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Abstract
Aim: The uncertainty and complexity of the production process of household paper are growing sharply in modern 
factories. Due to the influence of rising energy costs and environmental policies, the demand for reducing 
production costs and energy consumption is also increasing. Therefore, it is studied that the dynamic shop 
scheduling problem of household paper production considering simultaneously the cost with energy consumption.

Methods: A mathematical model of the multi-objective and multi-constraint household paper scheduling problem 
is established first. The multi-objective scheduling process is transformed into a multi-agent Markov game process 
by assigning each objective to each agent. Upon which, a multi-agent game model is constructed for the household 
paper scheduling problem based on deep reinforcement learning; it is a proposed D3QN algorithm and Nash 
equilibrium strategy, and the state characteristics and action selection space are proposed according to the 
characteristics of the household paper production. The model performance has been verified by the actual 
production data.

Results: Results show that the proposed method not only achieves better performance than traditional scheduling 
methods but also persists in its advantages even when the configuration of the manufacturing system changes.
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Conclusion: Multi-agent deep reinforcement learning in the Markov game has a good prospect in solving multi-
objective dynamic scheduling problems for household paper production.

Keywords: Deep reinforcement learning, workshop scheduling, multi-objective, dynamic scheduling, household 
paper workshop

INTRODUCTION
As an essential and fast-consuming product in people’s daily lives, the consumption level of household 
paper is considered to be one of the indicators of the contemporary well-being and civilization level of a 
country[1]. During Covid restriction periods, especially, demand for paper in the household would have shot 
up rapidly. As the largest producer and consumer of household paper in the world, in 2021, China’s 
consumption of household paper per capita is about 8.2 kg. It significantly exceeds the global consumption 
level per capita of 5.7 kg. The annual consumption in China reached 1,161.8 kg, accounting for 25.6% of the 
world’s total household paper consumption. Taking advantage of the huge population, China will continue 
to drive the global household paper market to grow. China is also regarded as the country with the highest 
growth potential in the global household paper market[2].

However, the development of domestic paper enterprises in China is facing many problems meanwhile. 
First of all, with the development of economic globalization, consumer demand for product variety is 
increasing, and modern production techniques iterate very quickly, challenging production management. 
The multi-variety and small-batch manufacturing turn to be increasingly common in the field of household 
paper production[3]. Due to the different technical standards between orders, continuous batch production 
is not feasible. The control of the workshop formulates the key factor that hinders the development of 
enterprises. In the actual production process, household paper enterprises will encounter multiple 
interference factors, such as machine failures, emergency order insertion, order delays, etc., which would 
seriously affect the production efficiency[4]. Addressing disturbances in production in a timely manner and 
ensuring on-time order delivery are key functions for the sustainable development of household paper 
companies as well. Due to the impact of rising costs and environmental influences of electricity and energy, 
the household paper industry has been transforming from high-speed growth to high-quality development 
in recent years, where market competition has been extremely fierce[5].

As a member of the manufacturing industry, a typical characteristic of household paper enterprises is that 
most of their energy consumption is concentrated in the workshop, and the proportion of energy 
consumption actually used for processing is relatively low[6]. Taking a manufacturing workshop as an 
example, the proportion of energy consumption actually used for processing is less than 20%, and most of 
the remaining energy consumption is lost in the process of standby and switching on. It can be seen that the 
energy-saving potential of manufacturing workshops is enormous[7]. Considering the complex production 
process involving long process, frequent processing preparation, unpredictable batch properties of 
workpieces, and flexible machine tool selection characteristics of domestic paper workshops, unreasonable 
scheduling schemes will inevitably lead to a large amount of waste, including energy, time, cost, and other 
resources[8]. Therefore, effectively reducing workshop energy consumption through scheduling means is 
also a key issue to be urgently solved for the green and high-quality development of household paper 
enterprises.

This study aims to address the dynamic production scheduling problem of the household paper industry 
while also considering energy consumption, with the goal of improving the manufacturing level and core 
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Figure 1. Framework of the papermaking process as a production shop containing multiple work centers, multiple machines, and orders 
must visit the corresponding work center once in accordance with the process sequence required for production.

competition of the enterprises.

Characteristics of household paper scheduling problems
The production process of household paper can be divided into two stages, namely the papermaking stage 
and the post-processing stage[9]. The process flow of the first stage is as follows: raw wood pulp preparation, 
pulping, and papermaking to obtain base paper for household use. The second stage of the process starts 
with the rewinding and slitting machine, which divides the base paper into reels, and then paper reels will 
be packaged into finished products[10]. According to the characteristics of the production process of 
household paper, it can be highly abstracted as a flexible flow shop (FFS) scheduling problem, which is 
simply described as a production shop containing multiple work centers. Each work center contains 
multiple machines, and all work orders must visit the corresponding work center once in accordance with 
the process sequence required for production. The general relationship of these elements can be shown in 
Figure 1.

Literature review
In recent years, the dynamic shop scheduling problem has garnered significant attention from both the 
academic community and the industry[11]. However, the complexity of solving the FFS scheduling problem 
is much greater, as the dimension of solving FFS problems is much higher than that of the general job 
shop[12]. Therefore, the number of research literature on the dynamic scheduling problem of FFS (DFFSP) is 
relatively small.

