most popular methods of heat treatment, since LST 
effectively improves surface performance and prolongs the service life of parts[4-8]. LST without added 
materials encompasses laser surface quenching (LSQ) and laser surface melting (LSM) techniques[4]. During 
LST, the surface temperature of the workpiece increases quickly to temperatures above the point of critical 
transformation (austenization or melting temperature), and the self-excited cooling quickly makes the 
surface layer change into new phases with fine microstructure and high dislocation density[4,5]. Compared 
with traditional heat treatment techniques, the benefits of LST include low thermal deformation, 
homogeneous microstructures, little limitation on the shape complexity of the part, no need for 
intermediate cooling media, and controllable quality[4,5,9]. Thus, LST plays an increasingly prominent role in 
the heat treatment area and has been widely applied in many fields, such as metallurgy, railway, machinery 
manufacturing, and aerospace[10-13]. However, LST involves complicated coupling variations including 
temperature, stress, and microstructure transformation[5]. Changes in parameters, such as exposure time, the 
power of laser beam, and geometry and energy distribution of beam, can lead to different processing 
results[9,14]. The prediction for LST involves revealing the non-linear correlation between the laser process 
parameters and the processing results, which is traditionally addressed based on experience and the trial-
and-error method with a long development cycle. Although experimental results are of great value to 
researchers, the vast cost and time required for experiments are prohibitive. Furthermore, output results 
other than known sample points within the process window are difficult to obtain due to the lack of 
adequate information.

To address this, various modeling approaches are used for prediction and optimization in LST, among 
which metamodeling is effective in revealing the relationship between process parameters and processing 
qualities[5,9,15-18]. Zhang et al. used non-linear equations of the Taylor series to establish the relationships 
between the laser process parameters and surface hardening effects (wear resistance, hardness, hardening 
depth, and surface roughness), and then applied particle swarm optimization (PSO) to achieve the 
hardening requirement and the high efficiency[18]. Lambiase et al. predicted the hardness of the laser 
hardened surface using an artificial neural network (ANN), where the analytical model of temperature 
history was used[19]. Colombini et al. employed the response surface method (RSM) to construct the 
functions between inputs (focal length, laser beam speed, and temperature) and outputs (hardness and 
geometry of the laser hardened zone) in laser quenching, and then performed the optimization based on the 
functions[9].
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Some researchers have studied the energy consumption and environmental impact of other laser processing 
methods[2,20-22]. However, existing literature on LST mainly focuses on the laser-material interaction, and few 
articles consider the energy consumption of LST when investigating the processing quality. In addition, 
every metamodel has specific merits and demerits[23], and no stand-alone metamodel is the most efficient in 
all applications[24,25]. Thus, if an unsuitable metamodel is chosen, an accurate result is hard to obtain. 
Randomly selecting a metamodel may increase the possibility of suboptimal results[26,27]. The accuracy of the 
individual metamodel mostly hinges on the specific training data used and characteristics of the problems 
faced, and it is therefore likely that the selected metamodels turn out to be less accurate with new sample 
points[23,26].

To overcome the drawbacks aforementioned, three different metamodels, namely Kriging, radial basis 
function (RBF), and support vector regression (SVR), are integrated into an ensemble of metamodels (EM) 
to reduce the risk of adopting an inappropriate individual metamodel. Furthermore, both the energy 
awareness and the processing quality are investigated in this work. Three-factor and four-level experiments 
were designed and carried out. The EM constructs the correlation between laser process parameters and 
processing results (including total energy consumption, surface roughness, and depth-width ratio of 
processing track) for the prediction in fiber LST. In addition, verification experiments show the 
effectiveness of the presented prediction approach.

