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Abstract
In recent years, non-aqueous fully organic Redox Flow Batteries (RFBs) have displayed potential in broadening the 
electrochemical window and enhancing energy density in RFBs by relying on redox-active organic molecules to 
provide improved sustainability in comparison to metal-based charge carriers. Of particular interest, systems that 
rely on a single bipolar redox molecule (BRM) for their operation, known as symmetrical organic RFBs, have gained 
momentum as the utilization of a BRM eliminates membrane crossover issues, thus extending the lifespan of 
electrical energy storage systems while reducing their cost. In this manuscript, we will present our contribution to 
this field through the design of tunable bipolar molecules within the helicene carbocation class. This particular type 
of BRM is synthetically very affordable and has proven to be highly modifiable and robust. Through the examination 
of 11 examples, we will demonstrate how an approach based on readily available electrochemical tools can be 
efficiently employed to generate and assess a library of compounds for future full flow RFB applications.

Keywords: Electrochemistry, energy storage, symmetric organic redox flow battery, carbenium ion, electrolyte 
design, helicenium

INTRODUCTION
Meeting the ever-growing global energy demand is an urgent imperative, necessitating the development of 
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energy-storage solutions. These solutions play a crucial role in facilitating the transition to renewable energy 
grid integration, decarbonizing our economy, and tackling the challenges posed by global warming[1-3]. In 
order to achieve the objectives outlined in the International Energy Agency roadmap[4], the emergence of a 
variety of metal-based battery solutions has been observed[5-8], notably marked by the widespread adoption 
of high-performance lithium-ion batteries[9-11]. However, as concerns about fire hazards linked to the 
accumulation of low-valent metal have risen and the current demand rapidly overtaking the availability of 
this metal[12,13], the industry is being directed toward safer, cost-effective, and scalable electricity energy 
storage (EES) solutions[14,15]. Redox flow batteries (RFBs) have emerged as a compelling choice for large-scale 
stationary applications within the EES domain, primarily because of their engineering adaptability and 
scalability enabled by the decoupling of power and capacity[16-19].

Currently, commercially established RFB technologies are based on the redox characteristics of transition 
metal ions in aqueous solutions (AqRFBs). Among these, the most extensively studied options are 
vanadium oxide and chromium and iron variants[20-24]. Nevertheless, several drawbacks hinder the 
widespread deployment of AqRFBs, such as the limited electrochemical stability window of water (1.5 V), 
low energy densities induced, high costs associated with ionic separators, environmental implications 
related to ore mining, management of substantial quantities of acid, and the inherent toxicity of certain 
compounds[25-27].To broaden the electrochemical window and enhance energy density under mild pH 
conditions, non-aqueous RFBs present a significant advancement[28-30]. They enable the use of Redox-active 
Organic Molecules (ROMs), demonstrating enhanced sustainability compared to transition metal-based 
redox-active materials[31]. ROMs have a lower global warming potential index, indicating an environmental 
impact one-fourth that of transition metal-based materials[32]. Moreover, they will ensure a consistent 
market price at one-fourth the cost per kilogram and can be sustainably sourced and tailored 
synthetically[31-33]. Most of reported Non-Aqueous fully-Organic RFBs (NAORFBs) exhibit an asymmetric 
configuration, using two distinct ROMs as catholyte and anolyte. This setup imposes selectivity 
requirements on the exchange membrane, leading to alternative avenues for chemical degradation and 
irreversible capacity fading[34,35]. Various effective approaches have been investigated to mitigate redox-active 
material crossover, including interface improved size selectivity[36,37], enhanced membrane composition[38-40], 
and eliminating the need for a membrane by adopting tandems of non-miscible redox electrolytes[41].

Concurrently, with the rise of innovation in the field, an elegant solution has emerged: drawing inspiration 
from vanadium RFBs (VRFBs) and their quasi-identical tank chemistry, symmetrical Organic RFBs 
(SORFBs) have gained prominence as the most promising approach for eliminating membrane crossover 
and prolonging EES lifespan[23,42-44]. The primary characteristic of SORFBs lies in their use of a singular 
bipolar redox molecule (BRM) on both sides of the cell[45]. This robust molecule features in its initial state -
at least- three stable redox states, owing to entirely reversible reduction and oxidation processes. 
Consequently, these molecules can function as both anolyte and catholyte within a battery[46-48]. The 
resultant symmetrical RFB relies on identical solution components in each half-cell, offering notable 
advantages[42]. Firstly, using the same redox-active material reduces the chemical gradient of electroactive 
species, negating the necessity for highly selective membranes and effectively mitigating crossover. In the 
event of crossover, rather than enduring permanent contamination, SORFBs will undergo self-discharge[23]. 
Furthermore, when in the discharged state, there is no chemical or electrochemical gradient across the 
membrane, guaranteeing SORFBs to be stored indefinitely without contamination due to leakage or 
irreversible side reactions. Finally, recent research has demonstrated that capacity loss resulting from 
compound degradation can be reclaimed through regular polarity reversals, thus extending the battery 
lifespan[42,49-51]. Additionally, relying on a single charge carrier species could help achieve significant 
economies of scale while streamlining the supply chain for broad implementation. The recent surge in 
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SORFB progress has inspired chemists to craft a varied array of BRMs, employing three molecular 
approaches to fashion novel redox-active compounds [Figure 1][45].

