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Abstract
Ultrasound guidance plays a central role in numerous minimally invasive procedures involving percutaneous needle 
insertion, ensuring safe and accurate needle placement. However, it encounters two primary challenges: (1) 
aligning the needle with the ultrasound beam and (2) visualizing the needle even when correctly aligned. In this 
review, we offer a concise overview of the physics foundation underlying these challenges and explore various 
approaches addressing specific challenges, with a focus on software-based solutions. We further distinguish 
between hardware-based and software-based solutions, placing a stronger emphasis on the latter. The 
incorporation of artificial intelligence into these methods to enhance needle visualization and localization is briefly 
discussed. We identify state-of-the-art needle detection methods, showcasing submillimeter precision in tip 
localization and orientation. Additionally, we provide insights into potential future directions, aiming to facilitate 
the translation of these advanced methods into the clinic. This article serves as a comprehensive guide, offering 
insights into challenges, evolving solutions, and prospective research directions to effectively address these issues.
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INTRODUCTION
Ultrasound guidance lies at the heart of many minimally invasive procedures that require percutaneous
needle insertion. Applications can include minimally invasive localized anesthesia, tissue biopsy, central
venous cannulation, percutaneous drainage, and therapeutic delivery[1-3]. Guidance ensures that the needle
reaches its intended target without unnecessary pricking of tissue along the way, improving procedure
efficacy and minimizing postoperative complications. Ultrasound is the gold standard for needle
visualization vis-a-vis patient anatomy owing to its safety (it does not use ionizing radiation), real-time
nature and often low cost[2,4,5].

However, ultrasound needle guidance demands expertise and is challenging, especially for less trained users,
as in resource-constrained settings such as rural and remote communities[6]. The two major challenges with
ultrasound needle guidance include: (1) aligning the needle with the ultrasound beam, and (2) visualizing
and localizing the needle within the ultrasound image even when properly aligned[6]. Traditionally,
clinicians employ various handheld techniques to enhance needle visibility, including scanning the
ultrasound probe over the patient’s skin by sliding, rotating, or tilting the transducer to align the needle with
the ultrasound beam signal. The visualization of the needle and its trajectory can also be improved by
moving the entire needle in a short in-and-out or side-to-side motion, or by using hydrolocalization
techniques where a fluid or an ultrasound contrast agent is injected throughout the needle to create a
contrast on the ultrasound image[6-8]. However, movements of the entire needle could result in unintentional
tissue structural damage if the needle is not visualized, and microbubbles formed during hydrolocalization
can lead to acoustic shadowing and consequently obscure the image of target structures[6].

Various approaches have been proposed to address aligning and localizing the needle within the ultrasound
plane, but a review of the broad literature available is necessary to advance research on this topic. Scholten
et al. provided an extensive review on needle tip visualization and localization but focused mainly on
hardware-based methods[9]. In contrast, Yang et al. gave an extensive review on medical instrument
detection, including needle detection, but only focused on software-based methods with a general outlook
on medical instrument detection, including catheters that have different acoustic properties from
needles[10]. Beigi et al. reviewed both hardware-based and software-based methods but did not discuss the
underlying challenges with ultrasound needle guidance nor provide a thorough synthesis of the existing
approaches[11].

Given the broad range of literature on the topic of needle visualization and localization in ultrasound[9-13], it
would be helpful to have a compact review of the development of different methods, the motivation behind
them, and the state-of-the-art performance. The main contributions of this review are: (1) we provide a
physics foundation of the exact challenges of needle detection in ultrasound; (2) we provide a concise review
of the existing methods with a focus on learning-based methods; (3) we compare and contrast the
performance of such methods over time; and (4) we highlight promising directions for future research on
needle detection in 2D ultrasound. This review could serve as a reference for further research in a more
focused direction.

NEEDLE APPEARANCE IN ULTRASOUND
An ultrasound transducer consists of an array of piezoelectric elements that generate high-frequency sound 
waves, which are then transmitted into the body. For ultrasound transducers used in needle interventions, 
these sound waves range from 3 to 15 MHz[6]. Upon hitting tissue boundaries along the line of transmission, 
the sound waves are reflected as echoes, which are received by the piezoelectric elements. The time delay 
between transmission of the sound wave and reception of the echo is used to determine the depth of the 
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Figure 1. Needle visibility depends on the insertion technique used and needle insertion angle. (A) For in-plane insertion (top), both the 
shaft and tip are visible; however, for out-of-plane insertion, (bottom), only the tip is visible (bottom)[15]; (B) For shallow insertion angles, 
(first column), specular reflection is high and the needle is visible; however, for steeper insertion angles, (second and third column), 
needle visibility is lost.

tissue boundary from the transducer. The ultrasound device then forms a 2D image where the brightness at 
any point in the image is proportional to the intensity of the echo from a tissue boundary at the 
corresponding distance from the probe. The echo intensity depends on the acoustic impedance of the 
tissues at the boundary. For instance, the higher the difference between the acoustic impedance of the 
tissues, the stronger the echo[6,14].

A needle appears as a bright signal in the ultrasound image due to its high acoustic impedance as compared 
to biological tissue[6]. However, needle visibility in the ultrasound image depends on the insertion technique, 
insertion angle, and insertion depth. Two primary techniques are more commonly employed: in-plane and 
out-of-plane techniques [Figure 1A][15,16]. With the in-plane technique, the ultrasound probe is aligned 
parallel to the needle’s trajectory, allowing for continuous visualization of the entire needle length within a 
single plane on the ultrasound screen. This technique is particularly beneficial when precise needle 
placement and avoidance of adjacent structures are paramount. The in-plane approach provides a clear, 
longitudinal view of the needle, aiding in maintaining accuracy throughout the procedure[17]. The challenge 
with in-plane insertion is aligning the needle, which typically has a diameter of 1 mm, with the ultrasound 
beam of width 1 mm[18]. The out-of-plane technique involves positioning the ultrasound probe 
perpendicular to the needle’s path. Needle advancement is visualized as a dot on the ultrasound display, and 
is suitable for procedures where the entire length of the needle is not critical. This technique is commonly 
applied when targeting larger structures or when a shallower angle of angle of insertion insertion is 
required[17]. Finally, needle visibility depends on the depth of the insertion, with deeper insertions having 
poor needle visibility due to attenuation of the ultrasound beam [Figure 1B].

