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Abstract
High-density lipoprotein (HDL) plays a major role in reverse cholesterol transport (RCT) but also exhibits, anti-

inflammatory, endothelial/vasodilatory, anti-thrombotic, antioxidant, anti-aggregating, anticoagulant and cytoprotective 

functions, which enhance its protective effect against cardiovascular disease. However, the function of HDL is 

dependent upon genetic, environmental and lifestyle factors. Modification of the protein or lipid components of HDL 

in certain conditions may convert the HDL particles from anti-inflammatory to pro-inflammatory and pro-atherogenic 

by limiting their ability to promote RCT and to prevent LDL modification. In our review, we will present the clinical and 

scientific data pertaining to the factors and conditions that impair HDL functionality and we will discuss the effects of 

dysfunctional HDL on atherogenesis.
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INTRODUCTION
There is extensive clinical evidence showing that there is a clear inverse relationship between serum high-
density lipoprotein-cholesterol (HDL-C) concentrations and the risk for cardiovascular disease (CVD), 
which is independent of the concentration of low-density-lipoprotein cholesterol (LDL-C)[1]. Actually, in a 
large meta-analysis, which included 20 randomized controlled trials with 543,210 person-years of follow-up 
and 7,838 myocardial infarctions, it was shown that, after adjustment for on-treatment LDL-C levels, age, 
hypertension, diabetes, and tobacco use, statins do not affect the relationship between HDL-C concentration 
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and cardiovascular risk, so that low HDL-C concentrations continue to exhibit a significant, independent 
association with increased CVD risk despite statin therapy[2].

The cardioprotective effects of HDL are exerted mainly via its role in the reverse cholesterol transport 
(RCT) pathway, by promoting the removal of cholesterol from peripheral cells and thus inhibiting foam 
cell formation and preventing atherogenesis. Furthermore, HDL promotes endothelial repair, decreases the 
expression of endothelial adhesion molecules and possess anti-inflammatory, antioxidant, antiaggregatory 
and anticoagulant properties. Thus, it becomes evident that the cardioprotective effect of HDL goes beyond 
RCT[3,4].

On the other hand, there is ample clinical evidence showing that HDL functionality, more than HDL-C 
concentration per se, plays a crucial role in atheroprotection[5,6]. HDL functionality is assessed by the 
cholesterol eff lux capacity (CEC), which determines the ability of HDL to accept cholesterol from 
macrophages for excretion into the liver. CEC has been shown to be an excellent predictor of atherosclerotic 
disease[7].

Furthermore, it is known that under certain conditions, such as the oxidative environment of the 
acute-phase response, the HDL particles may lose their anti-inflammatory properties and become pro-
inflammatory[8].

In our review, we will present the clinical and scientific data pertaining to the factors and conditions that 
impair HDL functionality and we will discuss the effects of dysfunctional HDL on atherogenesis.

HDL STRUCTURE AND HETEROGENEITY
HDL is synthesized in the intestine and the liver and consists of a heterogeneous group of particles, 
which differ in density, size, electrophoretic mobility, and apolipoprotein content[5,9]. Furthermore, the 
HDL particles present marked structural, physiochemical, compositional and functional heterogeneity 
and have significant differences in their biological properties[5,10,11]. The major apolipoproteins of HDL 
are apolipoprotein A-I (ApoA-I), which constitutes approximately 70% of HDL protein and is present on 
virtually all HDL particles, and ApoA-II, which constitutes approximately 20% of HDL protein and is 
present on about two-thirds of HDL particles in humans[5,12].  

On the other hand, the structure of the HDL particles is very complex. Mass spectrometry studies have 
shown that the HDL particles carry an array of proteins, which are engaged in lipid metabolism but also 
affect complement regulation, acute-phase response and proteinase inhibition[5,13]. Moreover, lipidomic studies 
have identified in excess of 200 molecular lipid species in normolipidemic HDL, including phospholipids, 
sphingolipids, steroids, cholesteryl esters (CEs), triglycerides, diacylglycerides, monoacylglycerides and free 
fatty acids[5,14].

Given the above heterogeneity of HDL particles and their structural complexity, it becomes easily 
understandable that any modifications of the components of the HDL particles may alter their functionality 
and potentially render HDL dysfunctional.

