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Abstract

Idiopathic normal pressure hydrocephalus (iNPH) is characterized by abnormal cerebrospinal fluid (CSF) flow 
and consequent cerebral ventricular enlargement due to imbalance of CSF production and absorption. The 
typical triad symptoms, namely cognitive decline, gait disturbance, and urinary incontinence, are thought to be 
caused by disruption of CSF circulation. However, some patients may still experience symptomatic progression 
after functional shunting, suggesting that iNPH is far more complicated than a simple disorder of CSF circulation. 
Moreover, the diagnostic workup of iNPH can be challenging due to symptomatic and neuroimaging overlaps with 
other neurological disorders, such as Alzheimer’s disease. Furthermore, accumulating studies indicate that the 
pathogenesis of iNPH might relate to multiple mechanisms, including abnormalities of brain development, brain 
extracellular matrix, synaptic function, blood flow, and cerebral metabolism. Therefore, iNPH is not an isolated 
entity in occurrence and development. Nevertheless, different pathogeneses may result in protein content changes 
in CSF, and the biomarkers in CSF may reflect the possible mechanisms involving the etiology of iNPH and are 
potentially useful in assisting the diagnosis and treatment selection. In this review, we summarize the main findings 
of CSF biomarkers and aim to outline a possible synthetic profile in assisting iNPH diagnosis and therapeutic options.
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INTRODUCTION
Idiopathic normal pressure hydrocephalus (iNPH) is one of the disabling neurological disorders whose 
potential treatability is significantly impacted by the timeliness of unequivocal diagnosis. iNPH is 
characterized by ventriculomegaly that is caused by an imbalance between cerebrospinal fluid (CSF) 
production and absorption. The characteristic triad symptoms of dementia, gait disturbance, and urinary 
incontinence are thought to be caused by a disruption of CSF dynamics[1,2]. Therefore, the triad symptoms 
of iNPH could be surgically treatable with a diversion of CSF into peritoneal cavity or heart[3]. However, 
the diagnostic workup of iNPH can be a challenge due to neuroimaging and symptomatic overlaps with 
other neurological disorders, such as Alzheimer’s disease (AD) and subcortical ischemic vascular disease, 
especially at early stage. Moreover, although the cognitive decline could be proceeded by these diseases, 
they are not equally responsive to the treatment of CSF shunting. Therefore, further effort to improve the 
diagnosis of iNPH would benefit the current imaging and symptomatic diagnostic criteria. Increasing 
studies indicate that the pathogenesis of iNPH involves multiple mechanisms, including abnormalities of 
brain development, brain extracellular matrix, synaptic function, blood flow, and cerebral metabolism, 
which could result in protein content changes in CSF. On the other hand, impaired CSF absorption could 
lead to a pathological flow of CSF into the periventricular tissues to initiate a cascade of pathological 
processes such as edema and consequent neuronal degenerative changes[4]. Therefore, measurements 
of different biomarkers in CSF may reflect the underlying neuropathological changes of the brain and 
could play an important role in revealing the possible etiological mechanisms. Furthermore, its detection 
may facilitate the timeliness and accuracy of iNPH diagnosis, and thus becomes potentially useful for 
therapeutic selection and treatment response monitoring. In addition, the biomarkers could help to 
differentiate iNPH from other neurological disorders, which might mimic iNPH symptomatology but 
show unsatisfactory outcomes after shunting[5,6]. Despite a growing interest, the CSF biomarker profile 
in iNPH has not yet been identified definitively. In this review, we summarize the main findings of CSF 
biomarkers regarding iNPH and outline a rough CSF profile in order to assist iNPH diagnosis and provide 
adequate treatment. It is notable that, due to the etiological complexity of iNPH, most biomarkers might 
lack specificity for iNPH diagnosis and are possibly coincidental, confounding with other overlapping 
neurological diseases. In addition, in comparison with a cortical brain biopsy or neuropsychological 
testing, biomarkers may also have limitations in distinguishing iNPH from comorbid iNPH plus AD[7], as 
well as in predicting clinical cognitive outcome post shunting[6,8,9]. However, a combination of more than 
one biomarker may enhance the predictive value and provide more viable and accurate solutions. Ideally, 
the dynamic changes of biomarker measured before and after surgical diversion of CSF would supply useful 
clinical information for the diagnosis and assistance in monitoring disease progression. The biomarkers 
could be categorized as AD discrimination, neurodegeneration and demyelination, neuroinflammation, 
neuropeptides and cerebral metabolites, and as biomarkers in response to cerebral and vascular insulting, 
among others[1,2,10,11]. 