The research on the DFFSP could be traced back to the 1990s, and it developed a heuristic-based hybrid 
approach for real-time control of flexible manufacturing systems. This hierarchical organization enables 
coordination of distributed decision centers, and heterogeneous considerations grant partial autonomy to 
sublevel decision centers[13]. It addressed two knowledge-based scheduling schemes to control the flow of 
parts efficiently in real time[14] and determined that the DEA method is a suitable technology for sorting 
competitive scheduling rules according to the selected set of performance criteria based on the simulation 
data of scheduling rules under dynamic hybrid flow shop environment[15]. Additionally, it presented a 
temporal approach[16]. The researcher takes into consideration three routing policies with four dispatching 
rules with finite buffers: no alternative routings, alternative routings dynamic, and alternative routings 
planned[17]. Furthermore, a decomposition-based approach (DBA) is described for makespan minimization 
of an FFS scheduling problem with stochastic processing times. The DBA decomposes an FFS into several 
machine clusters, which can be solved more easily by different approaches[18]. A related study proposed a 
distributed intelligence method characterized by parallel computing for a dynamic flexible process shop 
scheduling problem[19], while others propose a new scheduling rule and hybrid genetic algorithm to solve the 
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problem of uncertainty and dynamic arrival of FFS[20]. The Taguchi optimization method and simulation 
modeling were also applied to the dynamic scheduling problem of robot flexible assembly units[21]. Authors 
of[22] propose a gravity simulation local search algorithm that uses the mass of the interaction between 
Newton’s gravity and motion laws as search agents to solve the multi-objective flexible dynamic job-shop 
scheduling problem. It proposed a method to dynamically adjust scheduling rule parameters according to 
the current system conditions, used machine learning methods to estimate the influence of different 
parameter settings of selected rules on system performance, and finally achieved the goal of reducing the 
average delay[23]. The literature[24] proposes a dynamic model and algorithm for short-term scheduling of the 
industrial 4.0 smart factory supply chain. The method is based on the dynamic non-stationary explanation 
of job execution and the time decomposition of scheduling problems. Finally, the continuous maximum 
principle and mathematical optimization are combined to solve the problem. It proposed a Pareto optimal 
solution method based on an improved particle swarm optimization algorithm to simultaneously reduce 
energy consumption and maximum duration of FFS scheduling[25]. The study of[26] considered various 
scheduling rules based on the delivery date and proposed 20 genetic algorithm-scheduling rule variants to 
compare the effectiveness of scheduling rules based on due dates in solving dynamic scheduling problems. 
In order to solve FFS scheduling problems with dynamic transportation waiting time, researchers proposed 
a waiting time calculation method to evaluate the waiting time and maximum completion time and a meme 
algorithm combining the waiting time calculation method[27]. A real-time scheduling method was 
constructed based on layered multi-agent deep reinforcement learning (DRL) and approximate strategy 
optimization to solve the dynamic, partially wait-free, and multi-objective flexible job shop scheduling 
problem with new job inserts and machine failures[28].

It can be found from the above literature that the most commonly applied algorithms for either solving 
single-objective or multi-objective DFFSP problems are heuristic and meta-heuristic algorithms, which can 
be used independently or in combination. However, these methods have the following problems:

(1) The previous solutions do not guarantee local optimality, not even mention global optimality. At the 
same time, because different rules apply to different scenarios, it is difficult for decision-makers to choose 
the best rules at a particular point in time. 
(2) Solving multi-objective problems requires a large amount of prior or posterior knowledge with the 
previous methods, and it is impossible to find an adaptive solution through the exploration of the 
production environment. 
(3) There is a single fixed scheduling rule and no ability to dynamically select more suitable heuristic 
scheduling rules along with the environment, making it not suitable for dynamic production environments.

It is also noted that a growing number of machine learning algorithms have been applied to scheduling 
problems and have achieved fundamental performance in problem-solving of dynamic scheduling. 
However, the research remains empty on multi-objective dynamic production scheduling of household 
paper. This paper, therefore, transforms the multi-objective dynamic shop scheduling problem with 
household paper into a Markov game model with discrete events and multi-criteria interactions and 
proposes a multi-agent Double DQN with Dueling architecture (D3QN) algorithm based on reinforcement 
learning to optimize the maximum completion time and energy consumption.

The main contributions of this paper are listed below:

(1) The household paper workshop scheduling problem is abstracted to a mixed integer programming 
mathematical model. 
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(2) Formulation of the dynamic scheduling of a household paper workshop as a Markov game, and the DRL 
algorithm is proposed for the first time to deal with multi-objective optimization issues in the papermaking 
industry. 
(3) The application of D3QN is extended to support dynamic scheduling of a household paper workshop. 
(4) Construction of a dynamic scheduling system for a household paper workshop with case application.

METHODS
The technical route of this research is shown in Figure 2.

Establishment of scheduling mathematical model
Household paper enterprises are affected by various factors in the actual production process, and the 
constraints considered in the production process vary from one enterprise to another[29,30]. In order to 
expand the research, this paper first makes the following assumptions on the scheduling model:

(1) All workpieces have no priority constraints. 
(2) Adequate preparation of raw materials, i.e., regardless of raw material constraints during production. 
(3) Each workpiece can only be processed on one machine at a time, and each machine can only process 
one workpiece at a time. 
(4) Regardless of the constraints of enterprise human resources and warehouse capacity. 
(5) The executive time of the workpiece on each machine is known and independent. 
(6) Equipment failure constraints are not considered. 
(7) Once each machine starts processing the workpiece, this process cannot be interrupted until it is 
completed.