LITERATURE SEARCH METHODOLOGY
We performed a thorough search of the literature using PubMed, Scopus, IEEE Xplore, Google Scholar, and 
Semantic Scholar databases. We searched for articles on needle visualization enhancement and localization 
in ultrasound. We used the keywords: needle, enhancement, detection, localization, visualization, and 
ultrasound, with the search query “ultrasound AND needle AND (detection OR localization OR 
visualization)”. We reviewed the titles and abstracts of the search hits to ensure they were proposing 
methods for enhancing needle detection in ultrasound with the major focus placed on software-based 
approaches. Various commercial products have been developed for needle enhancement and localization in 
ultrasound, but these are out of the scope of this review.
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REVIEW RESULTS
We categorized all the literature based on the challenges being solved and whether they are hardware-based 
or software-based [Figure 2]. In this section, we briefly describe the different approaches, providing their 
motivation, strengths, limitations, and how they have evolved.

Needle alignment
A main challenge with ultrasound needle-guided procedures is aligning the needle with the ultrasound 
beam. Most solutions are hardware-based methods and can be broken down into two categories: (1) guided 
insertion of the needle in the ultrasound plane; and (2) increasing the field view of the ultrasound probe.

Hardware-based methods
Guided insertion 
The simplest guided insertion solution is to use needle guides that attach to the transducer to keep the 
needle within the ultrasound plane[19], or to attach a laser on the ultrasound probe which projects a line on 
the skin to indicate the ultrasound plane[20]. In central venous catheterization, needle guides have been 
shown to increase success rate under ultrasound[21]. However, the needle can still deviate from the 
ultrasound plane once inside the skin. In addition, a fixed system limits the degrees of freedom of the 
needle[9]. Robotic systems have been used clinically to perform ultrasound-guided needle insertion either 
autonomously or semi-autonomously under the control of the surgeon[22]. The first semi-autonomously 
robotic ultrasound-guided nerve block in humans was conducted in 2013 with a 100% success rate and a 
decrease in procedure time[23]. Autonomous systems have been utilized in phantom models, successfully 
maneuvering the ultrasound probe and needle simultaneously using Kalman and Random Sample 
Consensus (RANSAC) algorithms with a 1 mm accuracy[24]. Recent handheld robotic devices can guide 
non-expert ultrasound users in probe localization and needle insertion, enabling them to achieve procedure 
times and success rates similar to those of experts[25]. However, the cost of implementing robotic technology 
is high, and autonomous systems are still at the proof-of-concept phase.

Probe choice 
Another approach to align the needle with the ultrasound beam is to maximize the field of view for a given 
procedure, such as 3D imaging. A 3D image can be constructed by sweeping a 2D transducer over a region 
of interest to capture numerous images. These 2D images are then processed with segmentation algorithms 
to reconstruct the 3D view. 3D rendered images have been useful in analyzing anatomical structures and 
guiding catheters for spreading local anesthetics after peripheral nerve blocks in patients[26]. However, 3D 
imaging and needle tracking in real time are not simultaneously possible using a 2D transducer. In contrast, 
an electronic beam steering matrix array transducer can emit and receive sound waves in 3D, allowing for 
real-time or 4D imaging. In a mid-line epidural lumbar spine needle placement study, the distance between 
the puncture site identified by the 3D probe and standard palpitation was within 3 mm[27]. Therefore, 3D 
transducers show promise in aligning the needle within the ultrasound image. However, their resolution 
and screen refresh rate (i.e., visible feed pauses) are inferior to 2D transducers[28].

Needle visualization and localization
Even when the needle is aligned with the ultrasound beam, it can often be challenging to visualize it and 
then localize it. This section briefly highlights the various approaches that have been proposed to enhance 
needle visualization and localization.
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Figure 2. Existing literature on improving needle visibility in ultrasound can be categorized into two: (top row) those improving needle 
alignment with the ultrasound beam (bottom row), and those improving needle visualization and localization. Each of these two 
categories can be further classified into hardware-based methods (left column) and software-based methods (right column). It can be 
noted that there are currently no software-based approaches for improving needle alignment.

Hardware-based methods
Needle tip visualization and localization under ultrasound procedures is critical for needle navigation. 
Existing solutions can be clustered into two categories: (1) needle modification; and (2) needle tracking.

Needle modification 
The first example of needle texture modifications is an echogenic needle designed to enhance visibility 
under ultrasound imaging. This is done by creating polymeric coatings or rough etches on the surface of the 
needle to create special reflective properties that enable them to produce strong echoes when they are struck 
by ultrasound waves[29,30]. Echogenic needles are most commonly used for biopsies, injection aspirations, 
and nerve blocks[30,31]. In biopsy procedures, echogenic needles are shown to be more advantageous for 
needle visibility for finer gauge needles since they are more useful for difficult procedures where the needle 
angle is suboptimal to the transducer[29]. However, echogenic needles tend to be more expensive compared 
to conventional needles due to the specialized materials and manufacturing process. Furthermore, the 
entrapment of micro air bubbles in surface-modified needles can create acoustic shadowing and 
artifacts[29,32].

Another needle modification approach is to integrate a piezoelectric buzzer and mechanically vibrate the 
needle tip. Needle oscillations are detected with Doppler in a cadaveric study[33], and more recently, in a 
clinical feasibility trial[34]. Tracking needle movement within a structure can be done with duplex 
ultrasound, which overlays brightness-mode (B-mode) with Doppler mode. Briefly, B-mode imaging 
converts the magnitude of the reflected sound waves to shapes that can be displayed in 2D, while Doppler 
mode analyzes the sound frequency between the moving needle and the stationary transducer to determine 
relative motion[35,36]. In an interstitial prostate brachytherapy study, the Doppler signal produced at the 
needle tip was imaged within 1-mm accuracy but was dependent on tissue stiffness and composition[34]. 
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Therefore, there remains a need for a better system for needle tip localization that does not involve the 
excess costs associated with modifying all new needles.

