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Abstract
The conversion performance for electrocatalytic CO2 reduction reaction (CO2RR) relies on the affinity of CO2 
molecules. Ionic covalent organic frameworks (COFs) are promising platforms for CO2RR due to the accessible 
catalytic sites in the skeleton, high CO2 combination ability and the electronic conductivity. However, most ionic 
COFs are constructed via pre-functionalization of the monomers or post-modification of the skeleton, encountering 
incomplete loading or uneven distribution of the active sites. In this work, a cationic porphyrin-based COF using the 
(3-carboxypropyl)trimethylammonium and Co-porphyrin units is developed through the sub-stoichiometric 
bottom-up synthesis method to fine-tune the pore environment for modulating the binding ability of CO2. 
Compared to base COFs, the cationic COFs exhibit improved electronic conductivity, high CO2 adsorption uptakes 
and enhanced reducibility, further improving the electrocatalytic CO2RR performance. Notably, the cationic COF 
achieves a high CO selectivity of 93% and a partial current density of 24.6 mA·cm-2. This work not only offers 
considerable insights for improving the catalytic performance of COFs through the cationic groups but also 
provides a stoichiometry method to modulate the pore environment.

Keywords: Covalent organic frameworks, CO2 reduction reaction, modification strategy, cationic skeleton, CO2 
adsorption
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INTRODUCTION
The electrocatalytic CO2 reduction reaction (CO2RR) is a crucial technology for reducing greenhouse gas 
concentrations and mitigating climate change[1-4]. Nowadays, the molecular catalysts, metallic nanoclusters 
and single atom catalysts (SACs) were employed to catalyse the CO2RR[5-7]. However, the high energy barrier 
required to activate inert CO2 and the weak binding interactions between CO2 and catalysts impede catalytic 
activity and selectivity[8-10]. Consequently, it is imperative to enhance the interaction between CO2 and 
reactants by modulating CO2 adsorption behavior, which holds great significance for optimizing catalytic 
activity in CO2RR.

Covalent organic frameworks (COFs), as emerging porous materials due to their high crystallinity, periodic 
channels, designable structures and robust stability, have attracted considerable attention for molecular 
adsorption, photo-/electro-catalysis, luminescent sensors and proton transport[11-20]. The porous materials 
including COFs and metal-organic frameworks (MOFs), constructed with catalytic building blocks, 
functional units and catalytic sites, have been employed as electrocatalysts towards oxygen reduction 
reaction (ORR) and oxygen evolution reaction (OER)[21-26]. In 2015, Lin et al. exhibited the porphyrin-COFs 
for CO2RR using the heterophase strategy[27]. After that, the different dimensional topologies, functional 
groups, catalytic sites and linkages have been employed to improve the activity and selectivity towards CO2

RR. For example, Han et al. reported three-dimensional COFs with abundant exposure active sites for CO2

RR[28]. Furthermore, two dioxin-linked COFs were synthesized for improving CO2RR activity through the 
tuneable electron transfer capacity[29]. However, these catalytic COFs mainly focused on the charge-neutral 
framework, lacking the exploration of ionic frameworks. The charge-neutral frameworks hinder the 
electron transferring to the catalytic sites, thus reducing the utilizing efficiency of catalytic sites. Ionic COFs 
as electrocatalysts possessed the enhanced electronic conductivity and improved electronic transport ability 
which can facilitate the intermediates transfer behavior. In addition, the abundant active sites promote the 
adsorption and activation of reactants in the CO2RR[30].

In this work, we incorporated catalytic sites and cationic functional groups into 2D COFs for enhancing the 
CO2RR selectivity and activity via the bottom-up synthesis method. The optimized COF [a cationic 
porphyrin-based COF using the (3-carboxypropyl)trimethylammonium (TMA-COF)] was built by 
adjusting stoichiometric ratios of the monomers using 4,4’,4’’,4’’’-[1,4-phenylenebis(azanetriyl)]- 
tetrabenzaldehyde (PATA) unit as linkers, [5,10,15,20-tetrakis(4-aminophenyl)porphinato]-cobalt 
(CoTAPP) as catalytic sites and (3-carboxypropyl)trimethylammonium (TMA) as decorate units. 
Compared to Co-COF without TMA groups, the optimized COF exhibited higher selectivity and activity 
due to the enhanced CO2 uptakes. Thus, this work provided not only a modification method for 
functionalizing COFs but also new insights for the energy conversion.