Establishing a scheduling mathematical model mainly considers two issues: the model objective and the 
model constraints. The desired goals are considered to minimize maximum production time and 
production energy consumption. Given the specialized nature of the household paper production process, it 
is difficult to establish its energy consumption, so we will first analyze the energy consumption in the 
following sections.

Analysis of energy consumption in the production of household paper
The direct energy consumed in the production process of paper mills mainly includes electricity and steam, 
which are mainly used to drive equipment, while steam is mainly used for drying. In China, some paper 
mills have affiliated thermal power plants that provide electricity and steam energy through 
cogeneration[31,32]. According to different production activities, the energy consumption of papermaking 
workshops is divided into direct energy consumption and indirect energy consumption. Direct energy 
consumption refers to the energy consumption directly related to the workpiece processing process, 
including equipment processing energy consumption, equipment idle waiting energy consumption, 
etc.[33,34]. Indirect energy consumption refers to the energy consumption of necessary auxiliary equipment 
during workpiece processing, such as workpiece handling energy consumption, workshop lighting energy 
consumption, etc. For different scheduling results, the indirect energy consumption and some direct energy 
consumption do not vary significantly. To more intuitively analyze the impact of different scheduling 
results on workpiece processing energy consumption and completion time, this study only considers 
processing energy consumption and equipment idle waiting energy consumption, which vary significantly 
due to scheduling sequence differences.
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Figure 2. Technical Route of This Research. DRL: Deep reinforcement learning.

Figure 3. Digital twin framework of the papermaking process.

Generally, processing energy consumption includes power consumption for pulping, papermaking, 
papermaking steam, rewinding, cutting, and packaging. The steam consumption in the papermaking 
process is mainly generated in the drying section, which is one of the important sections of the papermaking 
process and consists of a main process (i.e., the paper drying process) with two auxiliary systems (steam 
condensate subsystem and ventilation and waste heat recovery subsystem), as shown in Figure 3. The 
thermal energy consumption in this process is mainly divided into two parts: a steam condensate subsystem 
that provides a heat source for the evaporation of paper moisture and a ventilation with waste heat recovery 
subsystem that heats the preheated and recovered air. The power consumption in processing energy 
consumption and idle waiting energy consumption of equipment mainly considers the processing and 
waiting power of each equipment.
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Variables specification
A mathematical model based on the above problem definition and characteristics of the household paper 
production process is established. The symbolic representation and definition of the variables used in the 
model are shown in Table 1.

Establish mathematical model
The mathematical model for the scheduling problem of a household paper workshop is established as 
follows:

Equation (1) represents the solution goal of the mathematical model to minimize the maximum completion 
time of all job sequences.
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Table 1. Variables description

Variable Symbol description

M Total machine set

J Total workpiece collection

Mih Optional set of processing machines for the first h operation of the workpiece i

i  i ∈ J (i = 1, 2 … n) Current production order of workpiece

NOi Total number of operations for the workpiece i

NMih Number of optional machines for the first h process of the workpiece i

Oih h = (1, 2 … NOi) The second h process of the workpiece i

Oihm m = (1, 2 … NMih) The first h process of the workpiece i is processed on the machine m

Oih'm The first h' process of the workpiece i is processed on the machine m

Oih'm' The first h process of the workpiece i is processed on the machine m before the second h' process is processed on the 
machine m'

Pihm The processing time of the first process h of the workpiece i on the machine m

Sihm Processing start time for Oihm

C Processing completion time

Cihm Processing completion time of Oihm

Ci'hm Processing completion time of Oi'hm for order i'

STi'im Preparation time for order i' switching i on the machine m

λ Poisson distribution parameters for new order arrival

i_insert Number i of inserted order

i_uncompleted Number i of uncompleted order

n_insert Total number of inserted orders

c Specific heat capacity of water

ΔT Temperature increment during the drying process

m Dry web quality

ms,SCS The amount of steam consumed by the steam condensate subsystem

ms,AH The amount of steam consumed in the air heating device in the ventilation and waste heat recovery subsystem

Pim(t) Processing power of workpiece i on machine m

P(w)m(t) Standby power consumption of machine m

Q Consumed heat

Ep Total processing energy consumption

Ew Total standby energy consumption

Eh Total heat consumption

Ee Total processing power consumption

Equation (2) indicates that the completion time of all workpieces and the required production time of any 
process of any workpiece on all available machines are non-negative.

Equation (3) indicates that the decision variable can only take two numbers, 0 or 1, to constrain that the 
same workpiece can only be processed on one machine at the same time and that the same machine can 
only process one workpiece at the same time.

Equation (4) indicates that the current processing completion time of the order is determined by the 
selected machine and the switching preparation time. That is, the current completion time of the ith 
workpiece is equal to the completion time of the previous operation plus the processing time of the current 
operation plus the preparation time required for switching.
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Equation (5) indicates that the completion time of order i is the maximum value of the completion time of 
all operations in this order.

Equation (6) indicates that for the same machine, the earliest start time of the current job is not earlier than 
the earliest completion time of the previous operation before the machine is tightened.

Equation (7) indicates that for the same order, the earliest production time of the current operation is not 
less than the earliest completion time of the operation immediately preceding the order.

Equation (8) represents a constraint: the selected machine is unique for each operation of each order.

Equation (9) indicates that at the current moment, the current total order quantity is the number of 
currently outstanding orders plus the number of inserted orders.