Redox-active organic materials are usually categorized as n-type or p-type based on their ability to either 
store or provide electrons in their neutral state during electrochemical reactions. n-type redox-active 
organic materials typically experience reduction from their neutral state, resulting in a negatively charged 
molecular state. In contrast, p-type organic materials undergo oxidation from their neutral state, yielding 
positively charged. Both ROMs must exhibit reversible redox events to be used. One straightforward 
method involves pairing an n-type moiety with a p-type moiety using a simple linker, most of the time 
insulating [Figure 1A]. The resulting molecule can function as a bipolar entity (-●n-p  n-p  n-p●+), 
provided that none of its three redox states are compromised or interact with uncharged molecules in the 
medium. This “combi-molecule” approach[65] is both fundamental and effective, as it leverages the extensive 
research conducted on catholyte and anolyte structures for fully organic RFBs, each with a known potential, 
leading to a BRM with a predicted potential gap (Egap = E1/2

Ox - E1/2
Red) between both sides of the 

SORFB[43,52-58]. However, this approach underutilizes half the molecule on each battery side, reducing atom 
efficiency and significantly increasing the molecular weight of the charge carrier, limiting potential energy 
density per kilogram of ROM[66].

An improved strategy for developing innovative BRMs enhances this design concept by electronically 
merging established n-type and p-type conjugated scaffolds within a single molecule [Figure 1B]. By closely 
integrating the conjugation of two aromatic materials, the electronic characteristics of each component are 
anticipated to synergistically influence the resulting electrochemical potentials. Rising the Egap while 
maintaining a reasonable molecular weight ensures a favorable capacity per unit weight. This route has 
proved successful, leading to the formation of closed-shell[49,58,60,67] and open-shell molecules[59,68] that exhibit 
improved properties compared to their parent units. Nonetheless, the synthetic access to such compounds 
can be a gradual and intricate process, involving multiple steps and introducing the risk of antagonism 
effects due to significant structural alteration of the initial n- and p- moieties. And, in contrast to method a, 
only a comprehensive electrochemical assessment of the final molecule can guarantee stability across all 
oxidation states (-●n|p  n|p  n|p●+).

The latest approach shifts away from merging the electronic characteristics of n- or p-type molecules. 
Instead, it revolves around exploring existing literature for compounds that exhibit bipolar activity 
(Figure 1, -●Ab  Ab  Ab●+). Although such compounds are relatively scarce, the concept of relying on 
already well-defined and robust bipolar molecules proves refined and straightforward. Consequently, this 
facilitates maintaining a low molecular weight while customizing the scaffold to enhance Egap, stability, 
solubility, or cost-effectiveness [Figure 1C]. Along this path, open-shell compounds, acting as ambiphilic 
radicals with three stable states, have achieved significant success when appropriately managing their 
inherent reactivity[51,61,62,69]. The search for additional ambipolar compounds can be rooted in redox-active 
ligands featuring multiple stable states commonly found in homogeneous catalysis[63,64,70] or in 
organophotocatalysis characterized by three well-defined redox states[71].

Aligned with strategy (c) and contributing to the SORFB research field, our group chose to employ a 
specific category of BRMs within the carbenium ion class. Among the members of this carbocation family, 
certain compounds have demonstrated exceptional stability[72-74] and hold significant utility in coordination 
chemistry[75-77], small molecules activation[78,79], and, notably, organophotocatalysis[80-86]. And while a planar 
triangulenium motif has recently enabled the deployment of a robust SORFB model[87], it is the particularly 
rich and versatile chemistry of [4]helicenium ions that will be discussed in what follows[88]. 
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Figure 1. Three strategies to develop innovative bipolar redox molecules for the rise of Symmetrical Organic Redox Flow Battery. n 
corresponds to n-type molecules, p for p-type molecules, while Ab means for ambiphilic molecules. Examples of SORFBs based on 
strategy (A) could be found in the references[52-58], strategy (B) at[49,50,59,60] and strategy (C) at[51,61-64].