BIOMARKERS FOR AD DISCRIMINATION 
Dementia in iNPH is potentially reversible if adequately treated. However, it often resembles the clinical 
appearance of patients with AD, such as memory decline, as well as attention and executive impairment[12]. 
Urinary incontinence and gait disturbance may also occur in both diseases due to disturbed subcortical 
network caused by vascular pathology. Moreover, ventricular enlargement may have been observed in 
AD patients as a result of cerebral atrophy rather than CSF circulation impairment[13]. Furthermore, the 
pathological examination of cortical brain biopsies performed during placement of CSF shunts revealed AD 
neurodegenerative changes in 24% of iNPH patients, suggesting a high comorbidity of both diseases. Thus, 
cortical brain biopsy may provide a valuable predictive way for outcome evaluation[6,8]. However, cortical 
brain biopsy is not always available or appropriate in some cases. Moreover, both iNPH and AD diseases 
may manifest sleep disturbances, which correlate with dysfunction of the glia-lymphatic (glymphatic) 
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system, consequently building-up of brain metabolic wasters, favoring dementia development [14,15]. 
Therefore, it is always a challenge to discriminate iNPH and AD diseases in clinical practice. 

The glymphatic system facilitates cerebral metabolite and brain fluid clearance during sleep via glia-
supported perivascular channels. This system facilitates efflux of cerebrospinal and interstitial fluid via 
the perivascular spaces to the meningeal and cervical lymphatic vessels, assisting the draining/clearing 
of metabolic wastes from the central nervous. The glymphatic flux is proposed to be driven by cardiac-
induced arterial pulsation[16], and may be possibly manipulated through change of intracranial pressure 
pulsatility with our cardiac-gated device[17]. Most interestingly, the action of glymphatic flux is predominant 
during sleep[18], and up to 90% of iNPH patients are associated with obstructive sleep apnea, a common 
sleep disorder[19]. Blockage of the airway in obstructive sleep apnea causes increased awakenings and 
decreased quality of sleep, resulting in glymphatic dysfunction and increased cerebral Ab aggregation[20]. 
Patients with obstructive sleep apnea encounter reduced oxygen intake due to intermittent airway 
obstruction. Excessive breathing against a closed airway induces negative intrathoracic pressure, sufficient 
to cause atrial distortion and reduced venous return to the heart[19] and ultimately affect arterial pulsation, 
resulting in dysfunction of glymphatic flux. 

Many studies have shown impaired glymphatic function in both iNPH and AD. Furthermore, iNPH 
and AD patients share multiple clinical and pathologic features such as Ab deposition, cerebrovascular 
inflammation, impaired localization of perivascular astrocyte aquaporin-4 (AQP4), and sleep 
disturbances[15]. Therefore, it is a diagnostic challenge in daily practice for iNPH and AD. Although 
many biomarkers have been investigated for their discrimination, amyloid-b 42 (Ab42), total-tau (t-tau), 
and phosphorylated tau (p-tau) are the most robust candidate markers to discriminate iNPH from AD 
patients[1,2]. Ab42 is lower in both iNPH and AD patients compared with healthy control, and Ab42 does 
not separate iNPH and AD. Tau protein is a microtubule-associated protein and is a marker for neuronal 
degeneration[21]. The levels of t-tau and p-tau are higher in AD patients compared with iNPH patients and 
controls, whereas the levels of t-tau and p-tau are within normal range in iNPH patients. The combination 
of these biomarkers, i.e., the reduced Ab42 with concomitant normal or reduced t-tau and p-tau levels 
in iNPH coupled with reduced Ab42 with concomitant increased both t-tau and p-tau levels in AD, 
may significantly improve the accuracy of differential diagnosis between AD and iNPH patients[22]. The 
mechanism of lower Ab42 level in iNPH patients is unknown. However, the reduced production of Ab42 
due to a decline in brain metabolism in the periventricular zone in iNPH patients[23,24] and interstitial 
Ab deposition due to impaired glymphatic function may be possible reasons [15]. Meanwhile, the low 
concentrations of CSF t-tau and p-tau do not support the major cortical degenerative process in iNPH[24,25], 
whereas, in AD patients, the core pathological changes are the accumulation of abnormally folded beta-
amyloid and tau proteins in the plaques and neuronal tangles[26], and the progressive deposition of amyloid 
plaques lowers Ab42 level. Moreover, concurrent axonal degenerations and neurofibrillary tangle formation 
further increase t-tau and p-tau CSF levels in AD patients[27]. The representative information and main 
biomarkers for assisting differential diagnosis of iNPH and AD are summarized in the attached Table 1. 

