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Abstract
Aim: Recent developments in single-cell RNA sequencing (scRNAseq) and analysis have revealed regulatory 
behaviors not previously described using bulk analysis. scRNAseq features resolution at the level of the individual 
cell and provides opportunities for identifying cell type-specific gene regulatory networks. The technology promises 
to discover biomarkers and targeted treatments with enhanced effectiveness and reduced side effects. Pathway 
reverse engineering and causal algorithms have been validated in bulk sequencing transcriptomic data successfully 
for gene regulatory network reconstruction. In the current study, we evaluated the performance of local causal 
discovery algorithms for de novo reconstruction of local gene regulatory networks tailored to scRNAseq count 
data.

Method: We benchmarked the performance of the state-of-the-art local causal discovery algorithm generalized 
local learning with five conditional independent tests in controlled conditions (simulated count data) and real-
world single-cell RNA sequencing datasets.

Results: The simulation study showed that local causal discovery methods with appropriate conditional 
independence tests could result in excellent discovery performance (given a sufficient sample size). As expected, 
various conditional independence tests possess different power-sample characteristics. The discovery 
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performance for all tested conditional independence tests on real-world data is relatively low, potentially due to 
imperfect standards or deviation of simulated data distribution from real-world data.

Conclusion: Our findings provide insights and practical guidance for applying causal discovery methods to single-
cell RNAseq data for gene regulatory network reconstruction.

Keywords: scRNAseq, regulatory network reconstruction, multivariate count data, causal discovery

INTRODUCTION
Unlike diagnosis and outcomes prediction, where correlational relationships are often sufficient, predicting 
responses to a treatment critically depends on knowledge of the causes of biological processes. Gene 
regulatory networks describe the causal and mechanistic interactions between transcription factors and 
genes and are, therefore, critical for treatment discovery and precision treatment selection. Many gene 
regulatory pathways (e.g., functional components of regulatory networks) were derived for biological 
systems under many different conditions based on bulk gene expression and other data, and several have led 
to targeted treatments, especially in cancer[1].

Recent developments in single-cell RNA sequencing (scRNAseq) analysis have revealed regulatory 
behaviors not previously described using bulk analysis[2-4]. Regarding intra-tumor heterogeneity, analysis of 
glioblastomas showed that one tumor contains individual cells that resemble the four bulk gene expression 
molecular subtypes (proneural, neural, classical, and mesenchymal), revealing diverse regulatory programs 
within the same tumor[5]. Concerning tumor immune function, scRNAseq analysis of the breast tumor 
microenvironment observed a continuum of T cell states, leading to a new understanding of immune 
responses to tumors[6]. Highlighting the potential clinical utility of scRNAseq data, several scRNAseq-based 
studies suggested a link between the transcriptomic profile of specific cell subpopulations and patient-level 
cancer outcomes[5,7,8]. scRNAseq identified subgroups of drug-resistant cells[9,10] and expression profiles 
linked to resistance[11]. One case study provided evidence for the ability of scRNAseq to identify treatment-
refractory mechanisms and treatment selection for surviving tumor cells[12].

Bulk gene expression data has fundamental limitations compared to single-cell data. When the regulation of a 
gene by a transcription factor is present in one cell type but not another, there is an obligatory signal 
attenuation owing to a lower signal-to-noise ratio. Separating cell types via scRNAseq promises to deliver a 
better ability to dissect the regulatory relationship than bulk sequencing. Another problem is that there are 
relationships with opposite orientations within cell types, which, when aggregated, are also attenuated and 
may vanish entirely[13]. Additional distribution-related artifacts may occur, such as Berkson Fallacy type 
mixtures where spurious associations and those with reversed directions can emerge[14]. scRNAseq operates 
at the resolution of the individual cell and can overcome these problems; it provides opportunities for 
identifying cell type-specific gene regulatory networks that can result in targeted treatments with better 
effectiveness and fewer side effects[15] than those that derive from bulk analyses.

Deducing or modeling gene regulatory networks at the single-cell level from scRNAseq data is an active 
pursuit of the bioinformatics community. Several methods have been developed in various biological model 
systems leveraging single-cell transcriptome profiling datasets[16-20]. SCOUP infers gene regulation networks 
by modeling the cell dynamics as ordinary differential equations with pseudo-time as the temporal 
reference[21]. TENET utilizes transfer entropy to approximate the strength of causal relationships between 
genes and predict large-scale gene regulatory cascades/relationships from scRNAseq data[22]. 
Deshpande et al. developed SINGE, which uses kernel-based regression to smooth noisy, ordered single-cell 
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data and ensembling to prioritize postulated regulatory relationships[23]. These methods utilize time 
information to infer regulatory network structure. However, time information is not available in typical 
scRNAseq data and has to be estimated (i.e., pseudo-time), which is a potential source of error.