Dimethoxyquinacridiniums (DMQA+) are sturdy helical carbenium ions, well-documented for their 
biological applications, photophysical features and electrochemical properties[89-96]. The reversible 
electrochemical oxidation and reduction processes involving these carbenium ions have been notably 
disclosed by Herse and Sørensen et al.[89,97]. In line with this, our group has recently published a study on the 
chemical synthesis, isolation, and characterization of neutral helicene radicals produced through chemical 
reduction of the corresponding carbocation precursors[98]. All of these preliminary efforts have enabled us to 
introduce a robust SORFB model based on a relatively straightforward N,N′-di-n-propyl-1,13-
dimethoxyquinacridinium (nPrDMQA+) with the capability to operate in a poleless mode[99]. This research led 
to the publication of a second model featuring an enhanced DMQA+ framework through nitro group 
incorporation (nPrDMQANO2+), resulting in a significant boost in energy density at the expense of stability[100].

In this context, this work aims to demonstrate how the utilization of pre-established bipolar redox scaffolds 
facilitates effective screening. We propose a methodology for rapidly evaluating the properties and 
compatibility of new BRMs for SORFB deployment. This approach is illustrated through the examination of 
11 differently substituted helicenium examples, leveraging our expertise on the DMQA+ core. The results 
will be showcased through electrochemical characterization using a three-electrode cell. A thorough 
investigation of electrochemical kinetic parameters will help qualify the effects induced by various 
substitutions and structure tethering. Lastly, the robustness of ROMs, which have demonstrated suitable 
parameters for use in the RFB field, will be evaluated through cycling in H-cells, also known as “static RFB”.
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EXPERIMENTAL
General remarks
All solvents were purified by solvent purification system (SPS) or distillation over the drying agents 
indicated. Dried solvents and liquid reagents were transferred by oven-dried or hypodermic syringes. The 
supporting electrolyte salts, tetrabutylammonium hexafluorophosphate (TBAPF6) and tetrabutylammonium 
tetrafluoroborate (TBABF4), were recrystallized three times from ethanol and then dried at 80 °C for three 
days prior to use in the glovebox. All glassware or hardware has been dried in an oven at least 24 h prior to 
introduction in a glovebox.

Details of helicenium compound synthesis and nomenclature are available in Supplementary Table 1 and 
Supplementary Materials Synthesis part.

Electrochemistry
Electrochemical analyses were conducted inside an Argon-filled MBraun Unilab glovebox using a BioLogic 
SP-200 potentiostat/galvanostat and the EC-Lab® software (v11.50) from BioLogic Science Instruments. For 
convenience, potentials are expressed versus internal reference electrode AgNO3/Ag (Eref, 0.01 M AgNO3 in 
0.1 M TBAPF6 in CH3CN).

Cyclic voltammetry and electrokinetic parameters determination
Cyclic voltammograms (CV) were obtained in a three-electrode electrochemical cell, which included a 
counter electrode (Ec) made of platinum wire, an AgNO3/Ag reference electrode (Eref), and a working 
electrode (Ew, 0.071 cm-2, CH Instrument, Inc.) composed of glassy carbon. Prior to each measurement, the 
working electrode was meticulously polished using aluminum oxide on polishing paper and anhydrous 
CH3CN to eliminate any remaining particles. Unless stated otherwise, all measurements have been recorded 
for 1 mM of BRM in a 0.1 M TBAPF6 CH3CN solution. To determine the diffusion and electron transfer 
rate coefficient, CVs of each electronic process have been recorded at various scan rates: 10, 25, 75, 100, 250, 
400, and 500 mV·s-1.

Static RFB cycling
Bulk charge/discharge cycling was conducted within a homemade H-cell, where a porous glass frit served as 
the separator[101,102]. Reticulated vitreous carbon (RVC) electrodes were utilized as Ew and Ec, cut into 
standardized dimensions, and then disposed of at the conclusion of each experiment to eliminate the 
possibility of contamination. A Constant Current |5 mA| followed by a Constant Voltage Galvanostatic 
Charging with Potential Limitation (CCCV GCPL protocol) was applied via the RVC electrodes. Both 
chambers of the H-cell were filled with 5 mL of electrolyte/ROM and were continuously agitated with 
magnetic stir bars at 1,000 rpm. An equilibration period of two hours was observed prior to active charging 
and discharging. Details and dimensions are available in Supplementary Materials.

RESULTS AND DISCUSSION
The choice of the [4]helicenium motif as the core for structural modifications is related to its high durability 
and the numerous applications we have attributed to it within our research group. Indeed, the DMQA+ core, 
a stable carbocation in both air and water in its synthesized form, exhibits three stable redox states. The 
DMQA+ can thus be electrochemically reduced by one electron to form a neutral DMQA● radical at E1/2

Red 
and conversely oxidized by one electron to form a DMQA●++ dication radical at E1/2

Ox [Figure 2].