NEURODEGENERATION AND DEMYELINATION
The disturbance of CSF circulation could lead to a potentially hostile milieu for cerebral structures, 
especially periventricular areas and subcortical structures, and could result in vascular lesions, destruction 
of periventricular white matter, and subsequent neurodegeneration and demyelination[28-30]. Such 
pathological changes could be estimated with the examination of CSF contents, such as neurofilament 
light chains (NFL), myelin basic protein (MBP), and leucine-rich-α2-glycoprotein (LRG)[31-33]. NFL is a 
cytoskeletal element in nerve axons and dendrites, and therefore could be considered as a biomarker for 
axonal damage in patients with iNPH[31,34]. Although some studies did not find difference of CSF NFL 
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levels between iNPH and AD patients[11,32], as well as controls[35], other studies demonstrated increased 
CSF NFL levels, and the increase paralleled the degeneration of large myelinated axons in iNPH [31,36]. In 
addition, some studies observed that the ventricular NFL level directly correlated with altered signals in 
periventricular white matter in brain MRI[37]. Moreover, one study demonstrated that high preoperative 
NFL level was associated with favorable surgical outcomes, and suggested that NFL could possibly be used 
as an indicator for neurodegeneration and a marker of ongoing axonal damage[38]. 

Demyelination of the periventricular white matter could occur in hydrocephalus due to the result 
of mechanical stretching. MBP is an oligodendroglial structural protein of myelin and sulfatide is a 
glycosphingolipid component of myelin, and they are essential for the maintenance of central nervous 
system myelin and axon structure[32,39]. Both MBP and sulfatide are well known indicators for ongoing 
demyelination and therefore are attractive markers for the pathological process[40]. However, the CSF levels 
of MBP are higher in many different neurologic disorders, including iNPH and cerebrovascular diseases, 
leading to lack of specification for iNPH diagnosis[32,36], whereas it is demonstrated that changes of MBP 
levels are correlated with periventricular white matter damage[41]. When comparing the levels of MBP pre- 
and post-shunting, the results showed that the levels of MBP decreased post-shunting, suggesting that MBP 
could be used for evaluation of brain damage and shunting effect[42].

LRG is an astrocytic protein and could be induced by inflammation. The LRG level in CSF increases with 
age in iNPH and other dementia diseases. It was speculated that the accumulation of LRG in the brains is 
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Table 1. The representative information and biomarkers in iNPH and AD

 iNPH  AD  Referencs  Comments 
 Etiology  Multiple  Multiple  [1-4] 
 Dementia 10%  60%-70%  [12,15] 
 Ventriculomegaly  ↑↑  ↑  [6,13]  18-42% of iNPH also had AD brain biopsy findings 
 OSA 65%-90% 44%  [15,19]  OSA: obstructive sleep apnea  
 GFD  Yes  Yes  [14-15,18]  GFD: Glymphatic flux dysfunction  
 WMLs  ↑  ↑  [64-66]  WMLs: cerebral white matter lesions  
 PWMD  ↑  ↑  [28-30]  PWMD: periventricular white matter damage 
 FSO  ↑↑  ↑  [1-3]  FSO: favorable surgical outcome 
 *Aβ42   ↓  ↓  [1-2,22-24]  Amyloid-beta-42. No difference vs.  AD, ↓ vs.  control 
 *t-tau  ↓/-  ↑  [1-2,21-24,27]  Total tau. ↓ vs.  AD, no difference vs.  control 
 *p-tau  ↓/-  ↑  [1-2,22,27]  Phosphorylated tau. ↓ vs.  AD, no difference vs.  control 
 NFL   ↑  N/A  [12,31-34]  Neurofilament light chains. Correlated with PWMD and FSO 
 MBP   ↑  ↑  [31-33,39-41]  Myelin basic protein. Correlated with PWMD and FSO 
 LRG  ↑  ↑  [31-33,43]  Leucine-rich-α2-glycoprotein 
 TNF-α    ↑  N/A  [45-46]  Tumor-necrosis factor α. Correlated with FSO 
 TGF-β1  ↑  N/A  [47-49]  Transforming growth factor β1 
 IL-1β  ↑  ↑  [44,50-52]   Pro-inflammatory cytokines, interleukin-1β 
 IL-6   ↑  ↑  [50-52]  Pro-inflammatory cytokines, interleukin-6 
 IL-10  ↑  ↑  [50-52]  Anti-inflammatory cytokine, interleukin-10 
 TFPI-2  ↑  ↑  [50-52]  Tissue factor pathway inhibitor 2  
 YKL-40  ↑  ↑  [50-53]  Chitinase-3-like protein-1  
 MCP-1  ↑  ↑  [50-52]  Monocyte chemoattractant protein-1 
 SOM  ↑/↓  N/A  [10,54-55]  Somatostatin 
 VIP  ↓  N/A  [10,54-55,57]  Vasoactive intestinal peptide  
 NPY  ↓  N/A  [10,54-55]  Neuropeptide Y 
 DSIP  ↓  N/A  [10,54-55]  Delta-sleep inducing peptide 
 NGF  ↑↑  N/A  [69,70]  Nerve growth factor  
 VEGF  ↑  N/A  [59,71-73]  Vascular endothelial growth factor. Correlated with FSO 
 GFAP   ↑  N/A  [34,76]  Glial fibrillary acidic protein  
 PGDS  ↓  -  [77]  Prostaglandin D synthase  