Needle tracking 
Needle tip tracking can be accomplished optically by tracking markers on the needle shaft. Briefly, an 
optical camera is affixed to the ultrasound transducer and tracks the markers as the needle penetrates the 
skin and deeper tissue. Simultaneously, a tracking algorithm predicts the trajectory of the needle tip by 
calculating the relative position of the needle to the transducer[37,38]. In a pediatric central venous catheter 
placement feasibility study, two stereo cameras fixed to the transducer predicted the catheter trajectory and 
led to a 90% successful central vein cannulation on the first pass. However, no statistical results on whether 
this method improved catheter placement were assessed in the study[39]. The main drawback of an optical 
tracking approach is that the system assumes that the needle tip does not bend during surgery. Acoustic 
sensors, such as fiber-optic piezoelectric hydrophones, have been developed to facilitate physicians to 
localize the needle within the ultrasound image[40-42]. These sensors are integrated into an intraoperative 
needle to measure the time difference between sound emission by the ultrasound transducer and reception 
at the needle tip[40]. In bovine phantoms, the accuracy of fiber optic hydrophones was found to be within 
1 mm between tracked and labeled positions, and its tracking performance was independent of needle 
insertion angle[41]. In a porcine phantom, anesthesiologists found that using acoustic sensors reduced the 
procedure time and the number of hand movements in out‐of‐plane peripheral nerve block procedures[42]. 
A similar approach to hydrophones is using a photoacoustic emitter at the needle tip. A pulse laser is 
transmitted through an optical fiber onto a photoacoustic material which transforms light into acoustic 
sound waves at the needle tip. The produced sound waves are then detected by the ultrasound transducer 
and the needle tip can be localized in real time[43]. In a phantom simulation study, anesthesiologists, 
residents, and medical students watched videos of needle tip placements: two successful and one failed, with 
and without the photoacoustic emissions. Failure of needle placement was identified with 100% across all 
participants for both in-plane and out-of-plane approaches[44]. However, the efficacy of photoacoustics in 
clinical practice remains to be determined.

Another approach that can help the localization of the needle in an ultrasound image is to use a filament 
sensor embedded in the needle. Briefly, the sensor induces a small current which can be detected by an 
electromagnetic measuring device[45,46]. The needle tip position is then triangulated and projected onto the 
ultrasound image. In a clinical study, electromagnetic needle tracking was shown to reduce the number of 
needle reinsertion and shorten block performance time in out-of-plane approaches[47]. Moreover, in 
percutaneous liver biopsies, the spatial accuracy of the needle tip displayed electronically was within 2 mm 
from the real position seen on the ultrasound image[48]. However, the magnetic interference caused by 
surrounding magnetic tools and the required proximity of the field generator to the procedure are 
limitations for such a system. Although prototypes have been developed to integrate magnetic sensors into 
the transducer to reduce the additional equipment needed[49,50], such solutions still require magnetizing the 
needles instead of using standard operative needles.

Software based methods
Software-based methods for needle visualization and localization can be categorized into three: (1) image 
acquisition methods; (2) classical image processing methods; and (3) learning-based methods. In this 
section, we briefly describe these methods.

Image acquisition 
Currently, the image acquisition method used to improve needle visualization is beam steering, in which the 



Kimbowa et al. Art Int Surg 2024;4:149-69 https://dx.doi.org/10.20517/ais.2024.20                                                      Page 155

ultrasound beam is perpendicular to the needle to maximize specular reflection[6]. The steered images are 
then spatially compounded to form a single image in which the needle is more conspicuous. Cheung and 
Rholing developed an algorithm that automatically adjusts the steering angle in linear 2D ultrasound 
arrays[51]. The challenge with beam steering is that it does not localize the needle and also has a limited 
steering angle that makes needle enhancement challenging for steeper and deeper insertions[52].

Classical image processing methods 
The challenges faced by image acquisition methods inspired exploration into image processing methods 
that were independent of beam-steering. Classical image processing methods follow a workflow involving: 
image preprocessing, feature extraction, needle detection from the features, and postprocessing to localize 
the needle [Figure 3]. In the image processing step, the input ultrasound images are transformed using a 
preprocessor P with corresponding parameters s. Early image processing approaches involved modeling 
ultrasound signal transmission to estimate signal loss due to attenuation[53]. However, this approach only 
works for in-plane insertion. This challenge can be overcome using digital subtraction of consecutive 
frames[54] or optical flow methods[55] to capture subtle motion changes even when the needle is 
imperceptible. Image processing for 3D ultrasound volumes could involve transforming the volume into 
appropriate views to normalize deformed object representations inherent in 3D ultrasound transducers[56].

After image processing, features are extracted using a handcrafted feature extractor E parameterized in λ1. 
Classical feature extractors can be categorized into two: intensity-based feature extractors and phase-based 
feature extractors. Intensity-based feature extractors use edge-detection methods to localize the needle, for 
instance, Ayvali and Desai used a circular Hough Transform to directly localize the tip of a hollow needle in 
2D ultrasound[57]. The challenge with intensity-based features is that they depend on the visibility of the 
needle and assume the needle to be the brightest object within the image[57]. Such features quickly fail in the 
presence of other high-intensity artifacts such as tissue close to bone. This led to the adoption of scale and 
rotation invariant features extractors such as Gabor filters, log-Gabor filters, and Histogram of Oriented 
Gradients (HOG)[56,58-60].

Based on the extracted features, the input image is segmented by the handcrafted decoder D parameterized 
in λ2 to obtain a binary map indicating which pixels are likely to be the needle. To localize the needle in the 
segmentation map, postprocessing approaches such as the RANSAC[61], Kalman filter[61], Hough 
Transform[52-57], and Radon Transform[53] are used to fit a line through the segmentation map to obtain the 
needle trajectory. The needle tip is then determined as the pixel with the highest intensity at the distal end of 
the estimated trajectory. However, this naive approach is not robust to high-intensity artifacts along the 
estimated trajectory, and methods such as Maximum Likelihood Estimation Sample Consensus (MLESAC) 
can be used to determine the most likely pixel corresponding to the needle tip[62].

Generally, image processing methods can take as input either a single ultrasound image[53,63], two 
consecutive images[54,61,64] or a video stream of ultrasound images[52,57,59]. Algorithms that rely only on a single 
image to make a prediction are generally more suitable for needle tip verification, such as in needle ablation 
procedures. Nevertheless, they can be successively applied on a stream of ultrasound images to facilitate 
needle guidance toward a target in real time[65]. However, algorithms that rely on a stream of images before 
making a prediction are more suited for needle guidance as they benefit from the temporal information 
encoded within the image stream. These algorithms have the potential to model needle motion during 
insertion, making them good candidates for needle guidance[55,66].
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Figure 3. Software-based needle localization methods can be categorized into three: (A) classical image processing methods that use a 
handcrafted feature extractor and decoder; (B) machine learning-based methods with a trainable decoder; (C and D) and deep learning-
based methods with a trainable feature extractor and decoder. Generally, software-based methods take as input either single ultrasound 
images or a video stream of ultrasound images.