EXPERIMENTAL DETAILS
Experimental platform and materials
The shield disc cutter is subjected to severe friction and wear processes during the tunneling[28], and a 
surface with high hardness helps to improve its tribological performance[29,30]. The commercially available 
shield disc cutter is used as the workpiece, which is named KDCMSV special steel and offered by Wuhan 
Engineering Drilling Tool Co., Ltd. Based on the H13 die steel material, the manufacturer appropriately 
increases the content of alloying elements such as C, Cr, Mo, and V to produce the special material for the 
shield disc cutter, and the main components are shown in Table 1. Additionally, the mechanical properties 
of the KDCMSV special steel are as follows: hardness of 56.8 HRC, ultimate tensile strength of 1890 Mpa, 
yield strength of 1705 Mpa, and impact toughness of 17.8 J/cm2. The quenching and tempering treatment is 
performed on the whole part of the shield disc cutter, and the schematic diagram of the process is shown in 
Figure 1. Specifically, the shield disc cutter was first heated to 1080 ℃ for 2 h, and then subjected to oil 
quenching. After that, it was washed with cold water for 30 min, then heated to 550 ℃ for 5 h, and finally 
air-cooled to room temperature. The workpiece was cut from the shield disc cutter using wire-electrode 
cutting and used for the LST experiments. The dimensions of the workpiece are shown in Figure 2, and it 
can be observed that there is micro-texture produced by turning processing on the workpiece surface, 
resulting in the surface with the average RA of 7.12 μm. Figure 3 indicates the schematic diagram of the LST 
process, and the focal length is 250 mm. Figure 4 shows the integrated platform of LST processing and 
energy consumption metering, which contains IPG fiber laser system (power range from 400 to 4000 W), 
ABB six-axis robot, chiller system, VICTOR-5000 smart power meter (SPM), and other auxiliary 
equipment.

Design of experiment
The laser process parameters have significant effects on the cross-sectional profile of the laser treated zone. 
Based on pre-tests and related literature[5,9,12], the laser process parameters that significantly affect the LST 
results are laser power (LP), scan speed (SS), and defocusing amount (DA). To investigate the effects of 
process parameters on the energy consumption and the processing quality, the design of experiment (DOE) 
is carried out, and the L16 (43) Taguchi matrix with three factors and four levels is used. Table 2 lists the 
values and levels of the laser process parameters.
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Table 1. The main components of KDCMSV special steel

Element C Si Mn P S Cr Ti V Mo

wt.% 0.5 0.8 0.7 0.015 0.005 5.5 0.5 1.2 1.8

KDCMSV special steel: The commercially available shield disc cutter is used as the workpiece, which is named KDCMSV special steel and offered 
by Wuhan Engineering Drilling Tool Co., Ltd.

Table 2. Levels and values of process parameters of the L16 (43) experiments

Process parameters
Factor levels

LP / W SS / (mm·s–1) DA / cm

1 400 45 3

2 500 50 4

3 600 55 5

4 700 60 6

LP: Laser power; SS: scan speed; DA: defocusing amount.

Figure 1. The schematic diagram of the quenching and tempering process of the shield disc cutter.

Evaluation criteria and experimental results
Total energy consumption
In this work, the metering system of energy consumption is developed, which consists of SPM (also named 
power quality analyzer) and the curvilinear integral procedure based on MATLAB. Specifically, the SPM is 
applied to obtain real-time power by measuring the electric current and voltage. After that, the power is 
converted to energy consumption based on the integral calculation. To measure the electric current of each 
system and piece of equipment, the current clamp of the SPM is mounted outside the current bus. In 
addition, the voltage measuring line of the SPM is linked to measuring the electric voltage, as shown in 
Figure 4. The measurement range of voltage is from 1 to 1000 V, while that of current is from 10 mA to 
3000 A, and the measurement errors are less than 1%. The total energy consumption (TEC) of the LST 
platform is mostly made up of the energy consumed by the fiber laser system, the chiller system, the ABB 
robot, and the gas extraction system[31]. The energy consumed by the gas extraction system varies little when 
different laser process parameters are used[31]. Thus, it can be ignored in the investigation of the relationship 
between energy consumption and process parameters[32-34]. Therefore, The TEC consists of the total energy 



Wu et al. Green Manuf Open 2023;1:3 https://dx.doi.org/10.20517/gmo.2022.04 Page 5 of 20

Figure 2. The dimensions of the workpiece and the shield disc cutter.