EXPERIMENTAL
The synthesis scheme and chemical structure of Co-COF and TMA-COF are shown in Scheme 1 and 
Supplementary Figures 1 and 2. More detailed information, including synthesis methods and materials, is 
presented in the Supplementary Materials.

RESULTS AND DISCUSSION
To identify the structure of two COFs, the Fourier transform infrared spectroscopy (FTIR) measurement 
was conducted. Specifically, the peaks at 1,620 cm-1 originated from C=N bonds of the as-synthesized COFs, 
suggesting the condensation of Schiff reactions [Supplementary Figure 3][31]. The 13C nuclear magnetic 
resonance (NMR) also exhibited the structure of the prepared COFs. Specifically, the peaks at around 
160 ppm were assigned to C=N bonds, suggesting the successful condensation of reactions for Co-COF and 
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Scheme 1. Schematic diagram of Co-COF and TMA-COF using the Schiff condensation. COF: Covalent organic framework; TMA-COF: 
(3-carboxypropyl)trimethylammonium covalent organic framework.

TMA-COF [Supplementary Figure 4]. The peaks at around 56 and 65 ppm were contributed to the TMA 
units of TMA-COF [Supplementary Figure 4]. In addition, we used the inductively coupled plasma (ICP) 
and element analysis (EA) measurements to confirm that the contents of elements (C, N, O, H, Co) for 
Co-COF and TMA-COF. EA for the Co-COF: C, 77.06%; N, 10.98%; H, 4.48%; O, 4.89%. And EA for the 
Co-COF: C, 75.72%; N, 11.53%; H, 4.45%; O, 5.47%. In addition, the Co contents of Co-COF and 
TMA-COF were 2.72% and 2.43%, respectively. The crystalline structures of Co-COF and TMA-COF were 
explored and confirmed using the powder X-ray diffraction (PXRD) and “Materials Studio” software. 
Specifically, the PXRD patterns of the Co-COF illustrated the prominent peak at 5.56° with other peaks at 
10.84° and 21.12° which were assigned to (011), (022) and (001) facets, respectively [Figure 1A]. Meanwhile, 
the simulated results and space group parameters suggested that the Co-COF adopted “PM” space groups 
and AA stacking models with the Rp = 2.38% and Rwp = 2.53% instead of AB stacking models [Figure 1B and 
Supplementary Figure 5].

In addition, the simulated PXRD patterns of the TMA-COF demonstrated the diffraction peaks at 5.61°, 
9.55°, 10.84° and 20.84°, contributing to the (011), (202), (301) and (001) facets, respectively [Figure 1C]. 
Notably, the larger layer distance of (001) from TMA-COF than that of Co-COF manifested the electrostatic 
repulsion from the TMA groups. The Pawly refinement confirmed the AA stacking models of TMA-COF 
with the Rp = 2.53% and Rwp = 3.41% rather than AB stacking models [Figure 1D and Supplementary 
Figure 6].

The morphologies of obtained COFs were confirmed through the transmission electron microscopy (TEM) 
and field-emission scanning electron microscopy (FE-SEM). Specifically, the high-resolution TEM 
(HRTEM) images of Co-COF and TMA-COF illustrated that the dominant lattices with a d-space of 1.6 and 
0.4 nm from (011) and (001) facet, respectively, further indicating the high crystallinity [Figure 1E and F]. In 
addition, the FE-SEM images showed that the Co-COF illustrated a bar shape that was composed of 
nanoparticles [Figure 1G]. The TMA-COF also exhibited a bar shape consisting of nanoparticles 
[Figure 1H]. Moreover, the energy dispersive X-ray spectroscopy (EDX) mappings confirmed the uniform 
distribution of these elements in COF fragments [Supplementary Figures 7 and 8]. Thermogravimetric 
analysis (TGA) manifested that the decompositions of Co-COF and TMA-COF reached only 8% and 11% at 
550 °C, respectively [Supplementary Figure 9].
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Figure 1. (A) The PXRD profile of the experimentally observed (black), Pawley refined (red), difference (orange), simulated using the AA 
(blue) and staggered AB (green) stacking modes; (B) Top view of theoretically modeled eclipsed-AA stacking model for the Co-COF 
(C-gray, N-blue, H-white, O-red, Co-pink); (C) The PXRD profile; (D) Top view of theoretically modeled eclipsed-AA stacking model for 
the TMA-COF; The TEM images of (E) Co-COF and (F) TMA-COF; The SEM images of (G) Co-COF and (H) TMA-COF. PXRD: Powder 
X-ray diffraction; COF: covalent organic framework; TMA-COF: (3-carboxypropyl)trimethylammonium covalent organic framework; 
TEM: transmission electron microscopy.