Equation (10) represents the mass of steam consumed during the papermaking process.

Equation (11) represents the heat calculation formula.

Equation (12) represents the total heat energy of the processing process.

Equation (13) represents the total electrical energy during the processing process. Due to the small change 
in power when the rotating speed of the equipment spindle is stable during the processing process, this 
article regards the equipment power as a constant value for calculation.

Equation (14) represents the total energy consumption of the processing process.

Equation (15) represents the total energy consumption during the idle waiting process of the device.

Equation (16) represents the two objectives of the model: minimizing maximum production time and total 
energy consumption.

The mathematical model established above is a mixed integer nonlinear programming (MINLP) model, 
which contains a large number of constraints, discrete variables, and continuous variables. Subsequently, 
DRL algorithms will be proposed to solve this dynamic scheduling problem.

Multi-objective dynamic scheduling model on deep reinforcement learning
Formally, a basic DRL algorithm includes:

(1) Status S: the current position of the agent in the environment. 
(2) Action A: the step taken by an agent when it is in a specific state. 
(3) Reward R: the positive or negative reward for each action of agents. 
(4) Strategy T: the transition probability of the agent from the current state to the next state.

In response to the above dual objective optimization problem, this study uses the Markov game as a formal 
and quantitative description tool to model the dynamic scheduling process of the household workshop, 
analyze the relevant equilibrium and mechanism design under the game model, and finally achieve an 



Page 96                         Zhang et al. J Smart Environ Green Comput 2023;3:87-105 https://dx.doi.org/10.20517/jsegc.2023.05

accurate description of the multi-objective optimization scheduling process of the household workshop.

We consider the household paper production scheduling process established in Section “Establish 
mathematical model” as a Markov game with two agents. The two scheduling objectives, namely, the 
maximum completion time and the total energy consumption, are abstracted into two agents. Suppose that 
at the time step t, each agent can observe actions and rewards of each other, and then they choose a joint 
distribution strategy πst, that is, a combination of action selection for all agents. Each agent further 
determines an action ai and generates an executable set of purely strategic actions at = (a1, …, ai). Each 
participant is rewarded Ri (st, αt) based on their current status st and action strategy αt. The above process 
would be repeated at t + 1 time step and beyond.

State space definition
It is significant to correctly identify the state characteristics to describe the job shop environment. The 
representation of state space should follow the principles:

State characteristics describe the main characteristics and changes of the scheduling environment. The 
selection of state features relates to the scheduling goal; otherwise, it will cause feature redundancy. All 
states of different scheduling problems share a common feature set to represent them. State characteristics 
are numerical representations of state attributes that are highly related to the objectives.

In accordance with the reference[35], the state feature is expressed in the form of multiple matrices. Upon 
establishing a processing time matrix that considers the differences between a flexible job shop and a job 
shop, it is formulated as a two-dimensional matrix of the processing time of each process for each 
workpiece, where a maximum value can be assigned to indicate that the equipment is not selectable, as 
shown in Figure 4. The second matrix is composed of scheduling results for the current time step. Taking a 
scheduling example of 2 × 5 as an example, the transformation of a 1-step scheduling process into a state 
space matrix is given. In the initial state, each value in the processing time matrix is the processing time of 
the operation, and the scheduling result matrix is zero. For each operation completed, the processing time 
in the processing time matrix is converted to zero, and the corresponding value in the scheduling result 
matrix is converted to one.

Action space
The action space is a collection of actions that an agent can take in its current state. In dynamic scheduling 
problems, these actions involve selecting priority processing jobs based on scheduling rules. The selection of 
action space is a heuristic behavior. To avoid the shortsightedness of a single rule, multiple scheduling rules 
are taken as the action space. In order to better determine scheduling rules, the selected scheduling rules 
should be as diverse as possible related to the scheduling goals. In order to select diverse scheduling rules to 
fully leverage the ability of agents to learn from experience, this study takes account of four order sorting 
rules [α1, α2, α3, α4]as the composition of action space A to achieve dynamic scheduling objectives:

(1) Action α1: On the current scheduling node, select the job with the maximum delay rate. The calculation 
method of the delay rate is shown in Equation (17).
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Figure 4. State space matrix transformation.

Where ni is the total number of operations belonging to the job; opi(t) is the number of operations currently 
completed by the job; ti,j is the average value of processing time in all available machines, and its calculation 
formula is shown in Equation (18).

(2) Action α2: At the current scheduling point, the workpiece with the shortest remaining processing time 
(excluding the processing time of the current operation) is selected preferentially. 
(3) Action α3: Select the workpiece with the shortest working time on the earliest available machine in the 
immediate post-processing process. 
(4) Action α4: Randomly select an incomplete action.

Applying a scheduling transformation method based on matrix formed state space and action space 
determined by scheduling rules, this approach adapts to reinforcement learning, leveraging the autonomous 
decision-making and optimization capabilities of the algorithm. Compared to the traditional two-stage 
encoding and decoding method based on meta-heuristic algorithms, it can better reflect the changes in the 
processing of machines and workpieces and is closer to the changes in actual production status.

Reward function design
In multi-agent systems, agents often face challenges such as the determination of learning objectives, 
instability in learning problems, and the need for coordinated processing. It is found that with appropriate 
reward function design, the stability and convergence of the algorithm can be guaranteed. For agents 
optimizing the maximum completion time, the reward function is designed as Equation (19).
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Similarly, the reward function for energy consumption is designed as Equation (20).