Figure 3. The schematic diagram of the fiber LST process. LST: Laser surface treatment.

used by the three systems during the metering cycle:

where ECl, ECc, and ECr are the energy consumed by the fiber laser system, the chiller system, and the ABB 
robot system, respectively.

Processing quality
For the heat treatment of common quenching and tempering, two requirements need to be met to achieve 
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Figure 4. The platform of fiber LST processing and energy consumption metering. LST: Laser surface treatment.

grain refinement[5,9,12]: (1) The heating temperature reaches above the critical temperature of austenite 
transformation Ac1. (2) The cooling rate is larger than the critical rate of martensitic transformation. LST 
has a large heating and cooling rate, which can make the workpiece fully complete the above phase 
transition. Specifically, the rapid heating makes the initial ferrite/pearlite phase quickly transform into the 
austenite phase. After the heat source passes, the heat is rapidly carried away by the surrounding cooler 
metal, which is called the “self-quenching effect”[9]. The large cooling rate makes the temperature of the laser 
treated zone lower than the martensite starting temperature, which avoids reverse transformations[12,35]. This 
results in the formation of fine microstructures on the laser treated surface[9], thereby improving the surface 
hardness and wear resistance of the workpiece[29]. The profile geometry of the treated zone processed by the 
LST is shown in Figure 5, where the depth of LST zone (DZ) and the width of LST zone (WZ) are indicated. 
There are many quality evaluation indicators for LST, including cutting performance, process defects, and 
some cross-section geometries. This study is limited to only selecting depth-width ratio (DWR) and surface 
roughness (R) as the indicators of quality evaluation.

(a) Depth-width ratio

The cross-section geometry is widely used as the evaluation indicator to reflect the quality of laser 
processing[32,36,37]. Furthermore, the DWR is often of interest in LST[5,9,36]. Specifically, too large DWR can 
introduce the crack defect since it is accompanied by excessive energy density. Besides, too large DWR 
affects the processing efficiency due to the insufficient width of LST track on the workpiece surface. In 
contrast, too small DWR often leads to a small depth of penetration of LST zone. Thus, a suitable DWR 
value is beneficial in LST. This work selects the DWR as an indicator to evaluate the LST processing result 
since DWR can indicate characteristics of the cross-section of the LST zone, given as
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(b) Surface roughness

The goal of LST is to raise the surface temperature over the critical transition threshold, specifically the 
austenitizing temperature (solid-state transformation) for LSQ and the melting temperature for LSM[4]. 
During the LSQ and LSM processes, liquid-to-solid and solid-to-solid transformations occur in the laser 
treated zone, which can promote the generation of residual stresses. The residual stresses result from 
differences in the expansion and contraction ratios of the molten metal, heat-affected zone, and metal 
substrate, as well as volume variations of the phase transformation reactions (transformational stresses)[38]. 
Thus, LST can significantly affect the surface roughness of the processed workpiece[18,39-41]. The higher 
surface roughness of the laser treated region on steel workpieces often leads to worse wear 
performance[42,43]. In general, the LSQ (or laser hardening) process causes a slight increase in R; however, 
when the laser energy intensity increases, melting can be observed within the processed region, and the 
LSM process leads to a significant increase in R due to the severe distortion of surfaces[39]. Minimal 
distortion and low cracking tendency of the laser treated surface are considered as the ideal criteria of LST 
for tools and components subjected to friction and wear processes[39,44]. The low value of surface roughness 
agrees with the criteria, as distortions and cracks usually lead to large surface roughness. Therefore, in this 
work, R is taken as an indicator of processing quality, and a low R value is desired.