*Strengths; other weaknesses. ↑: increased; ↓: decreased; -: normal; N/A: not avaiable; iNPH: Idiopathic normal pressure hydrocephalus; 
AD: Alzheimer’s disease



one of the causes of neurodegeneration, therefore its level in CSF could be an anticipated marker for early 
diagnosis of iNPH and other dementia diseases[33,43]. 

Taking together, all these markers allow tracking the integrity of periventricular and subcortical structures. 
Although they are not disease specific, their changes in CSF directly reflect cerebral damage, and they may 
be useful indicators in comparative analyses between iNPH and other neurodegenerative diseases.

NEUROINFLAMMATION
Cytokines mediate inflammatory response and often correlate with neurodegeneration in neurological 
diseases. The profile of CSF cytokines provides access to explore the pathogenic mechanisms of different 
neurological diseases and therapeutic approaches[44]. Abundant CSF cytokines have been investigated in 
iNPH patients, but a more definite profile still needs to be clarified[32,36].

Tumor-necrosis factor (TNF-α) is a cytokine of inflammatory mediator and its level in CSF is significantly 
high in iNPH patients[45,46]. Most interestingly, the CSF level of TNF-α returned to the control level in the 
patients with shunt improvement. Because of its short half-life, the increased CSF TNF-α may be caused 
by increased production rather than the accumulation due to CSF stagnation, which suggests that TNF-α 
in CSF might be used as a candidate marker for the evaluation of demyelination and disease progression in 
iNPH patients. More studies are needed for validation. 

Transforming growth factor b1(TGF-b1), one of the three cytokines in the TGF family, plays a role in cell 
differentiation and tissue modification during brain development. It could be released from microglia and 
astrocytes in response to cerebral insult to initiate neuroinflammation and neurodegeneration through the 
induction of fibrosis, vascular hypertrophy, accumulation of extracellular matrix components, and neuronal 
apoptosis[47-49]. TGF-b level was found to be higher in iNPH patients than controls, and was considered to 
be a reliable index of cerebral damage in iNPH[49].

Other increased inflammatory biomarkers measured in iNPH patients include IL-1b and IL-6 (pro-
inflammatory cytokines), IL-10 (anti-inflammatory cytokine), tissue factor pathway inhibitor 2 (TFPI-2), 
chitinase-3-like protein-1 (YKL-40), and monocyte chemoattractant protein (MCP-1)[50-52]. However, as 
similar changes are also observed in AD and Parkinson’s disease, these changes only reflect an underlying 
neuroinflammatory processes of pro-inflammatory reaction (IL-1b and IL-6) and compensatory anti-
inflammatory reaction (IL-10), rather than disease-specific indicators[44,51,52]. TFPI-2 is involved in 
inflammatory process by recruiting astrocytes and microglia to the injury site[50]. YKL-40 is then released 
from astrocyte and/or microglia in response to neuroinflammation. The increased CSF YKL-40 levels seem 
to be correlated with cognitive decline and therefore to predict progression of dementia[53]. However, more 
studies are deserved on the clinical use of this novel promising neuroinflammation biomarker[35,48].