The value range of the reward function for them both falls within [0, 1], where Equation (19) indicates that 
the smaller the value of the increased maximum completion time, the better. Similarly, Equation (20) 
indicates that the smaller the increase in energy consumption, the better.

Design of strategy selection mechanism
Each agent simultaneously updates the state and action space at each time step t, and the strategy needs to 
consider the mutual influence of multiple agents. Here, it is chosen to obtain the value through Nash 
equilibrium and then use a greedy strategy to obtain the solution of multiple objectives, as shown in 
Equation (21).

Where μ* represents the action with the highest μ value in the state st, and it is calculated following Equation 
(22). A(st) represents the set of all optional actions in the state st, and rand is a sampling value that follows a 
standard normal distribution.

Where ui is the game income of each agent, determined by the reward increase gradient of each agent, as 
shown in Equation (23).

Wherein Δui(t + 1) is determined by Equation (24).



Zhang et al. J Smart Environ Green Comput 2023;3:87-105 https://dx.doi.org/10.20517/jsegc.2023.05                        Page 99

Where ΔRi(t) is the added value of the revenue of the agent in the current time step state t.

Description of experimental data for household paper scheduling problem
As shown in Table 2, according to the actual operating data, after fuzzing the data, the production speed of 
the papermaking line is subject to random distribution within the range of [1000, 1200]. The production 
speed of the slitter is subject to a random distribution within the range of [280, 370]. The production speed 
of the rewinder is subject to a random distribution within the range of [140, 320]. The production speed of 
the small baler is subject to a random distribution within the range of [160, 260]. The amount of steam 
consumed by the steam condensate subsystem follows a random distribution at [2, 3]. The amount of steam 
consumed by the air heating device in the ventilation waste heat recovery system follows a random 
distribution at [0.5, 1.5]. The pre-process follows a random distribution between [1200, 1500]. The standby 
power follows a random distribution between [710, 890]. The processing power of the post-processing 
process follows a random distribution between [110, 150]. The standby power follows a random distribution 
between [9.5, 15].

To verify the constructed system model, different scenarios will be randomly selected to compare the 
optimal results with the solutions provided in this study. Firstly, the total number of original orders is 
grouped and tested in three sizes: 20, 50, 100. Each size generates four sets of data. For newly arrived orders, 
each group is randomly generated according to the Poisson distribution, and the insertion time interval of 
two adjacent new orders follows an exponential distribution, as shown in Table 3. The optimal data for each 
group of results is planned as an upper bound for comparison with other algorithms.

The process of DRL algorithm optimization
Table 4 provides the parameters of the algorithm implementation process for solving the dynamic multi-
objective scheduling problem of a household paper workshop based on the D3QN algorithm[36].

(1) Initialize the current Q network parameters θ, initialize the target network Q' parameter θ', and assign 
the Q network parameters to the network Q', including the total iteration number T, the attenuation factor 
γ, the exploration rate ε, the target Q network update frequency P, initialize the experience playback pool M, 
and the batch size B. 
(2) Start the time step cycle, initialize the environment and revenue, done = False. 
(3) In the current time step, obtain the status and strategy and select an action based on the strategy. 
(4) Execute the selected action and observe the rewards obtained and the next state of each agent; 
(5) Save the status, action, reward, next status, and current cycle status into M; 
(6) If M is saved to B, experience with a quantity of B is obtained from D based on priority; 
(7) Calculate the loss function LQ(θ). 
(8) Update parameters θ and θ'. 
(9) Update agent status; 
(10) Determines whether the cycle has ended. If the output result has ended, if not, return to Step (3).

RESULTS
Performance index
In order to verify the effect of the D3QN-based scheduling method proposed in this paper, the following 
performance indicators will be used for measurement:

(1) MRE value: represents the average relative error of the result, which is calculated as Equation (25):
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Where N is the number of samples, and RE is the relative error defined by Equation (26):

(2) WR value: represents the win rate of the algorithm, which is calculated as Equation (27):

Wherein nbest is the number of the best results in each algorithm in each test group, and N is the total
number of results for the current test group.

Comparison of results on multi-objective solution
As shown in Figure 5, for multi-group experiments, according to the distribution of optimal results, the
code and parameter settings of Multi-Objective Particle Swarm Optimization and Non-dominated Sorting
Genetic Algorithm-II are based on references[37] and[38], respectively. It is assumed the closer the distribution
of optimal results to the top right corner, the better the algorithm performs. It is worth noting that DRL can
always find a solution that is superior to the other two algorithms by means of multi-agent that guarantees
Nash equilibrium in general. At the same time, a good solution set is more stable. Although the other two
algorithms can also find solutions in better positions, the results tend to be uneven, concentrated, and
excessively scattered. This shows that the reinforcement learning algorithm has great potential in industrial
applications, and its performance is much better than a meta-heuristic algorithm in industrial production.
In addition, the specific experimental results of the four groups are shown in Figure 6. Each subfigure is
represented by double coordinates, with the bar chart representing the maximum completion time and the
line chart representing the total energy consumption. For the maximum completion time indicator, the
change in task size does not affect DRL performance.