The R value of each experiment was measured by a confocal microscope. The one-dimensional formula of 
surface roughness for a surface with a profile length L can be expressed as

where f(x) is the variation of local surface height at the point x compared with the average height of the 
whole profile with the assumption that the whole profile is even[45]. fm is the height of m positions along the 
profile length L, and the surface roughness can be formulated as

The surface roughness can easily be extended to the two-dimensional surface profile. The R of a specific 
area with m × n measured variations fi,j can be calculated as

Experimental results
The LST experiments were conducted with the laser process parameters listed in Table 2. An alcohol 
solution containing 4% (volume fraction) of nitric acid was used to reveal the LST zone. Next, the 
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Figure 5. The cross-section of the LST zone. LST: Laser surface treatment; WZ: the width of LST zone; DZ: the depth of LST zone.

geometries of the LST zone were measured and recorded. Table 3 lists the specific laser process parameters 
and their experimental results.

PROPOSED APPROACH
Ensemble of metamodels
Various metamodels have been widely used in many engineering applications recently[23,46,47]. Metamodeling 
can uncover the underlying relationship between input and output variables, given as

where x is the input variables, y is the outputs,         is the metamodeling method, α is the coefficient vector, 
and ε is the stochastic parameter. Every metamodel has specific merits and demerits[23], and no 
individual metamodel is proven to be the most effective for all applications[24]. If an unsuitable individual 
metamodel is chosen, the accurate result is hard to obtain. In this work, three kinds of metamodels 
(Kriging, RBF, and SVR) are integrated into the EM with weight coefficients, given as

where x is the inputs (unknown point),          is the predictive output from the EM,          (i = 1, 2, 3) are the 
predictive outputs from the three individual metamodels (Kriging, RBF, and SVR), and ωi (i = 1, 2, 3) 
are the corresponding weight coefficients of them, respectively. The Supplementary Materials describe the 
details of Kriging, RBF, and SVR metamodels.

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202209/5145-SupplementaryMaterials.pdf
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Table 3. Fiber LST process parameters and experimental results

Process parameters Experimental results
No.

LP (W) SS (mm/s) DA (cm) TEC (104 J) R (μm) DWR

1 400 45 4 6.348 14.670 0.143

2 400 50 5 6.142 9.785 0.146

3 400 55 6 5.968 7.040 0.087

4 400 60 3 5.923 14.630 0.130

5 500 45 5 6.513 7.640 0.100

6 500 50 4 6.340 13.680 0.171

7 500 55 3 6.202 15.890 0.172

8 500 60 6 5.988 7.090 0.074

9 600 45 6 6.678 8.970 0.102

10 600 50 3 6.538 17.240 0.190

11 600 55 4 6.333 7.980 0.128

12 600 60 5 6.158 7.600 0.101

13 700 45 3 6.947 17.880 0.193

14 700 50 6 6.632 6.980 0.113

15 700 55 5 6.463 9.330 0.133

16 700 60 4 6.327 11.040 0.173

LST: Laser surface treatment; LP: laser power; SS: scan speed; DA: defocusing amount; TEC: the total energy consumption; R: surface roughness; 
DWR: depth-width ratio.

In this work, the leave-one-out (LOO) cross-validation method is used to evaluate the accuracy of the three
individual metamodels and the established EM. The average error under the LOO method (AELOO) and
maximum error under the LOO method (MELOO) are taken as two evaluation indicators, which can be
formulated as

where m is the quantity of sample points,          is the predicted value based on the metamodel trained using 
all data without the ith sample point, and fi(x) is the experimental value. Lower AELOO and/or MELOO 
values indicate the metamodel is more accurate. A larger weight coefficient should be assigned to a more 
accurate metamodel. In this work, AELOO is employed to generate the weight coefficients of Kriging, RBF, 
and SVR. Based on AELOO, the two metamodels with better accuracy are selected and integrated into the 
EM for the predictions, while the metamodel with the largest AELOO among the three is discarded. 
The weight coefficient of the most accurate metamodel is assigned as the largest weight coefficient.
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Framework of the proposed approach
In this work, the presented EM aims to fit the relationship between laser process parameters (LP, SS, and 
DA) and LST processing results (TEC, R, and DWR). Figure 6 shows the overall framework of the proposed 
method, which mainly includes three parts: DOE, the establishment of EM, and the validation of EM. 
Specifically, LST experiments with sample points generated using the Taguchi matrix are carried out. Next, 
the three processing results are taken as the evaluation criteria, and then used to establish Kriging, RBF, and 
SVR metamodels. After that, the weight coefficients of three individual metamodels are determined 
according to AELOO and then used in the construction of EM. Furthermore, the accuracy of the established 
EM is validated by both the LOO method and additional experiments.