FACTORS AFFECTING HDL FUNCTIONALITY
Certain genetic, environmental and pathophysiologic conditions can influence the HDL cardioprotective 
effects by disrupting its protein components, lipid content, or by promoting modifications in the enzymes 
responsible for HDL metabolism.
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Systemic states, such as inf lammation and its equivalent acute phase response (observed after surgery 
and during infection or trauma), can induce significant changes on the HDL particle. During acute phase 
response, pro-inf lammatory cytokines promote changes in the structure of plasma proteins, including 
those of the HDL particle. Interleukin-1 beta (IL-1β), IL-6 and tumor necrosis factor-α are released during 
acute phase response and promote the synthesis of serum amyloid A (SAA) and group IIA secretory 
phospholipase A2 (sPLA2-IIA), which act as pro-inf lammatory molecules. SAA interacts with HDL 
and may result in a faster clearance of the HDL particle, resulting in reduced HDL and ApoA-I plasma 
levels. In addition, SAA promotes the loss of the anti-inflammatory activity of HDL and renders the HDL 
particle pro-inflammatory[15-17]. With regard to sPLA2-IIA, its activation promotes the breakdown of HDL 
phospholipids with subsequent accumulation of two proatherogenic and pro-inflammatory lipid products, 
lysophospholipids and fatty acids[18], which can also disrupt HDL protein structure[19].

Furthermore, in pro-inflammatory states, Apo-AI becomes a substrate for myeloperoxidase (MPO), a protein 
released by macrophages, monocytes and neutrophils, which catalyzes the chlorination or nitration of 
tyrosyl residues of ApoA-I molecules in HDL. MPO promotes oxidative damage of the HDL particle, which 
leads to a significant reduction of its anti-inflammatory properties, thus rendering HDL dysfunctional[20].

Oxidized LDL is a powerful inducer of atherogenesis due to its role in endothelial dysfunction and foam 
cell formation. The mechanism by which oxidized LDL promotes atherogenesis involves the promotion of 
monocyte adhesion to the endothelium via activation of macrophages and mast cells[21]. As it was alluded 
to earlier in this review, under normal conditions, HDL has antioxidant properties and prevents oxidation 
of LDL, which contribute to its cardioprotective effect. However, in pro-inflammatory environments, HDL 
may also lose its ability to inhibit monocyte migration within the arterial wall and thus lose its antioxidative 
effects on LDL particles[22,23].

Another factor that can modify the antiatherogenic properties of HDL is the alteration in the HDL lipid 
composition. Reorganization of HDL lipid components due to an upregulation of the activity of CE 
transfer protein, as observed in insulin resistance states, such as the metabolic syndrome, can modify the 
CE/triacylglyceride (TAG) ratio in HDL, which plays a crucial role for the antioxidant activity of HDL. 
Furthermore, increased TAG content in the lipid core may also cause dysregulation of CE transfer through 
scavenger receptor class B type I, therefore impairing RCT[24].

It has been also shown that certain disease states may impair HDL function. Disorders such as 
atherosclerosis and type 2 diabetes mellitus promote a subclinical chronic inflammatory microenvironment 
at a biomolecular level, eliciting protein remodeling of HDL with subsequent disruption of its anti-
atherogenic, antioxidative and anti-inflammatory properties[25,26]. Furthermore, ApoA-I glycation impairs 
HDL functionality[27], leading to the impairment of the anti-atherogenic[28] and anti-inf lammatory[29] 
properties of HDL.

Environmental factors have also a significant impact on HDL function. Factors that alter HDL functionality 
include smoking, obesity and dietary habits. HDL is susceptible to oxidative modifications by cigarette 
smoking. As a result, HDL loses its atheroprotective properties in smokers and becomes dysfunctional[30]. 
With regard to obesity, there is evidence that it may reduce CEC and impair HDL functionality[31]. In 
addition, consumption of saturated fat has been shown to impair arterial endothelial function and reduce 
the anti-inflammatory activity of HDL. On the contrary, the anti-inflammatory activity of HDL is enhanced 
after consumption of polyunsaturated fat[32].