Comparison of the winning rate
Figure 7 shows the winning rates of DRL, non-dominated sorting genetic algorithm II (NSGA-II), and
multiple objective particle swarm optimization (MOPSO) on the objectives of maximum completion time
and total energy consumption, respectively, with new orders inserted. Each result is represented by a
histogram. In terms of the maximum completion time, the results of DRL are better than the other two
algorithms. As aforementioned, depending on the multi-objective scheduling rule space, DRL agents can
achieve more adaptive scheduling results. For energy consumption targets, DRL is basically equal to NSGA-
II, with individual advantages.

CONCLUSIONS AND FUTURE WORKS
The optimization of flexible process scheduling is complicated and difficult for household paper workshop
scheduling. However, it determines the development work from all upstream to downstream. In complex
workshop production environments, the old manual scheduling method is difficult to adapt to satisfy the
various requirements. Therefore, it is necessary to study the problem with innovative techniques. In this
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Table 2. Experimental data

Parameter Value

Production speed of paper production line Unif [1000, 1200]

Split thread production speed Unif [280, 370]

Production speed of rewinding line Unif [140, 320]

Production speed of small package line Unif [160, 260]

Steam consumption of steam condensate Unif [2, 3]

Steam consumption of air heating device Unif [0.5, 1.5]

Processing power of pre-processing process Unif [1200, 1500]

Pre-processing standby power Unif [710, 890]

Post-processing power Unif [110, 150]

Post-processing standby power Unif [9.5, 15]

Table 3. Experimental data

Parameter Value

Total number of original orders {20, 50, 100}

Total number of newly inserted jobs {5, 10, 20}

Poisson distribution probability [0.0, 1.0]

Table 4. Experimental parameter setting of the D3QN algorithm

Parameter Value

Experience playback unit size 218

Learning rate 0.0001

Batch size 256

Discount factor 0.99

Update Rate 0.001

Network width 128

Number of network layers 4

Discount factor 0.1

ε 0.1

regard, this paper carries out a mathematical analysis and modeling study on the dynamic scheduling of 
household paper production and then transforms the scheduling mathematical problem into a Markov 
game paradigm. The scheduling problem is attempted to be solved by DRL with multi-agent systems by 
establishing multiple agents and selecting appropriate game strategies. In the constructed model, DRL 
agents addressed multi-objective problems independently on any prior and posterior knowledge. Based on 
the comparison with meta-heuristic algorithms, the proposed method was found to perform more 
efficiently in conducting high-dimensional exploration and optimization of scheduling problems. Upon 
which, the following conclusions can be drawn:

(1) The household paper workshop scheduling problem is a quantifiable process. Upon analyzing the 
objectives and constraints of the problem, a mixed integer programming mathematical model can be 
established for specific problems. 
(2) Compared with general meta-heuristic algorithms, reinforcement learning has unique advantages in the 
field of scheduling household paper production and even flexible production. For industrial fields where 
stability is required specifically, reinforcement learning can play a better role. 
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Figure 5. Comparison of revenue results for each agent based on different algorithms.

Figure 6. Comparison results of algorithms in different experimental groups (A), (B), (C), and (D).

Figure 7. Comparison of WR of algorithms on (A) time and (B) energy. DRL: Deep reinforcement learning.
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(3) With minor changes to different specific issues, this model can be extended to more general flexible 
process production industries. 
(4) The game theory works well in the context of reinforcement learning. The establishment of a Markov 
game can assist in solving multi-objective problems. It not only works independently on traditional prior 
knowledge or judgment but is also able to achieve adaptive results with the environment. 
(5) The algorithm proposed in this study has significant advantages over the meta-heuristic algorithms in 
terms of the quality of the comprehensive solution, with the percentage of difference exceeding 20%.

Due to the complexity of the actual production, this study proposed some ideal assumptions while 
establishing the model and temporarily shelving considerations such as materials and labor resources. If 
better practical applications are considered, it is necessary to increase or decrease relevant constraints based 
on the actual situation of the factory. Additionally, the multi-agent DRL benefits from the interactions with 
the environments at different time steps for each agent, and each step can only provide access to one 
situation (or one set of combinations with action probability) of the state. It is far slower in the training 
iterations than meta-heuristic algorithms, which select a wide range of populations from the group all at 
once to find solutions. Therefore, with the lower efficiency of convergency of DRL, it is also challenging to 
apply the proposed method to satisfy an imperative urgent need. From the presentation of the results of this 
study, it can also be seen that although DRL has its unique advantages, there is still room for research in 
terms of operational speed. For example, selecting smaller dimensional state spaces and other operations 
can be further tried. In future work, targeted models can be designed and constructed based on the actual 
situation of the factory to improve the operational speed and solution quality of the algorithm.

DECLARATIONS

Authors’ contributions
Performed investigation, methodology, writing, review, editing and visualization: Zhang Z
Performed investigation, methodology, writing, review, editing and visualization: He X
Contributed to conceptualization, methodology, software, supervision: Man Y
Contributed to the conceptualization, investigation, review, project administration, supervision: He Z

Availability of data and materials
Not applicable.

Financial support and sponsorship
Science and Technology Program of Guangzhou (2023A04J1367); State Key Laboratory of Pulp and Paper
Engineering (2022ZD02).

Conflicts of interest
All authors declared that there are no conflicts of interest.

Ethical approval and consent to participate
Not applicable.

Consent for publication
Not applicable.



Page 104                       Zhang et al. J Smart Environ Green Comput 2023;3:87-105 https://dx.doi.org/10.20517/jsegc.2023.05

REFERENCES
Dang S, Tang W. Real-time data scheduling of flexible job in papermaking workshop based on deep learning and improved fuzzy 
algorithm. Mob Inf Syst 2021;2021:1-12.  DOI

1.     