NEUROPEPTIDES AND CEREBRAL METABOLITES 
Neuropeptides, including somatostatin, vasoactive intestinal peptide, neuropeptide Y, and delta-sleep 
inducing peptide, have been evaluated by various groups[10,54,55]. Decreased CSF somatostatin levels 
suggest damage to the hypothalamus and the cortical neurons that normally have high concentrations of 
somatostatin[54]. Higher level of somatostatin correlates with better visual memory and mental condition 
in iNPH patients, proposing that somatostatin may have a modulatory role in cognition[10]. Vasoactive 
intestinal peptide is a potent vasodilator and therefore may play a role in chronic ischemia, and the CSF 
level is usually higher in iNPH patients with cerebrovascular disease[55-57]. Delta-sleep inducing peptide is a 
nine-amino acid peptide with a role in sleep-wakefulness regulation. iNPH patients with lower delta-sleep 
inducing peptide level show worse psychomotor performance[56]. Several studies also reported reduced 
levels of neuropeptide Y in iNPH patients[54-56]. 

Zhang et al. Neuroimmunol Neuroinflammation 2020;7:109-19  I  http://dx.doi.org/10.20517/2347-8659.2019.018           Page 113



Cerebral metabolism changes may occur in iNPH patients. iNPH patients were also reported to 
have altered levels of lactate, an end product of anaerobic glycolysis underlying a presence of chronic 
ischemia[58,59]. Free-radical peroxidation could result in cellular dysfunction and may therefore be 
implicated in the pathogenesis of iNPH and dementia. A study showed that the levels of free-radical 
peroxidation products significantly increased in iNPH patients[60]. The authors implied that peroxidation of 
cytoplasmic membranes might be involved in the development of cognitive dysfunction in iNPH.

BLOOD-BRAIN BARRIER CHANGE AND BIOMARKERS RESPONDING TO CEREBRAL AND 

VASCULAR INSULTING IN INPH 
Blood-brain barrier is a physically powerful gateway that strictly monitors and controls the interchange 
of substances between central nervous system and blood flow[61]. Its function is strictly dependent on 
the integrity of microvascular endothelium and thus affected by many pathophysiological risk factors, 
including vascular/hemodynamic changes, inflammation, etc., and in turn affects the homeostasis of 
central nervous system[62]. The “CSF/blood albumin ratio” represents a reliable index of blood-brain barrier 
function. Blood-brain barrier impairment was reported in different neurodegenerative diseases, including 
AD and cerebral vascular disease[63]. Nowadays, it has been scarcely evaluated in iNPH patients, but 
available reports indicate a substantial preservation of the blood-brain barrier[22,36].

Vascular risk factor may be a component of subcortical neuropathology in the development of iNPH[2]. 
As key components, cerebral white matter lesions and hypertension were reported to be related to the 
pathophysiology of iNPH[64-66]. White matter lesions, involved in different cognitive processes and/or 
clinical outcomes, are associated with small vessel disease and white matter ischemia. The association 
between iNPH and white matter lesions indicates the involvement of microvascular disturbances in the 
white matter and in the pathological processes of iNPH. In addition, hypertension increases the risk of 
iNPH through the mechanisms of involved small vessel diseases, including hypertension induced endothelial 
damage and resultant extravasation of blood products into white matter, impaired blood flow with reduced 
metabolism, and direct mechanical effect on ventricular size[66,67]. Therefore, identifications of vascular 
related risk factors may improve diagnostic accuracy and address the underlying pathology regarding the 
development of iNPH, and ultimately provide suitable intervention for iNPH management. Overall, the 
dynamic and morphological alterations in subcortical structure of iNPH brain could be resulted from white 
matter lesions, hypertension related vascular lesions, destruction of periventricular white matter axons and 
gliosis, and impaired CSF circulation[28]. Such pathological alterations could affect CSF protein contents 
and biomarkers in CSF could mirror the underlying pathologic alterations. As markers of subcortical 
damage, at least three proteins have been measured in iNPH patients, including NFL, LRG, and MBP[1]. The 
functions and clinical application of these proteins are discussed above. In summary, NFL is a cytoskeletal 
protein for maintenance of axonal architecture and is considered as a marker for neuronal morphological 
integrity[31]. Although it has also been assessed as a biomarker for inflammatory and neurodegenerative 
diseases, it has been observed that ventricular NFL levels in iNPH patients directly correlate with more 
extensive altered signals in periventricular white matter in brain MRI[1]. LRG is an astrocytic protein and 
is increased in CSF of iNPH patients, suggesting a potential biomarker for iNPH, but it also changes with 
aging and non-specific inflammation[68]. MBP is an oligodendroglial structural protein of myelin. Its CSF 
levels are increased in iNPH patients and other cerebrovascular and neurodegenerative diseases, indicating 
the damage of periventricular white matter[1,32].