Classical image processing methods face two major challenges: (1) they require carefully engineered feature 
extractors E with arbitrarily or heuristically selected parameters λ1 which are generally not robust to 
intensity, scale and orientation changes, or are computationally expensive[63]; (2) designing a decoding 
algorithm for high dimensional features is not tractable. These challenges led to the adoption of methods to 
automatically learn features necessary for needle detection and also learn robust classifiers for high-
dimensional features.

Learning-based methods 
Learning-based methods can be broadly categorized into two categories: (1) machine learning-based 
methods in which only the parameters λ2 of the decoder D are learned, and (2) deep learning-based methods 
in which the parameters λ1 and λ2 of both the feature extractor E and decoder D, respectively, are learned 
[Figure 3B and C]. Initial attempts at learning a classifier involved combining various combinations of 
threshold responses of the image to the feature extractors using the Adaboost statistical algorithm[67]. The 
intuition behind this approach is that, independently, the threshold responses are weak classifiers, but when 
combined, a strong classifier can be obtained. However, this approach is wasteful as it only utilizes a subset 
of all the extracted features. Other common classification algorithms used include Bayesian classifer[68], 
linear discriminant analysis (LDA)[56], support vector machine (SVM)[60], and its variant linear support 
vector machine (LSVM)[56].

The most commonly used decoder in machine learning methods is the SVM algorithm, which can learn to 
classify high-dimensional features from data. For needle detection, the SVM is fed with all the extracted 
features and it outputs a binary segmentation mask where white pixels represent the needle and black pixels 
the background[55,60,69]. The challenge with SVMs is that they do not directly output probability estimates of 
their predictions which may be required for uncertainty estimation and postprocessing. While machine 
learning approaches solve the decoder issues faced in classical image processing methods, they still rely on 
handcrafted features that exhibit the challenges mentioned in Section “Classical image processing methods”.
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Deep learning-based methods, on the other hand, aim to leverage data to learn both the feature extractor Eλ1 
and decoder Dλ2. Early approaches used multi-layer perceptrons (MLPs) to learn relevant needle features 
and classify them accordingly[70]. In the approach proposed by Geraldes and Rocha, the MLP took as input a 
region of interest (ROI) selected from the input ultrasound image, output a probability estimate for each 
pixel in the ROI being a needle, and a threshold applied to the output to localize the needle[70]. This 
approach, however, yielded tip localization errors greater than 5 mm.

Most deep learning methods use convolutional neural networks (CNNs) with multiple layers, whereby the 
first layers learn local features from the image and the deeper layers combine the local features to learn more 
global features. CNN-based approaches can be categorized into four: (1) classification; (2) regression; (3) 
segmentation; and (4) object detection. Using CNNs for classification is common in methods working with 
3D ultrasound. For instance, in the approach by Pourtaherian et al., a CNN is used to classify voxels 
extracted from 3D ultrasound volumes as either needle or background yielding a 3D voxel-wise 
segmentation map of the needle[71,72]. A cylindrical model is then fitted to this map using RANSAC to 
estimate the needle axis which is used to determine the 2D plane containing the entire needle. Another 
approach would be to classify each scan plane in the 3D volume as either containing a needle or not, and 
then similarly combine and visualize the 2D plane that contains the entire needle[54]. While these approaches 
enhance the visualization of the needle in 3D ultrasound, they do not localize the needle tip.

With regression, the features extracted by the CNN are used to directly regress the needle tip coordinates 
(x, y)[65], or their proxy by regressing four values representing the two opposite vertices of a tight bounding 
box centered around the needle tip[66] [Figure 3D]. These approaches are suitable for needle localization in 
both in-plane and out-of-plane insertion as they do not heavily rely on shaft information. The only 
downside of these approaches is that they do not enhance visualization of the entire needle during in-plane 
insertions.

For segmentation, the high-level features extracted by the CNN are used in reverse to generate a probability 
map with pixel-wise probabilities of the existence of a needle[72-78]. This probability map can then be post-
processed, usually by thresholding, to generate a binary segmentation map. CNNs with segmentation are 
the most commonly used deep learning approach for needle detection because they can detect the entire 
needle, including the shaft, while producing probabilities for their outputs, which leaves room for a variety 
of postprocessing approaches [Figure 3C]. A special case of segmentation can be found in high dose rate 
(HDR) prostate brachytherapy applications where multiple needles are segmented simultaneously[79-82]. In 
these applications, transverse 2D slices obtained from the 3D ultrasound volume are passed as input to the 
CNN trained to output the corresponding multi-needle segmentations for each slice. Unlike shaft 
segmentations for in-plane needle insertion, segmentations in HDR prostate brachytherapy slices are 
circular and centered around each needle in a given slice. These segmentations are then combined and the 
centers of the circles are considered to be the needle shaft with the most distal bright intensity considered as 
the needle tip.

Object detection methods are similar to segmentation methods but output bounding boxes encasing the 
detected needle. For instance, Mwikirize et al. used a CNN to automatically generate potential bounding 
box regions containing the needle and fed them to a region-based CNN (R-CNN) to classify which regions 
contained the needle[83]. On the other hand, Wang et al. used the Yolox-nano detector that outputs 
bounding box predictions for each pixel. These predictions are then combined using non-max suppression 
to obtain a single bounding box indicating the predicted needle[84]. Rubin et al. combined a 3D CNN, to 
extract temporal features from an ultrasound video stream, with a 2D Yolov3-tiny object detector to 
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efficiently detect the needle[85]. Object detection can also be performed directly for the needle tip instead of 
the entire needle[86].

DISCUSSION
Various methods and approaches have been developed to enhance needle alignment, visualization, and 
localization in ultrasound. Currently, all methods that are aimed at improving needle alignment are 
hardware-based [Figure 2], and require additional hardware which increases the cost of the ultrasound 
systems and also disrupts normal workflow. The same applies to the hardware-based needle visualization 
methods. This can be a big challenge, especially in resource-constrained communities such as rural and 
remote settings, and low- and middle-income countries that can not afford additional hardware.