The inherent porosities of Co-COF and TMA-COF were analyzed by the N2 sorption behavior. These two 
obtained COFs exhibited the type-I sorption curve, demonstrating microporous structures [Figure 2A]. The 
Brunner-Emmet-Teller specific surface areas of Co-COF and TMA-COF were 271.70 and 289.81 m2·g-1 with 
pore volumes of 0.38 and 0.47 cm3·g-1, respectively. Furthermore, the Co-COF and TMA-COF showed pore 
size distributions of 1.2 and 1.3 nm, respectively [Figure 2B and C]. Moreover, CO2 adsorption isotherms 
were conducted to evaluate the CO2 behavior of as-synthesized COFs. The TMA-COF illustrated the CO2 
uptakes of 21.33 cm3·g-1 at 298 K, respectively, which was higher than that of Co-COF (18.75 cm3·g-1, 
Figure 2D). These results indicated that introducing TMA units, which possessed strong CO2 affinity 
capacity, was beneficial for the CO2RR.

We adopted X-ray photoelectron spectroscopy (XPS) to study the atom and electron states. In particular, 
the XPS spectra showed peaks of all elements in orbitals (C, N, O and Co, Supplementary Figure 10). The 
high-resolution Co 2p spectra of these two COFs displayed the peaks at ~781.38 eV assigned to the Co-N 
coordination from CoTAPP units [Figure 3A]. In addition, the N 1s spectra of the Co-COF showed three 
peaks at 398.7, 399.8 and 401.5 eV, respectively, originating from iminic N, C=N, and C−N bonds[32-34]. 
Correspondingly, the N 1s spectra of the TMA-COF demonstrated a new peak at ~402.1 eV attributed to 
the C−N+ bonds from TMA groups [Figure 3B][33]. Moreover, we adopted the ultraviolet-visible (UV-Vis) 
spectroscopy to calculate band gaps [Supplementary Figure 11]. In detail, the Tauc plot illustrated the band 
gaps for Co-COF and TMA-COF were 1.91 and 1.73 eV, respectively, and the narrower bandgap for 
TMA-COF benefitted the electron transfer between intermediates and catalytic sites, further improving the 
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Figure 2. (A) The nitrogen-sorption isotherms at 77 K of Co-COF (black) and TMA-COF (red); The pore distribution curves of (B) 
Co-COF and (C) TMA-COF; (D) The CO2 adsorption curves at 298 K for Co-COF (black) and TMA-COF (red). COF: Covalent organic 
framework; TMA-COF: (3-carboxypropyl)trimethylammonium covalent organic framework.

Figure 3. The XPS spectra of (A) Co 2p and (B) N 1s for Co-COF and TMA-COF. XPS: X-ray photoelectron spectroscopy; TMA-COF: 
(3-carboxypropyl)trimethylammonium covalent organic framework.

reaction kinetics [Supplementary Figure 12][35-36]. Mott-Schottky patterns showed that these two COFs 
belonged to n-type semiconductors based on the positive slope, indicating the potential for supplying 
electrons in electrocatalysis [Supplementary Figure 13][37]. Furthermore, the Nyquist plots of TMA-COF 
exhibited the charge transfer resistance (Rct) value was 23 Ω, which was smaller than that of Co-COF (27 Ω), 
suggesting the TMA units can enhance the charge transfer capacity of COFs [Supplementary Figure 14].
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Figure 4. (A) LSV curves from -0.5 to -1.0 V in 0.5 M KHCO3 under CO2 atmosphere (line) and Ar atmosphere (dot); (B) Tafel slopes; 
(C) CO faradaic efficiency; (D) The partial CO current density; (E) The ECSA slopes; (F) The CO current density by the normalized ECSA 
for Co-COF (black) and TMA-COF (red). LSV: Linear sweep voltammetry; ECSA: electrochemically active surface area; COF: covalent 
organic framework; TMA-COF: (3-carboxypropyl)trimethylammonium covalent organic framework.