The access and stability of these two states are crucial for obtaining a suitable BRM for symmetrical RFBs. 
Hence, all structural modifications explored must be compatible with the various oxidation states. Two 

em4092-SupplementaryMaterials.pdf
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Figure 2. Stables redox states of DMQA+ core and structural modifications explored in this study.

variation types that showcase the extensive tunability of the DMQA+ motif can be investigated. Alterations 
of the aromatic core of the DMQA+ motif through positions X or Y with electrophilic or nucleophilic 
groups are feasible and detailed at various synthesis stages, whether initially on the tris-aryl carbenium 
synthon for Y or during the late functionalization stage for X [Supplementary Figure 1][94,100]. Changes in the 
nature of the R1 and R2 “arms” are almost invariably introduced during a double nucleophilic aromatic 
substitution [Supplementary Figure 1][103].

Considering the results obtained with the SORFB model based on nPrDMQA+[99], initially, we examined the 
consequences of modifying the X group through late-stage functionalization. The synthesis of these 
compounds had been well described and was achievable by adding only a few steps to the initial synthesis 
path[94]. The groups NO2, OMe, NH2, and NMe2, along with their influence on the electrochemical 
properties of the nPrDMQA+ scaffold as a reference, were thus studied in acetonitrile, our model solvent 
(Figure 3, nPrDMQA+ as black trace)[104,105]. The impact of the X-position substitution on the core has proved 
to be significant for the Egap and, thus, for attainable energy density[31]. As previously reported, the 
introduction of an electron-attracting nitro group contributes to shifting the potentials of the E1/2

Red and 
E1/2

Ox processes towards the cathodic region of the spectrum, while introducing a second reversible reductive 
event (Figure 3 red trace). In addition, the gap between these fully reversible processes was increasing, 
transitioning from Egap = 2.12 V to Egap = 2.24 V[100]. Conversely, when an OMe ether group is added at the X 
position, a slight decrease in the E1/2

Red potential (-60 mV) is observed, while the E1/2
Ox value drops by 

220 mV, resulting in a lower Egap of 1.84 V (Figure 3 orange trace). Following this trend, the introduction of 
a primary amine NH2 and a tertiary NMe2 at the X position only minimally affects the value of the DMQA+ 
core reduction process, with a maximum difference of -20 mV for E1/2

Red compared to nPrDMQA+. However, 
a drastic decrease in the value of E1/2

Ox is noted in both cases, with a value of -510 mV for nPrDMQANH2+ and 
-560 mV for nPrDMQANMe2+, leading to Egap values of 1.60 and 1.54 V, respectively (Figure 3 yellow and 
salmon traces).

When it comes to modifying the Y position of the aromatic core, options for late-stage functionalization are 
practically absent. The alteration of this position in the para of the carbocation center of tris-aryl carbenium 
synthons must take place during a preliminary step [Supplementary Figure 1]. Access to an electronically 
enriched scaffold through the introduction of OMe and NMe2 groups was unsuccessful[72,106]. Despite 
numerous attempts, the electron richness of acridinium moieties containing three σ- and π-donating 
groups, such as OMe and NMe2, in the para position inhibits the second aromatic nucleophilic substitution 
required to form the helicenium scaffold[83]. Fortunately, σ-donating groups such as methyl groups which 
were introduced in the para position to form the synthon tris(2,6-dimethoxy-4-methylphenyl)carbenium 

em4092-SupplementaryMaterials.pdf
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Figure 3. Cyclic voltammograms of 1 mM nPrDMQA +, nPrDMQA NO2+, nPrDMQAOMe+, nPrDMQANH2+, nPrDMQANMe2+, nPrDMQA(pMe)3+, nPr/Ph

DMQA +, nPr/CH2CF3DMQA +, (CyNHnPr)DMQA +, PEGDMQA+ and [6]helicene+ in 0.1 M TBAPF6 CH3CN solution at 100 mV·s-1. All values of 
potential are reported in Table 1. Grey box corresponding to Egap of nPrDMQA+.

tetrafluoroborate did not hamper the synthesis of the helicenium analog DMQA(p M e 3 ) + (see 
Supplementary Materials). This new compound sees its E1/2

Red value decrease by -130 mV, while its E1/2
Ox 

value only decreases by -60 mV compared to nPrDMQA+. This leads to an Egap = 2.19 V, which is significantly 
comparable to the reference DMQA+ (Figure 3 green trace).