On the other hand, software-based methods do not require additional hardware and could be a potential 
alternative in such scenarios. Classical image-based methods for needle visualization and localization rely 
heavily on carefully engineered feature extractors and classifiers which are often not robust to various image 
acquisition settings and image quality. Learning-based methods address this challenge by automatically 
learning the feature extractor and/or classifier from existing data. Deep learning-based methods exhibit 
superior performance compared to classical methods, and thus, this discussion will mainly focus on the 
most recent deep learning-based methods for needle visualization and localization, summarized in Table 1 
and detailed in Table 2.

The challenge with learning-based methods is that they require a lot of data to be trained. This data can be 
collected from tissue-mimicking phantoms, freshly excised animal cadavers, or in vivo during clinical 
procedures. Most methods use data collected by performing needle insertions in vitro with phantoms, and 
ex vivo with porcine, bovine, and chicken while mimicking clinical scenarios [Table 1]. Only methods 
developed for HDR prostate brachytherapy consistently use human in vivo data for evaluation. Future 
methods can find motivation from Gillies et al., who evaluated their approach on in vivo datasets from 
multiple organs and scenarios on top of the phantom datasets[89].

The data are typically annotated by an expert sonographer who performed the needle insertion experiments 
to obtain the ground truth labels. In some scenarios, a hardware-based tracking system is used to obtain a 
more accurate needle tip location, especially for cases where the needle is imperceptible to the human 
eye[54,66,88]. In all the proposed approaches, local datasets were collected and this is not ideal for comparing 
the proposed methods as noise and biases can easily be introduced into the data. To date, there is no 
benchmark dataset on which developed methods can be evaluated, which has significantly stifled 
progress[11].

The typical evaluation metric for learning-based methods is needle tip error, as the ultimate goal for needle 
localization is to avoid puncture of critical tissue such as veins along the needle trajectory. For segmentation 
methods that also detect the needle shaft, needle trajectory/orientation error is an important metric, on top 
of the needle tip error, to assess model performance for needle guidance during insertion. Needle 
localization performance has progressed over the years, in terms of needle tip localization error, up until 
2022, when there seems to be a decrease in progress [Figure 4]. However, needle orientation error is also 
used to ensure that a large portion of the needle shaft is also accurately detected. Out of all the proposed 
methods, deep learning-based methods that report both tip localization and orientation error achieve state-
of-the-art performance [Figure 4B][76,78,83]. Another key metric for software-based methods is inference time 
on central processing unit (CPU), given that when deployed, these algorithms should achieve real-time 
performance, which is considered to be any processing speed greater than 16 fps[14].
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Table 1. A summary of the reviewed deep learning-based methods in descending order by date of publication, and their
corresponding results

Author                         Mode Dataset Target organ Tip error
(mm)

Orientation error 
(degrees)

Processing 
time (fps)

Che et al.[87] 2D Phantom (bovine, carrageenan) Liver 1.17

Wang et al.[84] 2D+t Ex vivo (porcine) Liver, heart, kidney, 
abdomen

0.92 10

Zade et al.[88] 2D+t Phantom (lumbar epidural 
simulator, femoral Vascular Access 
Ezono)

Epidural space, 
vascular structures

2.12 2.08 14

Chen et al.[78] 2D Ex vivo (bovine, porcine) 0.45 0.42 14

Wijata et al.[77] 2D In vivo (core needle biopsies) 46

Mwikirize et al.[66] 2D+t Ex vivo (bovine, porcine, chicken) Epidural space 0.52 16

Gao et al.[76] 2D Ex vivo (bovine, porcine, chicken) 0.29 0.29 67

Zhang et al.[79] 2D In vivo (HDR prostate 
brachytherapy)

Prostate 0.33

Andersén et al.[81] 2D In vivo (HDR prostate 
brachytherapy)

Prostate 1

Gillies et al.[89] 2D Phantom (tissue) 
In vivo (prostate, gynecologic, liver, 
kidney)

Tissue, prostate, 
gynecologic, liver, 
kidney

4.4 1.4

Zhang et al.[79] 3D In vivo (HDR prostate 
brachytherapy)

Prostate 0.44

Zhang et al.[75] 3D In vivo (HDR prostate 
brachytherapy)

Prostate 0.442

Lee et al.[74] 2D In vivo (biopsy) Kidney 13.3

Mwikirize et al.[65] 2D+t Ex vivo (bovine, porcine, chicken) Epidural space 1

Pourtaherian et al.[90] 3D Ex vivo (porcine leg)

Arif et al.[73] 3D+t Phantom (abdominal, liver) 
In vivo (liver biopsy)

Liver, abdomen

Pourtaherian[72] 3D Ex vivo (chicken breast, porcine 
leg)

0.7

Mwikirize et al.[83] 2D Ex vivo (porcine, bovine) Epidural space 0.23 0.82

Mwikirize et al.[60] 3D Ex vivo (bovine, porcine) Epidural space 0.44

Pourtaherian et al.[71] 3D Ex vivo (chicken breast) 0.5 2

Beigi et al.[69] 2D+t In vivo (pig) Biceps femoris muscle 0.82 1.68

Beigi et al.[55] 2D+t In vivo (pig) Biceps femoris muscle 1.69 2.12

Geraldes and 
Rocha[70]

2D Phantom (ballistic gelatin) 5

Mode 2D+t indicates methods that incorporate temporal information, that is, they take as input multiple consecutive ultrasound images before 
making a prediction. Almost all methods were trained and evaluated only on phantom datasets, with the exception of those developed for HDR 
prostate brachytherapy. Note that blanks in the table indicate that the entry was not reported in the paper. HDR: High dose rate.