In addition, nerve growth factor (NGF) play an important role in neuro-regeneration in response to brain 
injury and age-related atrophy. NGF is scarcely detectable in innervated tissues, but denervation of cerebral 
tissue could lead to the production of NGF and become measurable in the target tissues[69]. The CSF level of 
NGF was found to be significantly higher in hydrocephalus patients compared with the controls[70], which 
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suggests the possibility that the increased NGF levels could represent an increased cerebral regeneration 
after shunting. 

Vascular endothelial growth factor plays roles in many cerebral physiological and pathological 
modifications, and its level in CSF is respondent to ischemic condition involved in different neurological 
disorders[59,71-73]. Our group demonstrated that the CSF levels of vascular endothelial growth factor in iNPH 
patients have circadian variations and exercise induced increasing[74]. The higher concentration of vascular 
endothelial growth factor level in CSF is associated with less response to shunting and worse clinical 
outcome, suggesting a possible concurrent ischemic or vascular injury in iNPH patients[73,75]. 

Glial fibrillary acidic protein is a marker for gliosis[34,76]. In iNPH patients, the CSF level of glial fibrillary 
acidic protein was increased when compared with controls, and correlated with disease progression[38]. The 
increased glial fibrillary acidic protein level in CSF suggests an irreversible damage to astrocytes, since glial 
fibrillary acidic protein is not secreted by astrocytes.

All of these markers suggest the involvement of vascular risk factors and consequent subcortical white 
matter lesions in the development of iNPH; however, further studies are needed to explore their predictive 
value in clinical application.

OTHER BIOMARKERS AND METHODOLOGICAL IMPACT ON CSF BIOMARKER DETECTION 
The level of prostaglandin D synthase was found to be significantly lower in iNPH patients compared with 
controls and other dementia patients, such as Lewy body dementia, vascular dementia, and AD[77]. This 
enzyme is secreted into CSF by the leptomeninges and the trabecular cells of the arachnoid membrane. The 
authors speculated that the decreased level of prostaglandin D synthase was probably due to a degenerative 
change of the arachnoid membrane in iNPH patients. 

Finally, the methodology of CSF biomarker detection may also affect the ability to reliably evaluate 
biological biomarkers for the differentiation and prognosis of cognitive impairment diseases[78]. Many 
factors may affect the reliability and sensitivity of biomarker detection, for example, the systematic 
difference between different assays, different pre-analytical protocol for sample preparation and storage, 
analytical variability of measurement procedures, etc.[79,80]. When interpreting measurement results, these 
factors should be considered. In addition, some biomarkers exhibit periodic concentration patterns. 
Therefore, the most appropriate time for sample collection must also be considered when designing a 
protocol[79]. 

CONCLUSION
The overlap of neuroimaging and symptomatic manifestations leads to diagnostic confusion between 
iNPH and other neurodegeneration diseases, such as AD and subcortical ischemic vascular disease. 
Despite the absence of definite pathological hallmarks, the biomarkers altered in CSF might serve as 
targets for diagnosis and therapeutic intervention. Furthermore, the biomarkers in CSF could reflect the 
adjacent cerebral pathophysiological status, therefore are potentially useful to provide insight into the 
pathological changes in the brain milieu and underling pathogenesis. Although many CSF biomarkers 
have been analyzed in iNPH patients, the significant findings include the reduced Ab42 with concomitant 
normal or reduced t-tau and p-tau levels in iNPH coupled with reduced Ab42 with concomitant increased 
both t-tau and p-tau levels in AD. This characteristic alteration may significantly improve the accuracy 
of differential diagnosis between AD and iNPH patients. Other biomarkers may lack specification in 
differential diagnosis, but the definite changes may mirror the underlying pathogenesis mechanisms, such 
as demyelination, neurodegeneration, and neuroinflammation, and provide valuable information to further 
explore the pathogenesis mechanisms and optical therapeutic manipulations. 
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