We then focus our interest on the nature of the arms carried by the DMQA+ scaffold and their impact on 
the electrochemical properties of the BRM. Through the introduction of a Ph group in R2 through a 
preliminary synthesis step, followed by adding an nPr group in R1, a dissymmetrical DMQA+ was 

em4092-SupplementaryMaterials.pdf
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obtained[103]. It was quickly observed that the presence of a Ph aromatic group, while not significantly 
altering the potential of the electrochemical events, severely disrupts their reversibility (Figure 3 deep blue 
trace). The E1/2

Red was recorded at -0.99 V vs. AgNO3, a difference of +150 mV compared to the nPrDMQA+, 
while the EOx became completely irreversible. This initial drawback renders this molecule unsuitable for the 
deployment in SORFB. The substitution of the R2 arm with an electrophilic trifluoroalkyl group CH2CF3 was 
then initiated to assess its influence on the electrochemical processes (Figure 3 sky blue trace). It was 
observed that the E1/2

Red potential shifted towards more positive values by +340 mV, with the appearance of a 
second distinct process E1/2

Red2. The E1/2
Ox process was measured higher by +110 mV as compared to the 

reference DMQA+ but also became bielectronic, making use of nPr/CF3CH2DMQA+ as a BRM very complicated 
as the electron exchanges would be unbalanced. From a more structural perspective rather than electronic, 
the introduction of two bulky amino-alkyl R1/R2 arms (3-(cyclohexylamino)propyl) in order to increase the 
molecule's steric hindrance does not seem to induce any noticeable effect on the ERed and EOx processes, 
which are modified by +160 and +50 mV, respectively (Figure 3 light blue trace). However, this 
(CyNHnPr)DMQA+ molecule experiences an alteration of both processes as they became pseudo-reversible. The 
pursuit of increased solubility of the different oxidation states of the DMQA+ core has also guided the 
synthesis of a variation where R1 and R2 were introduced in the form of an alkyl ether moiety, so-called 
pegyl chain (3-(2-methoxyethoxy)propyl = PEG)[45,107]. Remarkably, this PEGDMQA+ molecule presents values 
of E1/2

Red and E1/2
Ox very similar to those of the reference nPrDMQA+, with potential variations less than 

-50 mV, allowing the preservation of an Egap = 2.07 V (Figure 3 blue trace)[108].

Finally, the rich chemistry of heliceniums[109] prompted us to take an interest in dioxo[6]helicenium (labeled 
[6]helicene+ in Figure 3 and Table 1). [6]helicene+ is a parent helicenium of diaza[4]helicenium, the DMQAs 
presented thus far, devoid of R1/R2 arms where the bridging amino groups (NR) are replaced by a bridging 
oxygen atom. Expansion from [4] to [6]helicenes is provided by replacing the methoxy groups of the core 
with phenyl rings[110]. This [6]helicene+ presents two completely reversible reduction phenomena with a first 
reduction at E1/2

Red = -0.48 V vs. AgNO3 at a much higher potential than the reduction of the DMQA+ model 
consistent with the less electron donating effect of the O vs. NR bridge groups (Figure 3 purple trace). 
However, no reversible electrochemical process is accessible in oxidation, consequently eliminating this 
molecule, as well as nPr/PhDMQA+, from use as a BRM, and these heliceniums will not be further discussed 
hereafter.

While the development of new BRMs for the deployment of SORFB is experiencing significant growth, it 
should be noted that a certain lack of coherence in the reporting and evaluation methods of their 
physicochemical specificities makes the comparison of new ROMs difficult[111]. However, certain kinetic 
parameters need to be highlighted. Thus, parameters such as diffusion (D) and electron-transfer rate (k0) 
will greatly determine the expected performances for using a ROM in SORFB. Through effective mass 
transport of the different oxidation states of the BRM from the bulk solution to the electrode surface, higher 
current density can be achieved while limiting overpotential. The importance of the parameter k0 lies in its 
description of the efficiency of electron transfer from the electrodes to the ROM. Its value range also 
indicates the reversibility of the electronic process, with complete reversibility above 10-1 cm·s-1, quasi-
reversibility between 10-1 and 10-5 cm·s-1, and irreversibility below this range[112]. While having the highest 
possible values of D and k0 is indeed preferable, it should be noted that in the context of BRMs and due to 
the symmetrical aspect of SORFBs and the use of a single molecule, it is also important that the values 
corresponding to the reduction and oxidation processes are in the same order of magnitude. This is to avoid 
any overpotential or loss of energy efficiency due to significant differences in kinetics during full flow 
deployment.
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Table 1. Summary of E1/2
Red/Ox, E gap, diffusion parameters (D) and electron-transfer rate parameters (k0) of 1 mM R1/R2DMQAX/Y+

measured in 0.1 M TBAPF6 CH3CN. All potentials are expressed against AgNO3/Ag. Sets of 7 scan rates for electronic processes of

each helicenium are available in Supplementary Figures 2-8.