One observation from many of the proposed learning-based methods performing needle segmentation is 
the use of metrics, such as the Dice coefficient and intersection over union (IOU), that do not reflect clinical 
needs for needle localization. For instance, both DICE and IOU only measure the overlap between the 
prediction and the ground truth; they are inherently biased to focus more on the needle shaft, which may 
not be as informative as the needle trajectory error (degrees) or tip localization error (mm). The trend 
toward such metrics has mainly increased with machine learning and deep learning-based methods and 
could be a result of adopting metrics commonly used in other domains where they directly reflect the 
domain needs. Caution should thus be taken when selecting metrics to optimize and evaluate proposed 
software-based methods[93,94]. Maier-Hein et al. developed a comprehensive framework to act as a guideline 
in selecting problem-aware metrics for assessing medical image processing machine learning algorithms[93].
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Table 2. A summary of the deep reviewed learning-based methods listed in descending order of date published

Date Author                    Mode Approach Strengths Limitations

2024-
01-12

Che et al.[87] 2D - Calibrate ultrasound probe and needle to optical tracker 
- Capture needle tip using tracker 
- Represent tip in the ultrasound image coordinate system

- Combines both hardware and software-
based approaches

- Requires extra hardware: optical tracker and localizers 
- Calibration may be erratic if the tip strays from the imaging 
plane 
- Involves a two-person workflow and separate algorithms for 
needle tracking and detection

2023-
05-17

Yan et al.[91] 2D+t Consists of 3 modules 
(1) Visual tracking module 
- Pass sampled patches from consecutive frames through the 2-
branch Siamese network 
- One branch dynamically extracts features from template 
patches and the other extracts features from current patch 
(2) Motion prediction module  
- Needle velocity is estimated using displacement of the tip 
between consecutive frames 
(3) Data fusion 
- Use MLP to independently fuse data from visual tracking 
module and motion prediction module

- Incorporates temporal information 
- Thoroughly evaluated for multiple users 
and insertion motions

- Fails if there is sustained disappearance of the needle tip 
- Tracking fails when the needle tip is too small and 
indistinguishable from background right at insertion

2023-
05-09

Wang et al.[84] 2D+t (1) Enhanced ultrasound image by subtracting current frame 
from previous frame and fusing the difference with the current 
frame 
(2) Extract spatial constraint (bounding box around shaft) if 
present 
(3) Extract temporal constraint (bounding box around tip) if 
present 
(4) Combine the constraints to localize needle tip

- Accounts for motion 
- Continous needle detection even when 
static between frames 
- Real time 
- Evaluated on human data- Evaluated on 
CPU 
- Independent of detector

- Only in plane 
- Detects only needle tip 
- In plane 
- Mentions that different detectors could be used, but this is 
not true as specific detectors (that yield bounding boxes) 
should be used 
- Doesn’t visualize shaft

2023-
02-06

Zade et al.[88] 2D+t - Extract motion field’s amplitude and phase from successive 
frames 
- Extract spatiotemporal features from the motion fields 
- Pass features through detector that outputs a vector of size 
values including pixelwise line parameters (tx,ty,theta), and 
probabilities for needle shaft and tip

- Evaluated approach on 2 categories of 
images (needle aligned correctly, and needle 
imperceptible)

- No ablation study to show relevance of the different 
components of the proposed assisted excitation module 
- No comparison with SOTA to show how they fail to model 
speckle dynamics

2021-
10-22

Chen et al.[78] 2D - 2 frameworks 
(1) Predict segmentation from two adjacent images 
(2) 2 models - one segments shaft, the other segments needle 
tip from ROIs extracted from the predictions of (1) 
- Use segmentations to find

- Segments shaft, localizes needle 
- Doesn’t require prior knowledge of 
insertion side/orientation 
- Fully automatic

- Does not justify how approach accounts for time (inputs are 
two consecutive images but with no time information 
encoded) 
- Did not compare with state of the art methods

2021-
06-28

Wijata et al.[77] 2D - Pass image through Unet like architecture 
- Architecture uses large kernels (11 × 11, 9 × 9, 7 × 7) to detect 
large objects 
- Apply Radon transform to determine needle trajectory 
- back-transform trajectory back to binary image

- Evaluated on in vivo data - Not robust to high intensity artifacts

- Pass k previous frames to 3D CNN (including current frame) 
- Repeatedly apply 3D convolution to obtain a single feature 
map for temporal information 

2021-
05-11

Rubin et al.[85] 3D - Efficient (real-time, can run on low-cost 
computing hardware) 
- Evaluated on challenging cases

- Only detects needle with a bounding box and does not 
provide metrics on needle tip localization

- Pass the feature map through a 2D detector 
- 2D detector outputs bounding box of needle in current frame
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2021-
04-11

Mwikirize et al.[66] 2D+t - Enhance tip in 5 consecutive images 
- Pass images through CNN+LSTM network to predict needle 
tip location in reference frame

- Does not rely on needle shaft visibility, 
hence, works for both in plane and out of 
plane detection 
- Models temporal dynamics associated with 
needle tip motion 
- More accurate 
- Does not require a priori information about 
needle trajectory 
- Performs well in presence of high intensity 
artifacts 
- Not sensitive to type and size of needle 
used

- Straight needles 
- Does not localize the shaft- Limited evaluations performed 
for needle sizes, motion and high intensity artifacts, insertion 
angles, tissue types, domain invariance across imaging 
systems

2021-
03-31

Gao et al.[76] 2D - Use Unet architecture to segment needle, classify frame, and 
predict needle tip in one-shot 
- Use the outputs to precisely locate needle tip and enhance 
needle shaft and tip visualization

- Real-time 
- Localization and segmentation in one shot 
- Approach extensively evaluated using 
various metircs

- Requires beam steering 
- Needle after beam steering is visible enough (questions 
need for algorithm) 
- Has a classification network that is not necessary 
- Can only work for in-plane needles

2020-
10-07

Zhang et al.[79] 2D - Pass transverse TRUS image through CNN to extract features 
- Pass features through region proposal network to obtain 
potential regions containing the needle tip 
- Classify proposals, pixels in the proposals, and also generate 
bounding box coordinates from the proposal 
- Use DBSCAN to model the needles, and localize the shaft and 
needle tips

- Works for multiple needles 
- Works for 3D and 2D needle localization

- Inference time evaluated on GPU which may not reflect 
performance on low-compute devices 
- Only in-plane needle insertion

2020-
10-04

Andersén et al.[81] 3D - Pass entire 3D ultrasound volume through 3D CNN (U-Net) 
- Combine predictions to obtain a 3D localization of each 
needle

- Works for multiple needles 
- Doesn’t require any preprocessing

- Does not localize the needle tip 
- Only applicable to multiple needles and 3D ultrasound

2020-
08-06

Gillies et al.[89] 2D - Pass 2D image through U-Net architecture to get 
segmentation map 
- Take the largest island as the needle 
- Use RANSAC to estimate trajectory 
- Tip is the deepest point along the estimated trajectory

- Evaluated on various target organs - Localization requires knowledge of needle entry direction 
- Not optimized for real-time performance