IMPACT OF DYSFUNCTIONAL HDL ON CVD
There is extensive evidence from clinical studies confirming the adverse role of dysfunctional HDL on 
atherogenesis and the risk for CVD.
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In a post hoc analysis of two large prospective studies, the IDEAL (Incremental Decrease in End Points 
through Aggressive Lipid Lowering) trial and the EPIC (European Prospective Investigation into Cancer and 
Nutrition)-Norfolk case-control study, it was shown that very high plasma HDL-C levels (≥ 70 mg/dL) and 
very large HDL particles (> 9.53 nm) conferred an increased risk for coronary artery disease (CAD) when 
levels of ApoA-I and ApoB were kept constant[33]. This observation may be explained by the hypothesis that 
very large, cholesterol-enriched HDL particles, may at some point become cholesterol donors rather than 
acceptors and thus become pro-atherogenic[33]. This hypothesis was supported in another community-based 
cohort study, in which it was clearly shown that cholesterol-overloaded HDL particles were independently 
associated with progression of carotid atherosclerosis in a population free of CVD. More specifically, 
participants with the highest estimated number of cholesterol molecules per HDL particle (≥ 53.0) had 1.56-
fold increased progression of carotid atherosclerosis, as compared with those with the lowest estimated 
number of cholesterol molecules per HDL particle (< 41.0)[5,34]. Furthermore, in a very recent study of two 
large population-based cohorts in Denmark (52,268 men and 64,240 women), it was clearly shown that in 
men and women in the general population extremely high HDL-C levels were paradoxically associated with 
high all-cause mortality risk[35]. In addition, in a large-scale pooled analysis of 9 Japanese cohorts, which 
included 43,407 participants, it was again shown that extremely high HDL-C levels led to an increase of 
atherosclerotic CVD mortality[36].

As it was mentioned earlier in this review, CEC from macrophages is currently considered an important 
metric of HDL function. In this regard, multiple studies have shown an inverse relationship between 
CEC and the incidence of cardiovascular events, independent to HDL-C levels[7,37,38]. In the Dallas heart 
study, a multiethnic, population-based, cohort study, in which the HDL cholesterol level, HDL particle 
concentration, and CEC were measured at baseline in 2,924 adults free from CVD over a mean follow-up 
period of 9.4 years, there was a 67% reduction in the risk for cardiovascular events in the highest quartile of 
CEC, as compared to the lowest quartile[7]. This again proves that dysfunctional HDL with low CEC may be 
an important factor in atherogenesis.

In addition, it has been shown that HDL and ApoA-I recovered from human atheroma are dysfunctional and 
are extensively oxidized by MPO. More specifically, while the amount of circulating ApoA-I that contains 
a 2-OH-Trp72 group (oxTrp72-ApoA-I) is minimal under normal conditions, it accounts for 20% of the 
ApoA-I in atherosclerotic arteries. Increased levels of oxTrp72-ApoA-I have been linked to an increased risk 
for CVD[39]. Most importantly, there is evidence showing that dysfunctional HDLs with diminished anti-
inflammatory activity are present in patients with CAD and they are actually found in higher abundance in 
patients with acute coronary syndrome (ACS) than in patients with stable angina[40].

Furthermore, as it was alluded to earlier, HDL isolated from patients with CAD (but not HDL from healthy 
subjects) exhibits a pro-inflammatory rather than an anti-inflammatory effect when exposed to endothelial 
cells. In addition, HDL from patients with CAD (in contrast to HDL from healthy subjects) did not 
stimulate endothelial cell NO production, due to inhibition of the activation of endothelial NO synthase, 
leading to the loss of the endothelial anti-inflammatory and repair-stimulating effects of HDL in patients 
with CAD[41,42].

The above were also corroborated in a large clinical study, which included 1,548 patients with CAD 
undergoing coronary artery bypass grafting. This study clearly demonstrated that higher pre-operative 
HDL-C levels were not associated with a reduction but rather with a clear tendency for an increase in the 
occurrence of major adverse cardiovascular events[43]. This was attributed to the presence of dysfunctional 
HDL in patients with CAD, as it was clearly alluded above.

CONCLUSION
From the above review of the scientific and clinical data, it becomes evident that the HDL particles possess 
potent cardioprotective biological functions. In addition to their effect in the facilitation of RCT, the HDL 
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particles also possess cytoprotective, anti-inflammatory, antioxidant, antiaggregating and anticoagulant 
properties, which enhance their protective effect against CVD. These cardioprotective properties of HDL 
are not solely dependent on the HDL plasma concentration but also depend on HDL functionality. This was 
confirmed in a large meta-analysis of 108 randomized trials involving 299,310 participants at risk for CVD. 
In this meta-regression analysis, it was clearly shown that simply increasing the serum levels of HDL-C does 
not lower the risk of coronary heart disease events, coronary heart disease deaths, or total deaths[44]. On the 
other hand, there is extensive evidence that under certain conditions, such as the oxidative environment 
of the acute-phase response, the HDL particles may lose their anti-inflammatory properties and become 
pro-inflammatory and pro-atherogenic. Thus, future therapeutic agents targeting HDL may be required to 
enhance HDL functionality rather than simply increase HDL-C concentration.
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