D (×10-6 cm2/s) k0 (×10-2 cm/s)
Compound E1/2

Red

(V)
E1/2

Ox 
(V)

EGap 
(V) E1/2

Red E1/2
Ox E1/2

Red E1/2
Ox

nPrDMQA+ -1.14 0.98 2.12 9.49 9.99 2.65 2.04
nPrDMQANO2+ -0.89 1.35 2.24 5.57 9.87 3.69 0.79
nPrDMQAOMe+ -1.08 0.76 1.84 5.27 5.03 2.50 1.01
nPrDMQANH2+ -1.13 0.47 1.60 10.1 9.62 2.48 0.96
nPrDMQANMe2+ -1.12 0.42 1.54 5.70 4.05 2.23 0.66
nPrDMQA (pMe)3+ -1.27 0.92 2.19 5.82 4.12 3.43 0.293
nPr/PhDMQA+ -0.99 irr - 4.01 irr 0.15 irr
nPr/CH2CF3DMQA+ -0.80 1.09* 1.89* 0.78 3.86 1.64 0.12
(CyNHnPr)DMQA+ -0.98‡ 1.03‡ 2.01 5.87 4.03 0.50 1.11
PEGDMQA+† -1.13 0.94 2.07 6.24 6.24 24.5 1.13

[6]helicene+ -0.48 irr - 8.63 irr 2.45 irr

*2e- process, imbalanced for a SORFB; †recorded in CH3CN 0.5M TBABF4; ‡pseudo-reversible.

During the study of the reversibility of the electronic processes of each helicene, in-depth studies of the 
electrokinetic parameters D and k0 of each of them were conducted for practical reasons under the 
conditions of cyclic voltammetry. For this purpose, CVs of isolated electronic events were performed at 
seven different scan rates (10, 25, 75, 100, 250, 400, and 500 mV·s-1). D determination was relying on the 
resolution of the Randles-Sevcik equations [Supplementary Equation 1] and k0 on the numerical application 
of the method developed by Nicholson et al. and Lavagnini et al. [Supplementary Equation 2][113,114].

The preliminary studies and results conducted on compounds nPrDMQA+ and nPrDMQANO2+ have already 
demonstrated good performances in static RFBs. Indeed, the reference carbenium with diffusion coefficients 
close to 1 × 10-5 cm-2·s-1 and k0 at 2 × 10-2 cm·s-1, both very balanced, enabled the creation of the first SORFB 
model based on a [4]helicenium[99]. In the case of nPrDMQANO2+, it was observed that the introduction of a 
nitro group on the DMQA+ scaffold had consequences on the potential of the electronic processes and on 
the value of D, and especially of k0. The electronic transfer in oxidation is five times less efficient in this case 
(k0

Red = 3.7 × 10-2 cm·s-1, k0
Ox = 0.8 × 10-2 cm·s-1), resulting in less cycling stability and robustness of the 

compound as published[100]. It was observed that the introduction of electron-donating groups OMe, NH2, 
and NMe2 at the X position of the DMQA+ scaffold had little impact on the potential of the reduction 
process but contributed to a shift towards less oxidizing values of the E1/2

Ox phenomenon. This is reflected in 
balanced D parameters with values ranging between 4-6 × 10-5 cm-2·s-1 for nPrDMQANMe2+ and nPrDMQAOMe+, 
while nPrDMQANH2+ exhibits values similar to that of the DMQA+ model in correlation with low structural 
volume change. Similarly, for these three compounds, the k0 values in reduction are comparable to those of 
nPrDMQA+ (~ 2 × 10-2 cm·s-1) but two to three times higher than those in oxidation processes 
(≤ 1 × 10-2 cm·s-1), an imbalance less pronounced than that of nPrDMQANO2+. The triple Me functionalization 
at the Y position leading to nPrDMQA(pMe)3+ does not involve any significant changes in terms of the D 
parameter, with consistent values similar to those exhibited by the compounds substituted at X. However, it 
is noted that the k0 in reduction appears slightly higher than that of the [4]helicenium model, whereas the k0 
of the oxidation process is more than an order of magnitude slower (k0

Ox = 0.3 × 10-2 cm·s-1), which could 
raise concerns about potential issues during high-rate cycling.
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When the time comes to modify the R1/R2 arms without substituting the core, the results become 
significantly more pronounced. The asymmetric species, nPr/PhDMQA+ and nPr/CH2CF3DMQA+, are strongly 
affected, with R2 = CH2CF3 leading to a decrease of one order of magnitude in the value of D for the 
reduction process, while the oxidation process maintains a value close to that observed for the previous 
compounds. This disparity is also evident in k0, with a reduction process sixteen times faster than in 
oxidation (k0

Red = 1.6 × 10-2 cm·s-1, k0
Ox = 0.1 × 10-2 cm·s-1); however, the fact that this phenomenon is 

bielectronic already eliminates this compound as a potential BRM. When R1 = R2, the D parameters behave 
more balanced, potentially related to the conservation of the molecule's symmetry. Thus, for (CyNHnPr)DMQA+, 
the diffusion parameters are in the range of values observed for the compounds substituted in X and Y, with 
an average of ~5 × 10-6 cm2·s-1. As anticipated during the CV of the compound, the E1/2

Red process is less 
reversible than that of its counterparts, with a value of k0

Red = 0.5 × 10-2 cm·s-1, while the oxidation maintains 
its reversibility. In the case of PEGDMQA+, the diffusion parameters are strictly identical (6.2 × 10-6 cm2·s-1) for 
both electron exchanges. A noteworthy value of k0

Red = 2.5 × 10-1 cm·s-1 is noted for the reduction process, 
which unfortunately turns out to be twenty-two times faster than the oxidative process 
(k0

Red = 1.1 × 10-2 cm·s-1).