2020-
03-16

Zhang et al.[92] 3D - Obtain ultrasound volumes and their corresponding CT 
images 
- Threshold the CT images to highlight voxels containing the 
needles 
- Train a model to extract features from the ultrasound images 
using the preprocessed CT images as the weak labels 
- Use the trained model on new ultrasound images to extract 
needle segmentations 
- Apply RANSAC to model the needle from the segmentations

- Doesn’t need manual labels as CT images 
are used as weak labels

- Requires CT image to train 
- Limited to brachytherapy application

- Extract 3D patch from transverse view of the 3D ultrasound 
volume 
- Pass patch through Unet model with attention gates to obtain 

- Can detect multiple needles at once 
- Achieves both segmentation and 
localization of the needles simultaneously 

2020-
03-10

Zhang et al.[75] 3D - Can only work for 3D ultrasound

circular pixelwise segmentations - Fast as compared to manual segmentation
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- Merge segmented patches to show the needle localization in 
the 3D volume 
- Centers of detected circular segmentations correspond to the 
needle shaft 
- Most distal bright intensity corresponds to the needle tip

2020-
01-20

Lee et al.[74] 2D - Pass image through model to get segmentation 
- Apply a max contour algorithm to find most contiguous 
segment 
- Visualize by drawing bounding from top right most pixel to 
bottom left pixel, and straightening the segmentation as 
diagonal of the bounding box

- Method evaluated on human data (8 
patients)

- Evaluation metrics reported in # of pixels, rather than mm 
- Only compared general segmentation architectures, but no 
earlier needle detection methods

2019-
10-10

Mwikirize et al.[65] 2D+t - Enhance needle tip in consecutive us images 
- Classifiy enhanced images and localize tip in enhanced images 
that have needle

- Real time (67 fps) 
- Both in plane and out of plane detection 
- Robust to intensity variations 
- Resilient to high intensity artifacts in the 
image 
- Incorporates temporal information

- Not robust to motion artifacts such as breathing, or 
pulsating 
- Cannot detect stationary needle tip as it depends on motion

2019-
02-24

Pourtaherian et al.[90] 3D - Slice 3D ultrasound volume into 2D slices 
- Select 3 consecutive slices (with the middle one being the 
reference slice) to incorporate some 3D information 
- Pass slices as 3 channel input to fully connected network 
(autoencoder style) 
- Obtain pixelwise classification of the slices

- Conceptually simple architecture - Computationally expensive

2019-
02-11

Arif et al.[73] 3D+t - Segment 3D ultrasound volume using a CNN 
- Extract needle candidates from segmentation using connected 
component labelling and PCA 
- Combine needle candidates with those from previous time 
step to obtain real needle by detecting motion between the 
time steps 
- Visualize needle in two planes; 1 perpendicular and the other 
parallel to the transducer

- Incorporates temporal information 
- Ablation studies performed on architecture 
- Evaluated on multiple datasets (3 datasets) 
- performance doesn’t vary much except for 
the in vivo data

- Not robust to motion artifacts as it assumes only needle 
moves between two consecutive frames 
- Assumes linear needle motion 
- Not robust to transducer motion (translation or rotation) 
- Large standard deviation on in vivo data as compared to 
phantom data (not easily generalizable) 
- Computational speed measured on GPU 
- Doesn’t localize needle tip - just the plane and segmentation 
of the needle (perhaps visible shaft)

2018-
05-31

Pourtaherian[72] 3D - Extract voxels from 3D ultrasound volume and classify each 
voxel as needle or background 
- Obtain 2D cross section slices from the 3D ultrasound volume 
and segment the needle in each slice (various slices 
perpendicular to the lateral and elevation plane) 
- Map segmentation output onto its corresponding position in 
3D 
- Estimate needle axis by fitting a model of the needle to the 
segmented voxels (model is a straight cylinder having a fixed 
diameter) 
- Visualize the 2D cross section plane that contains the entire 
needle

- Can detect very short needles (5mm and 
10mm) 
- Robust to transducer and patient 
movements (as it performs repeated 
detection in 3D volume) 
- Method evaluated on data from 2 
transducers (of varying resolution) and 2 
tissue types, 2 needle types (of different 
gauge)

- Method does not explicitly detect the needle tip (only the 
plane where the needle and tip are maximally visible) 
- Can’t detect needle in the first 2mm 
- Computationally expensive- Only in-plane

(1) Detect needle using a bounding box 
(2) Use bounding box to automatically determine needle 

- Relies on intensity invariant features. 
Robust to low intensity needle features and 

- Inference time evaluated on GPU (most ultrasound devices 
run on CPU) 

2018-
03-06

Mwikirize et al.[83] 2D

trajectory and tip presence of high intensity artifacts
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- Faster than Pourtaherian (2017) 
- Method is fully automatic (doesn’t require 
feature engineering as methods that use 
Gabor filters, etc.) 
- Doesn’t require prior knowledge of needle 
insertion side and orientation 
- Robust in cases where the needle is slightly 
off-plane 
- Real-time detection rate (25 fps)

- Only in-plane needle insertion. Depends on availability of 
needle data in image 
- Can’t detect whole needle if there is shaft discontinuity 
- Detection algorithm very sensitive to data preprocessing 
- Only works for non-bending needles 
- Reliance on an expert to determine ground-truth tip (not 
possible when tip information is completely invisible) 
- Only in-plane

2017-
09-08

Mwikirize et al.[60] 3D (1) Detect slices with needle 
(2) Enhance needle and localize it in all slices (multi-plane)

- Robust to high intensity artifacts 
- low execution time 
- Accurate tip localization for moderate 
steep insertion angles 
- Robust even when shaft if discontinuous 
-Detection accuracy is independent of tissue 
type

- Assumes needle insertion side is known a priori 
- Assumes needle has minimal bending 
- Large gauge needle used (17G), may not work for thinner 
needles 
- Over all computation time of 3.5 s is high for real-time 
application 
- For only in plane needle insertion

2017-
09-04

Pourtaherian et al.[71] 3D - Extract voxels from 3D ultrasound volume 
- Classify each voxel as needle or background 
- Estimate needle axis by fitting a model of the needle to the 
detected voxels (model is a straight cylinder having a fixed 
diameter) 
- Visualize the 2D cross section plane that that contains the 
entire needle