Rager M, Gahm C, Denz F. Energy-oriented scheduling based on Evolutionary Algorithms. Comput Oper Res 2015;54:218-31.  DOI2.     
Hu S, Liu F, He Y, Hu T. An on-line approach for energy efficiency monitoring of machine tools. J Clean Prod 2012;27:133-40.  DOI3.     
Li JX, Wen XN. Construction and simulation of multi-objective rescheduling model based on PSO. Int j simul model 2020;19:323-33.  
DOI

4.     

Yan Q, Wu W, Wang H. Deep reinforcement learning for distributed flow shop scheduling with flexible maintenance. Machines 
2022;10:210.  DOI

5.     

6.     Li T, Kong L, Zhang H, Iqbal A. Recent research and development of typical cutting machine tool’s energy consumption model. J Mech
          Eng 2014;50:102-11.  DOI

Zhang G, Xing K, Zhang G, He Z. Memetic algorithm with meta-lamarckian learning and simplex search for distributed flexible
assembly permutation flowshop scheduling problem. IEEE Access 2020;8:96115-28.  DOI

7.     

Naderi B, Ruiz R. The distributed permutation flowshop scheduling problem. Comput Oper Res 2010;37:754-68.  DOI8.     
Yang R, Sun X, Narasimhan K. A generalized algorithm for multi-objective reinforcement learning and policy adaptation. Available 
from: https://proceedings.neurips.cc/paper_files/paper/2019/file/4a46fbfca3f1465a27b210f4bdfe6ab3-Paper.pdf. [Last accessed on 14 
Sep 2023].

9.     

Yang Y, Wang J. An overview of multi-agent reinforcement learning from game theoretical perspective. Available from: https://arxiv.
org/abs/2011.00583. [Last accessed on 14 Sep 2023].

10.     

Aytug H, Lawley MA, Mckay K, Mohan S, Uzsoy R. Executing production schedules in the face of uncertainties: a review and some 
future directions. Eur J Oper Res 2005;161:86-110.  DOI

11.     

Zhang F, Mei Y, Nguyen S, Zhang M, Tan KC. Surrogate-assisted evolutionary multitask genetic programming for dynamic flexible 
job shop scheduling. IEEE Trans Evol Computat 2021;25:651-65.  DOI

12.     

Tawegoum R, Castelain E, Gentina J. Hierarchical and dynamic production control in flexible manufacturing systems. Robotics 
Comput Integr Manuf 1994;11:327-34.  DOI

13.     

Jawahar N, Aravindan P, Ponnambalam SG, Raghavendra LN. Knowledge-based workcell attribute oriented dynamic schedulers for 
flexible manufacturing systems. Int J Adv Manuf Technol 1998;14:514-38.  DOI

14.     

Braglia M, Petroni A. Data envelopment analysis for dispatching rule selection. Prod Plan Control 1999;10:454-61.  DOI15.     
Elmaraghy HA, Elmekkawy TY. Deadlock-free rescheduling in flexible manufacturing systems. CIRP Annals 2002;51:371-4.  DOI16.     
Chan FTS. Evaluation of combined dispatching and routeing strategies for a flexible manufacturing system. Proc Inst Mech Eng B J 
Eng Manuf 2002;216:1033-46.  DOI

17.     

Wang K, Choi SH. Solving stochastic flexible flow shop scheduling problems with a decomposition-based approach. AIP Conf Proc 
2010;1247:374-88.  DOI

18.     

Weng W, Fujimura S. Distributed-intelligence approaches for weighted just-in-time production. IEEJ Trans Elec Electron Eng 
2010;5:560-8.  DOI

19.     

Kianfar K, Fatemi Ghomi S, Oroojlooy Jadid A. Study of stochastic sequence-dependent flexible flow shop via developing a 
dispatching rule and a hybrid GA. Eng Appl Artif Intell 2012;25:494-506.  DOI

20.     

Abd K, Abhary K, Marian R. Simulation modelling and analysis of scheduling in robotic flexible assembly cells using Taguchi 
method. Int J Prod Res 2014;52:2654-66.  DOI

21.     

Hosseinabadi AAR, Siar H, Shamshirband S, Shojafar M, Nasir MHNM. Using the gravitational emulation local search algorithm to 
solve the multi-objective flexible dynamic job shop scheduling problem in small and medium enterprises. Ann Oper Res 
2015;229:451-74.  DOI

22.     

Heger J, Branke J, Hildebrandt T, Scholz-reiter B. Dynamic adjustment of dispatching rule parameters in flow shops with sequence-
dependent set-up times. Int J Prod Res 2016;54:6812-24.  DOI

23.     

Ivanov D, Dolgui A, Sokolov B, Werner F, Ivanova M. A dynamic model and an algorithm for short-term supply chain scheduling in 
the smart factory industry 4.0. Int J Prod Res 2016;54:386-402.  DOI

24.     

Tang D, Dai M, Salido MA, Giret A. Energy-efficient dynamic scheduling for a flexible flow shop using an improved particle swarm 
optimization. Comput Ind 2016;81:82-95.  DOI

25.     

Rani M, Mathirajan M. Performance evaluation of due-date based dispatching rules in dynamic scheduling of diffusion furnace. 
OPSEARCH 2020;57:462-512.  DOI

26.     