As most of the ROM's electrokinetic parameters presented here fall within the range of BRMs used in 
reported SORFBs, this prompts us to evaluate their robustness in cycling conditions. However, deployment 
in a complete in-flow RFB system is a task requiring numerous specific hardware adjustments, making it 
unsuitable for rapid screening of new compounds. That is why we aim to emphasize the practicality and 
relevance of evaluating new compounds in an H-cell. This model, described as “static RFB” in the 
literature[37,102], has the advantage of requiring only a small volume and low working concentration while 
subjecting the electroactive materials to more stressful cycling constraints. This allows rapid and efficient 
selection and facilitates the elimination of certain candidates within an accessible timeframe.

The system used here is based on a homemade H-cell consisting of two welded glass tubes for each 
compartment (Figure 4A, details in Supplementary Materials) separated by a porous frit that serves as a 
membrane. This design is particularly suitable for BRMs as it allows us to determine whether the molecule 
can tolerate the use of a porous separator without ion crossover consideration. Each “pole” of the battery is 
equipped with a highly conductive RVC electrode that boasts a significant specific surface area (~33 cm2 
within the dimensions used in this study) and a magnetic stir bar, aiding in the diffusion of species in 
solution. The side where the working electrode (Ew) will be considered is also fitted with an AgNO3 
reference electrode, similar to the one previously employed in the characterization of a three-electrode cell.

Upon the selection of [4]helicenium exhibiting electrokinetic parameters compatible with deployment for 
RFB, each of them is tested at a concentration of 1 mM in acetonitrile in the presence of 0.1 M TBAPF6 
(0.5 M TBABF4 in the case of PEGDMQA+). Each side of the H-cell is filled with 5 mL of the same 1mM 
solution to conduct a test battery with a capacity of 134 μAh. Thus, in the initial state, each side of the static 
RFB contains the same BRM in the DMQA+ oxidation state. During charging, an electron is transferred 
from the counter electrode side (Ec) to the Ew side, allowing the formation of DMQA●++ on the “posolyte” 
side, while the carbocation on the “negolyte” side is reduced to DMQA● [Figure 4B]. The repetition of these 
charge-discharge cycles in our RFB model constitutes cycles.

The cycling protocol for each of the compounds involves charging and discharging at 90% of the theoretical 
capacity at |5| mA. Due to its static design, this type of cell primarily relies on the diffusion of species in 
solution to access the entirety of the electron exchange. Hence, a constant current followed by a constant 
voltage (CCCV) protocol was employed. This setup was developed with a reference electrode to control the 
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Figure 4. (A) Picture of homemade H-cell “static RFB”, full details available in Supplementary Figure 9. (B) Scheme of the H-cell in 
initial and in charged state (reduction occurring at Ew) loaded with 2 × 5 mL of 1 mM R1/R2DMQAX/Y+ in 0.1 M TBAPF6 CH3CN. Display of 
134 μAh H-cell cycling monitoring via (C) Capacity in discharge and (D) Coulombic efficiency of nPrDMQA +, nPrDMQA NO2+, 
nPrDMQAOMe+, nPrDMQA NH2+, nPrDMQA NMe2+, nPrDMQA(p Me)3+, (CyNHnPr)DMQA+ and PEGDMQA +. Supplementary Figures 10-17 provide 
detailed monitoring of the cycling data for each helicenium individually.

voltage at Ew, and therefore, the potential limits reached will be E1/2
Red ± 300 mV. In the static RFB, the key 