- Method is automated localization of needle 
- High precision, low false negative rate 
- Can detect short needles- Intuitive 
visualization of the needle 
- Evaluated for both thin and large needles 
(17G and 22G) 
- Single network used

- Only determines plane containing the needle but needle tip 
is not localized 
- High computational complexity (2.19 s for a coarse-fine 
classification on GPU) 
- Only in-plane needles

2017-
06-24

Beigi et al.[69] 2D+t (1) Capture micro-motion of needle by extracting spatio-
temporal features of cuboids from optical and differential flow 
maps at multiple scales and orientations using a steerable 
complex pyramid 
(2) Pass features to incremental SVM to classify pixels as 
needle or background in current frame 
(3) Apply Hough Transform on segmentation to determine 
needle trajectory

- Can detect micro-motion of needle 
- Doesn’t require prior knowledge of needle 
insertion side and angle 
- Mitigates other sources of motion such as 
tremor

- Uses engineerd features 
- In plane 
- 17G needle (may not work for thinner needles) 
- Requires motion, can’t detect static needle 
- Only tested on curved array transducers 
- Only in-plane needles

2017-
03-06

Beigi et al.[55] 2D+t (1) Segmentation (using a learning-based framework to classify 
pixels based on temporal analysis of phase variations to obtain 
a probability map) 
(2) Localization (use a Hough Transform on the probability map 
to localize the needle)

- Superior parameter tuning (after model is 
trained) 
- More robust to imaging parameter 
variations 
- Has potential to adapt to different 
operators in various applications 
- Takes into account temporal information- 
Can distinguish needle from tissue in contact

- Only tested on needles with minimal bending 
- Used only 17G needles, may not work for thinner needles 
- Only in-plane needles

2014-
10-02

Geraldes and 
Rocha[70]

2D (1) ROI selection 
(2) MLP prediction 
(3) Kalman filter to improve robustness

- Approach is evaluated over an entire video 
with tip error provided for each frame

- High tip error 
- No other quantitative evaluation provided 
- Evaluated on just 2 videos 
- Requires initial ROI selection 
- Paper mentions that it focuses on flexible needles but used 
straight needle

2014- 2 stages - Segmentation method robust in presence of - Does not work for curved needles as Radom transform Hatt et al.[67] 2D
07-06 other high intensity artifacts considers straight paths through the image
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(1)MLPSegment needle (classify each pixel in image as needle 
or background) 
(2) Localize needle from segmentation (using Radon transform)

- Segmentation method could be used to 
enhance needle visualization even without 
localization 
- Method robust with weak assumptions 
about needle orientation

 
- Requires beam steering, assumes needle orientation is 
known a priori and is aligned with the selected beam steer 
angle 
- Evaluated on data from 18-G needles. May not work for 
thinner needles with non-distinctive appearance 
- Only in-plane needle insertion

CPU: Central processing unit; SOTA: state-of-the-art; ROIs: region of interests; CNN: convolutional neural network; LSTM: long short-term memory; DBSCAN: density-based spatial clustering of applications with 
noise; RANSAC: Random Sample Consensus; CT: computed tomography; PCA: principal component analysis; GPU: graphics processing unit; MLP: multi-layer perceptron.

While a lot of progress has been made in the needle visualization and localization approaches, little progress has been made in developing effective needle 
alignment approaches and this has hindered clinical adoption. The current software-based methods alone cannot solve both challenges and they greatly rely on 
the assumption that the needle is correctly aligned with the probe and is imperceptible to the naked eye.

FUTURE DIRECTIONS
A benchmark dataset containing data from different organs, needle types, and ultrasound scanners from multiple centers, with clearly defined evaluation 
metrics, should be collected and made publicly available for fair comparison of any proposed software-based methods. An ideal needle detection method 
would then be one that can maintain its performance across multiple organs, needle types, and ultrasound devices used, as it is not feasible to always develop a 
new method for each scenario. In terms of needle enhancement, future investigations could focus on directly detecting needles from raw radio frequency (RF) 
signals before image reconstruction. The hypothesis posits that the raw RF signal, being rich in information, may contain distinct patterns indicative of 
needles, allowing for their detection and isolation amidst background noise. Another exciting avenue for future research on software-based image acquisition 
techniques is specular beamforming. Instead of using the conventional delay-and-sum beamforming that assumes scattered reflection, specular beamforming 
takes into account the physics of specular reflection from acoustically hard objects such as needles to improve their visibility in ultrasound[95].

Innovative strategies are needed to enhance needle alignment with ultrasound probes, particularly for inexperienced clinicians, while maintaining procedural 
efficiency. These strategies could potentially combine hardware-based needle alignment approaches with software-based methods for needle visualization 
enhancement and localization. Future research could also explore utilizing the entirety of video information, mirroring the approach taken by clinicians when 
adjusting probes and needles. Software-based methods that track probe and needle motion can be developed to improve needle alignment with the ultrasound 
beam. These can leverage inertial measurement unit (IMU) data, which are available in some ultrasound devices[96]. Additionally, it is crucial to investigate 
integrating needle detection and tracking methods, as relying solely on needle localization methods may not fully address the challenge of needle alignment[87].

CONCLUSION
Ultrasound-guided needle insertion is crucial during many minimally invasive procedures but faces two major challenges: (1) aligning the needle with the 



Kimbowa et al. Art Int Surg 2024;4:149-69 https://dx.doi.org/10.20517/ais.2024.20                                                      Page 165

Figure 4. Various approaches have been developed for needle tip localization (A), but only 7 report both needle tip localization and 
needle orientation error (B). Until 2022, progress was being made in reducing the needle tip localization error; however, most recent 
approaches seem to have reversed this trend (A). Current state-of-the-art methods achieve sub-millimeter needle tip localization and 
needle orientation errors (B). However, caution should be taken as these results are based on the self-reported errors on local datasets.

ultrasound probe; and (2) visualizing the needle under ultrasound. In this paper, we reviewed the various 
methods proposed to improve needle visibility in ultrasound with a major focus on software-based methods 
but also briefly described relevant hardware-based approaches. Various approaches have been proposed, 
with AI methods achieving state-of-the-art performance with submillimeter tip localization and orientation 
errors. However, these approaches have not yet seen clinical applications as they only solve needle 
visualization but not needle alignment. We believe that when combined with approaches that help with 
needle alignment, the proposed needle visualization approaches have very significant potential in improving 
ultrasound-guided needle procedures.
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