RESULTS AND DISCUSSIONS
Construction of EM
In this work, Equations  and  are used to evaluate the accuracy of Kriging, RBF, and SVR. The AELOO and 
MELOO of three metamodels for the three responses (TEC, R, DWR) are shown in Figure 7. Among the three 
metamodels, the one with the largest AELOO is discarded (weight coefficients of 0%), while the weight 
coefficients of the metamodels with the smallest and second smallest AELOO are 66.67% (two-thirds) and 
33.33% (one-third), respectively. According to trial-and-error and experience, such a weight coefficient 
assignment method is simple and efficient in most cases.

Furthermore, in the validation of EM phase shown in Figure 6, additional experiments are used to validate 
the accuracy of EM. The accuracy threshold can refer to the relevant indicators in other literature: energy 
consumption[32], cross-section geometry[48,49], and surface roughness[45]. The maximum relative errors of 3%, 
35%, and 35% are, respectively, set as the accuracy threshold of metamodels for TEC, R, and DWR in this 
work. If the accuracies of metamodels for the three responses meet the requirement, then the assignment of 
the weight coefficients for the metamodel construction is appropriate.

In addition, the color diagrams of the three responses (TEC, R, and DWR) based on EMs are provided in 
Figure 8 to show the relationship between the input and output variables in the LST process. EM is 
employed to predict and demonstrate the response values at different locations in the design space of 
process parameters. As shown by the legends of Figure 8, the magnitude of the value is represented by the 
difference in color. In each color subplot, it can be observed that different input process parameters (or 
sample points) lead to different response values. That is, the processing results of LST vary with the different 
inputs. Besides, one group of process parameters results in different colors in different subplots since 
different response values of TEC, DWR, and R are obtained.

Validation of EM
The AELOO and MELOO of the EMs are calculated and compared with Kriging, RBF, and SVR, as shown in 
Figure 7. For TEC, EM has lower errors than RBF and SVR in both AELOO and MELOO; For R, the accuracy of 
EM is second and only inferior to RBF in AELOO, while the MELOO of EM is lower than that of RBF; and, for 
DWR, the AELOO of EM ranks in second place, while the MELOO of EM performs the best among the four 
models. Overall, EM never has the worst accuracy for the three different responses, which shows that the 
proposed approach can effectively reduce the probability of randomly selecting an unsuitable metamodel. 
The constructed EMs are employed to predict three output responses under the LOO method. For each 
cross-validation, the 15 samples in Table 3 are used as the training dataset, while the remaining set of 
samples is used for testing. Figure 9 shows the comparison of experimental values (EV) and predictive 
values (PV) from EMs. The statistical indicators (R2) between EV and PV under the LOO cross-validation 
method of TEC, R, and DWR were calculated as 0.641, 0.543, and 0.363, respectively.
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Figure 6. The overall framework of the proposed method. LST: Laser surface treatment; EM: ensemble of metamodels; RBF: radial basis 
function; SVR: support vector regression; AELOO: average error under the LOO method; LOO: leave-one-out.

Figure 7. AELOO and MELOO of the four metamodels for the three responses: (A) TEC; (B) R; and (C) DWR. AELOO: Average error under the 
LOO method; MELOO: maximum error under the LOO method; LOO: leave-one-out; RBF: radial basis function; SVR: support vector 
regression; EM: ensemble of metamodels.