Considering these features of COFs, we evaluate the CO2RR performance in 0.5 M KHCO3 under CO2 
atmosphere within the applied potential range of -0.5 to -1.0 V vs. reversible hydrogen electrode (RHE). 
Specifically, the linear sweep voltammetry (LSV) curves suggested that the Co-COF and TMA-COF 
possessed higher current density in CO2 atmosphere than in Ar atmosphere, revealing their efficient 
electrocatalytic CO2RR activity [Figure 4A]. Meanwhile, the TMA-COF exhibited higher current density in 
the range of potentials than that of Co-COF, illustrating the high activity and electronic conductivity. 
Correspondingly, the Tafel slope of the Co-COF was 238 mV·dec-1, which declined to 189 mV·dec-1 for 
TMA-COF, demonstrating the high kinetics [Figure 4B]. In addition, we used the gas and liquid 
chromatography to detect the products in the process of CO2RR. The CO Faradaic efficiencies (FECO) of the 
Co-COF were 69%, 75%, 78%, 82%, 76%, and 70% with a floating value of ~4% from -0.5 to -1.0 V vs. RHE, 
respectively [Figure 4C and Supplementary Figure 15]. Additionally, the higher FECO values were observed 
on the TMA-COF with the increase of CO2 uptakes. Specifically, it delivered FECO of 81%, 86%, 90%, 93%, 
86% and 83% with a floating value of ~5%, in the same potential ranges, which are higher than that of other 
reported COF-based materials [Supplementary Figure 16 and Table 1]. Furthermore, the FECO of carbon 
nanotubes (CNTs) were below 0.22% from -0.5 to -1.0 V vs. RHE, respectively [Supplementary Figure 17]. 
In addition to the selectivity, we calculated the partial CO current density (jCO) to investigate the activity of 
two COFs. The Co-COF and TMA-COF exhibited the highest jCO of 17.9 and 28.5 mA·cm-2 at -1.0 V vs. 
RHE [Figure 4D]. To confirm the internal catalytic activity, the turnover frequency (TOF) was calculated 
[Supplementary Figure 18]. TMA-COF demonstrated a TOF value of 1,171 h-1, higher than that of Co-COF 
(538 h-1) at -1.0 V. These results manifested that the catalytic activity and selectivity would be improved with 
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the enhanced combination between CO2 and reactants.

The electrochemical double layer capacitances (Cdl) investigated the catalytic density of active sites through 
the cyclic voltammetry (CV) measurement [Supplementary Figure 19]. The Cdl values for the Co-COF and 
TMA-COF were 12.0 and 16.7 mF·cm-2, respectively, indicating the TMA-COF possessed more exposure 
active sites than Co-COF [Figure 4E]. Furthermore, the electrochemically active surface areas (ECSAs) of 
obtained COFs were calculated by the ratio of Cdl and Cs, in which the Cs is 0.04 mF cm-2[38]. We normalized 
CO current densities using jCO per ECSA. Specifically, TMA-COF exhibited higher jCO/ECSA in the range of 
-0.5 to -1.0 V vs. RHE, suggesting the improvement of the electrochemical activity through the ionic groups 
[Figure 4F].

The stability of TMA-COF was measured in 0.5 M KHCO3. The activity for CO2RR was well preserved for 
30 h [Supplementary Figure 20]. The FECO and the value of j/j0 were over 90%. In addition, the PXRD 
profiles confirmed the maintained crystallinity [Supplementary Figure 21]. Meanwhile, the XPS spectra of 
Co 2p and N 1s also proved that the atomic states maintained the coordination after the stability 
measurement, confirming the reliable stability [Supplementary Figures 22 and 23][39].

CONCLUSIONS
In summary, a catalytic COF with cationic functional groups was developed using the sub-stoichiometric 
bottom-up synthesis method. The experiments suggested that the combination of catalytic sites and cationic 
groups can modulate the band structure and CO2 adsorption behavior. This cationic COF illustrated the 
high CO2RR performance with FECO of 93% at -0.8 V vs. RHE. Thus, constructing ionic structures which can 
modulate the interaction with guests and regulate the location of charge groups is a prospective way for 
understanding the catalytic mechanisms, further providing new insights for the energy conversion.
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