metrics of interest are the discharge capacity (Qdis) achieved and the coulombic efficiency (CE) attained 
during the cycles. Thus, it is observed that nPrDMQA+ maintains a consistent Qdis = 100% until the 461st 
cycle, followed by a slow degradation while maintaining a near-perfect CE (Figure 4C and D, black). 
Similarly, nPrDMQANO2+ exhibits excellent CE, with a constant 100% Qdis until the 186th cycle, after which a 
decrease in discharge capacity is noted until the end of cycling at the 400th cycle (Figure 4C and D, red). 
These findings demonstrated the relevance of this evaluation system, prompting our subsequent interest in 
nPrDMQAOMe+. While CE is decreasing at 0.23%/cycle from an acceptable 97% value, it is noticeable that from 
the first cycle, the Qdis is below 75% and drops rapidly at an average rate of 0.49% per cycle, making this 
ROM, although electrokinetically adapted, unsuitable for a SORFB system (Figure 4C and D, orange). A 
more surprising behavior is observed with the electron-enriched nPrDMQANH2+, with an initial Qdis value of 
96%, which remains stable for around forty cycles before initiating a decay at a rate of 0.28%/cycle. 
Meanwhile, its CE values appear slightly erratic, suggesting reactivity in the charged state, with an initial 
value of 96% and an average decay of 0.25%/cycle (Figure 4C and D, yellow). The transition from a primary 
amine to a tertiary amine for nPrDMQANMe2+ has a dramatic effect on its ability to be used as a BRM. It has 
thus been observed that the Qdis, in its case, is initially at 15%, dropping to 0% by the tenth cycle, illustrating 
its complete incompatibility for use in SORFB (Figure 4C and D, salmon). The introduction of three Me 
groups in the Y position appeared to hold promise in terms of the electrokinetic characteristics of 
nPrDMQA(pMe)3+. However, when the cyclability of this new DMQA+ is considered, the expected results are 
not met as only 46% of Qdis is accessible, with an average decrease in capacity value of 0.3% per cycle. This 
implies that more than half of the charge has been lost between charging and discharging. This is also 
reflected in a CE value below 50%, which drops to 35% after ten cycles, stabilizing with a loss rate of 0.008% 
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per cycle (Figure 4C and D, green). Although no specific sub-species could be clearly identified, the 
regrettable outcome in bulk electrolysis is attributed to the intrinsic radical characteristics of the DMQA●++ 
and DMQA● species. The existence of three possible benzylic radical positions, featuring heightened 
reactivity stemming from resonance stabilization, results in a multitude of decomposition pathways and 
undesired possible reactions when generated[115].

The modification of the DMQA+ core has a significant impact on the electrophysical characteristics of 
ROMs, as demonstrated above. However, it seems that the variation in the nature of the R1/R2 arms - when 
allowing the conservation of two entirely reversible electrochemical events - has little effect on the 
electrokinetic potentials and parameters of this BRM class. However, when the cycling of (CyNHnPr)DMQA+ is 
assessed, the result is disastrous. The Qdis is < 0.3%, and the CE value is null, illustrating how an evaluation 
in a three-electrode cell is insufficient for characterizing the suitability of a new BRM for SORFB. Thus, bulk 
electrolysis, such as static RFB cycling, is far too damaging for (CyNHnPr)DMQA+ (Figure 4C and D, cyan). 
Finally, the proposal to integrate pegyls arms seemed promising, as the CE value is > 98% and remains 
nearly constant up to cycle 200. Subsequently, a decay of 0.24% per cycle appears and can be correlated with 
what is observed in terms of Qdis values. Indeed, it is observed that PEGDMQA+ exhibits two decay regimes: 
the first, from cycle 5 to 200, shows its Qdis drop from 98% to 78% at a rate of 0.10% per cycle, and then, at 
cycle 201, this phenomenon accelerates with a decline of 0.74% per cycle (Figure 4C and D, deep blue). This 
behavior is not easily rationalized, but it is worth remembering that for effective discrimination, the H-cell 
system and the current intensities used here are extremely stressful for the electroactive material. A CE 
value and Qdis access rates exceeding 95% still make it a convincing BRM that deserves to be evaluated in a 
flow system.

CONCLUSIONS
The significance of this research work resides in the practicality of an empirical methodology, selecting an 
ambipolar scaffold and simple electrochemistry tools, to effectively identify and screen a variety of new 
BRMs. The electrochemical richness of the [4]helicenium class has illustrated how the choice of a tunable 
core is a rapid pathway to numerous bipolar compounds with a wide range of possible substitutions. The 
qualification through measurements of essential electrochemical parameters, such as diffusion coefficients 
and electron transfer rate constants, could be carried out using a simple three-electrode cell, making this 
process easily accessible. Finally, the assessment of the robustness of these BRMs in a static RFB cell 
constitutes a quick tool for discriminating the most promising and robust ROMs in bulk electrolysis, with 
the future aim of deployment in a flow RFB cell. Through the importance of this research effort, we hope to 
assist research groups working on the development of new BRMs in accessing promising systems more 
swiftly.

A potential future enhancement of this methodology could involve the incorporation of Machine Learning 
tools capable of predicting the characteristics of potential BRMs through computational design, based on 
the collection of extensive data[116,117]. This would require active participation from the community in 
building a large database, but it has the potential to predict the entirety of electrokinetic parameters, 
decomposition pathways, and potential improvements for existing bipolar molecules.
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