Four additional experiments were carried out to evaluate the accuracy of the EMs. Table 4 lists the laser 
process parameters and output responses of these additional experiments (named Nos. 1-4). The relative 
error (RE) is used to assess the difference between the PV and the EV. The RE is formulated as 
|PV − EV|/EV. Figure 10 shows the validation results of the three evaluation criteria for the four selected 
samples. The dot-line curves of PV and EV are related to the left ordinate, while the bars of RE are related to 
the right ordinate. Although the overall RE of R is larger than that of TEC and DWR, it is acceptable 
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Table 4. Laser process parameters and output responses of the four additional experiments

No. LP (W) SS (mm/s) DA (cm) TEC (104 J) R (μm) DWR

1 400 50 4 6.168 11.87 0.154

2 600 50 4 6.512 15.46 0.138

3 700 55 5 6.463 10.56 0.112

4 550 55 5 6.229 8.32 0.144

LP: Laser power; SS: scan speed; DA: defocusing amount; TEC: the total energy consumption; R: surface roughness; DWR: depth-width ratio.

Figure 8. Color diagrams of EMs: (A) TEC; (B) R; and (C) DWR. LST: Laser surface treatment; LP: laser power; SS: scan speed; TEC: the 
total energy consumption; R: surface roughness; DWR: depth-width ratio; EM: ensemble of metamodels.

Figure 9. Experimental values and predictive values from EMs under the LOO method. TEC: The total energy consumption; R, surface 
roughness; DWR: depth-width ratio; EM: ensemble of metamodels; LOO: leave-one-out; EV: experimental values; PV: predictive values.
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Figure 10. Experimental values and predictive values from EMs: (A) TEC; (B) R; and (C) DWR. TEC: The total energy consumption; R: 
surface roughness; DWR: depth-width ratio; EV: experimental values; PV: predictive values; RE: relative error; EM: ensemble of 
metamodels.

compared with the maximal relative error of the predictive model on surface roughness in the related 
literature[45]. In general, EM fits the three responses well and can be effective in the prediction of the fiber 
LST process. In addition, Figure 11A and B shows the geometry of the cross-section and topography of the 
upper surface (including R and DWR) of Nos. 1 and 2 in Table 4. The surface roughness of Nos. 1 and 2 in 
Figure 11 is calculated based on Equation (5), where m and n are both set as 10.

Main effects of process parameters
The experimental results show that the process parameters (LP, SS, and DA) have obvious impacts on TEC, 
R, and DWR. As shown in Figure 12, the influences of process parameters are evaluated based on the main 
effect analysis. The horizontal back dashed line in each subfigure represents the average value of the main 
effect of the four levels. The δ value is shown in each subfigure to reflect the maximum influence on the 
processing results (TEC, R, and DWR) under the parameters at different levels. A larger value of δ represents 
a larger main effect. The δ values of mean TEC (104 J) for LP, SS, and DA are, respectively, 0.497, 0.523, and 
0.086. It can be observed that both LP and WS have significant influences on TEC, while DA has little effect 
on TEC. A decrease in LP and an increase in SS can effectively decrease TEC. For the response R, the δ of the 
mean value (μm) for LP, SS, and DA are, respectively, 1.084, 2.230, and 8.890, while the δ of mean DWR for 
LP, SS, and DA are, respectively, 0.026, 0.036, and 0.077. For both R and DWR, the most important factor 
among the three process parameters is DA. An increase in DA would lead to a significant decrease in R and 
DWR, and a larger LP can result in a larger DWR. More specifically, when DA increases and other 
parameters remain unchanged, the diameter of the laser spot on the workpiece surface becomes larger, 
which leads to more dispersion of the laser energy and less energy received per unit area. Thus, an LST track 
with a smaller depth and larger width would be obtained, resulting in a smaller DWR, and vice versa. When 
LP increases and other parameters remain unchanged, the energy density increases, which causes the depth 
of the laser processing zone to become significantly larger, thereby increasing the DWR[18,37]. In addition, 
when DA increases or LP decreases, the laser energy density decreases, and the processing effect of LST is 
weakened; thus, the phase transformation and distortion of the treated surface are reduced, which reduces R 
significantly.
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Figure 11. Geometry of the cross-section and topography of the upper surface of the additional validations: (A) No. 1 and (B) No. 2. R: 
Surface roughness; WZ: the width of LST zone; DZ: the depth of LST zone; DWR: depth-width ratio.