Lei C, Zhao N, Ye S, Wu X. Memetic algorithm for solving flexible flow-shop scheduling problems with dynamic transport waiting 
times. Comput Ind Eng 2020;139:105984.  DOI

27.     

Copyright
© The Author(s) 2023.

https://dx.doi.org/10.1155/2021/9930740
https://dx.doi.org/10.1016/j.cor.2014.05.002
https://dx.doi.org/10.1016/j.jclepro.2012.01.013
https://dx.doi.org/10.2507/ijsimm19-2-co8
https://dx.doi.org/10.3390/machines10030210
https://dx.doi.org/10.3901/jme.2014.07.102
https://dx.doi.org/10.1109/access.2020.2996305
https://dx.doi.org/10.1016/j.cor.2009.06.019
https://proceedings.neurips.cc/paper_files/paper/2019/file/4a46fbfca3f1465a27b210f4bdfe6ab3-Paper.pdf
https://arxiv.org/abs/2011.00583
https://arxiv.org/abs/2011.00583
https://dx.doi.org/10.1016/j.ejor.2003.08.027
https://dx.doi.org/10.1109/tevc.2021.3065707
https://dx.doi.org/10.1016/0736-5845(95)00010-0
https://dx.doi.org/10.1007/bf01351397
https://dx.doi.org/10.1080/095372899232984
https://dx.doi.org/10.1016/s0007-8506(07)61539-x
https://dx.doi.org/10.1243/09544050260174229
https://dx.doi.org/10.1063/1.3460245
https://dx.doi.org/10.1002/tee.20573
https://dx.doi.org/10.1016/j.engappai.2011.12.004
https://dx.doi.org/10.1080/00207543.2013.867082
https://dx.doi.org/10.1007/s10479-014-1770-8
https://dx.doi.org/10.1080/00207543.2016.1178406
https://dx.doi.org/10.1080/00207543.2014.999958
https://dx.doi.org/10.1016/j.compind.2015.10.001
https://dx.doi.org/10.1007/s12597-019-00434-8
https://dx.doi.org/10.1016/j.cie.2019.07.041


Zhang et al. J Smart Environ Green Comput 2023;3:87-105 https://dx.doi.org/10.20517/jsegc.2023.05                      Page 105

Luo S, Zhang L, Fan Y. Real-time scheduling for dynamic partial-no-wait multiobjective flexible job shop by deep reinforcement 
learning. IEEE Trans Automat Sci Eng 2022;19:3020-38.  DOI

28.     

Han B, Yang J. Research on adaptive job shop scheduling problems based on dueling double DQN. IEEE Access 2020;8:186474-95.  
DOI

29.     

Gubernat S, Czarnota J, Masłoń A, Koszelnik P, Pękala A, Skwarczyńska-wojsa A. Efficiency of phosphorus removal and recovery 
from wastewater using marl and travertine and their thermally treated forms. J Water Process Eng 2023;53:103642.  DOI

30.     

Michalopoulou A, Markantonis I, Vlachogiannis D, Sfetsos A, Kilikoglou V, Karatasios I. Weathering mechanisms of porous marl 
stones in coastal environments and evaluation of conservation treatments as potential adaptation action for facing climate change 
impact. Buildings 2023;13:198.  DOI

31.     

Jiang S, Mokhtari M, Song J. Comparative study of elastic properties of marl and limestone layers in the Eagle Ford formation. Front 
Earth Sci 2023;10:1075151.  DOI

32.     

He C, Lin H. Improved algorithms for two-agent scheduling on an unbounded serial-batching machine. Discrete Optim 
2021;41:100655.  DOI

33.     

Hepsiba PS, Kanaga EGM. An osmosis-based intelligent agent scheduling framework for cloud bursting in a hybrid cloud. Int J 
Distrib Syst Technol 2020;11:68-88.  DOI

34.     

Nicosia G, Pacifici A, Pferschy U. Competitive multi-agent scheduling with an iterative selection rule. 4OR-Q J Oper Res 2018;16:15-
29.  DOI

35.     

Yuan H, Ni J, Hu J. A centralised training algorithm with D3QN for scalable regular unmanned ground vehicle formation 
maintenance. IET Intell Transp Syst 2021;15:562-72.  DOI

36.     

He Z, Tran KP, Thomassey S, Zeng X, Xu J, Yi C. Multi-objective optimization of the textile manufacturing process using deep-Q-
network based multi-agent reinforcement learning. J Manuf Syst 2022;62:939-49.  DOI

37.     

He Z, Qian J, Li J, Hong M, Man Y. Data-driven soft sensors of papermaking process and its application to cleaner production with 
multi-objective optimization. J Clean Prod 2022;372:133803.  DOI

38.     

https://dx.doi.org/10.1109/tase.2021.3104716
https://dx.doi.org/10.1109/access.2020.3029868
https://dx.doi.org/10.1016/j.jwpe.2023.103642
https://dx.doi.org/10.3390/buildings13010198
https://dx.doi.org/10.3389/feart.2022.1075151
https://dx.doi.org/10.1016/j.disopt.2021.100655
https://dx.doi.org/10.4018/ijdst.2020070104
https://dx.doi.org/10.1007/s10288-017-0341-7
https://dx.doi.org/10.1049/itr2.12046
https://dx.doi.org/10.1016/j.jmsy.2021.03.017
https://dx.doi.org/10.1016/j.jclepro.2022.133803