Multi-response evaluation using TOPSIS
Commonly used methods for evaluating and ranking the process parameters in laser processing include 
TOPSIS method[22,50-52], integrated goal method[53-55], and normalization and weighting method[56]. TOPSIS is 
proposed to obtain the best decision based on the compromise solution principle[57], and it can be employed 
as a comprehensive evaluation method for multiple attribute decision-making[58]. TOPSIS can eliminate the 
influence of dimensions from different indicators in the calculation process. Thus, the closeness of each 
decision solution to the positive ideal solution (S+) and the negative ideal solution (S-) can be calculated. The 
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Figure 12. Main effects of process parameters on the three responses: (A) TEC; (B) R; and (C) DWR. TEC: The total energy 
consumption; R: surface roughness; DWR: depth-width ratio; LP: laser power; SS: scan speed; DA: defocusing amount.

optimal compromise solution is defined as the one closest to the S+ and farthest from the S-[59]. Based on the 
experiments in Table 3, the TOPSIS approach is employed. For the responses TEC and R, smaller values are 
preferred, while too large or too small DWR values are undesirable; thus, the criterion is defined as follows:

where DWR’ is the average DWR of the 16 sets of experiments in Table 3. The weight coefficients of the 
three criteria (TEC, R, and DWR*) are set as 40%, 40%, and 20%, respectively.
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Figure 13 shows the rank order of the relative closeness Ci for the 16 sets of experiments based on the 
TOPSIS approach. A higher Ci represents that the evaluated alternative is closer to S+ and performs better in 
the comprehensive evaluation. The sequence of the optimal experiments is listed as: 2, 11, 12, 3, 15, 4, 8, 14, 
5, 16, 1, 9, 6, 7, 10, and 13. The best three among the 16 sets of process parameters in Table 3 are Group Nos. 
2, 11, and 12, with the relative closenesses of 78.04%, 74.94%, and 71.78%, respectively. The worst 
experiment is Group No. 13 with the relative closeness of 2.21%. Considering the practical application, the 
TOPSIS scores can be obtained for multiple groups of experiments, which can provide a theoretical basis for 
the final selection of more reasonable process parameters[22]. Therefore, Group Nos. 2, 11, and 12 of process 
parameters are recommended considering the energy consumption and the processing quality. In general, 
selecting reasonable process parameters to obtain processing results with low TEC and suitable DWR and R 
is an effective way to improve the application of LST.

CONCLUSION
In this work, a prediction approach based on EM is presented and used in the fiber LST process. Three 
metamodels (Kriging, RBF, and SVR) are integrated into the EM by suitable weight coefficients. The 
complex relationships between the process parameters and three LST results (TEC, R, and DWR) are 
established by the EM. The reliability of the presented prediction approach is validated by the LOO method 
and additional experiments. The influences of process parameters on three output results are studied. The 
four conclusions are summarized:

1. The EM can effectively decrease the risk of randomly selecting an unsuitable metamodel and performs 
well in the prediction.

2. The main effect analysis shows that both LP and WS have significant influences on TEC, while DA is the 
most important factor for R and DWR.

3. According to the TOPSIS approach, the sequence of the optimal experiments is listed as: 2, 11, 12, 3, 15, 4, 
8, 14, 5, 16, 1, 9, 6, 7, 10, and 13. The optimal process parameter is Group No. 2, with the relative closeness 
of 78.04%, while the worst one is Group No. 13, with the relative closeness of 2.21%.

4. The presented prediction approach considering both the energy consumption and the processing quality 
can serve as a reliable foundation in the energy-aware application of the LST process.

The proposed prediction approach can also be applied to other experimental results (tensile strength, 
hardness, etc.) in LST, as well as other laser processing technologies, such as laser welding and selective laser 
melting.
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Figure 13. The relative closeness of 16 sets of experiments using the TOPSIS approach. TOPSIS: Technique for order preference by 
similarity to an ideal solution.
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