Furthermore, ordering cells according to pseudo-time may not be appropriate in specific cell populations, 
limiting these methods’ applicability. There are other limitations in methods that do not depend on pseudo-
time, such as the SCENIC[24], including the reliance on correlational relationships (e.g., coexpression) for the 
discovery of causal mechanisms and the dependence on databases of known regulatory relationships. To 
summarize, these methods are not based on mathematically sound theories to guarantee reliable causal 
inference from observational data and are thus only heuristic. Finally, benchmark studies showed that the 
performance of these methods was moderate[25].

Formal causal inference methods exist for general distributions and have been tested in biological discovery 
and bulk gene expression data[26-31]. The current study aims to assess the performance of formal causal 
inference methods for regulatory network reconstruction using scRNAseq data. To apply these methods to 
scRNAseq data, one needs to consider that these are multivariate count data requiring appropriate statistical 
tests of association and conditional independence. Various statistics and machine learning methods have 
been introduced for modeling this type of data. Concerning identifying statistical relationships among 
count variables, such as correlation and difference between groups, the most straightforward variety of the 
method is transforming count data to Gaussian distributions such that one can leverage existing statistical 
methods designed for Gaussian data. The data transformation methods are simple and widely adopted in 
applied research, despite the debate over their effectiveness[32-35]. We explored log transformation in the 
current study (see the METHOD section for detail). Other methods include models specifically designed for 
modeling count data, such as the Poisson regression[35]. We examined the conditional independence test 
based on the Poisson regression.

Another class of methods utilizes non-parametric models to infer relationships among count data. These 
methods make no distributional assumptions and thus can be applied to count data[35]. In our study, we 
explored two methods that fit into this category, the kernel conditional independence test[36] and the partial 
distance correlation test[37] (see the METHODS section for detail).

More closely related to causal pathway/regulatory network discovery is learning Bayesian networks over 
multivariate count variables. Initial work for modeling multivariate count variables focused on modeling the 
multivariate joint distribution, similar to how multivariate Gaussian distributions can be modeled. 
However, due to the nature of the count data, this approach is problematic because the density of the joint 
distribution for count data is only normalizable if the coefficients specifying the model are non-positive[38,39]. 
Various modifications, such as truncation and modifying the base measures of the Poisson distribution, 
have been implemented to mitigate this issue[40]. Another way to address the normalization problem is to 
circumvent it by modeling the distribution of each variable as a local conditional Poisson distribution given 
the local neighborhood of the variable without requesting a consistent joint distribution. Most of the more 
recent work in this domain uses this approach.

The details for local neighborhood selection, one key component of this variety of methods, varies across 
studies. Allen and Han approximated the local neighborhood by fitting L1 penalized Poisson or log-normal 
regressions[41,42]. Hadji heuristically inferred the local neighborhood via functional gradient descent, i.e., 
boosting[43]. These approaches for local neighborhood selection are essential feature selection approaches 
that optimize for reconstructing the conditional density (i.e., predictivity) while penalizing for the size of the 
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local neighborhood. They are not leveraging the causal nature of the data generation process and, therefore, 
do not guarantee the discovery of local causality.

Based on the literature, we chose to model the distribution of each count variable as a local conditional 
Poisson distribution given its local neighborhood. However, instead of using predictive feature selection 
approaches for local neighborhood selection, as employed by previous studies, we utilized local causal 
discovery methods for local neighborhood identification. Causal discovery methods (in contrast to 
predictive feature selection methods and scRNAseq-specific regulatory network reconstruction methods 
based on pseudo-time or coexpression) guarantee the discovery of causal relationships under broad 
distributional assumptions[44].

We focused on local causal discovery methods for the following reasons. First, local causal neighborhood 
discovery is conducive to modeling the Poisson conditional density for each variable. Second, local causal 
discovery methods uncover (arguably) the most important causal relationships around a gene, i.e., its direct 
causes and direct effects. Third, the local causal discovery methods are more sample-efficient than global 
causal discovery methods and have excellent scalability to networks with millions of vertices.

The causal discovery methods used here identify causal relationships by examining the statistical properties 
in the data using conditional independence tests, following the frameworks of Pearl et al.[44] and 
Spirtes et al.[45], adapted by Aliferis et al. for the intricacies of high dimensional biomedical data[46,47]. Many 
conditional independence tests can be readily applied to count data. We compared the performance of five 
conditional independence tests for local causal neighborhood discovery in simulated count data and real-
world single-cell RNAseq data.

METHOD
Local causal discovery within the generalized local learning framework
Several causal structure discovery methods have been used for de novo reconstruction of gene regulatory 
networks using bulk gene expression data with success[26-30]. In this study, we used a family of causal 
structure discovery methods called the generalized local learning (GLL) causal discovery methods to 
reconstruct the gene regulatory network based on scRNAseq data. The GLL can be adapted to numerous 
distributions and application domains while guaranteeing that the causal structure discovered will be 
correct under broad assumptions.

In general, the algorithms in the GLL framework take two inputs: (1) a dataset D with a set of variables V 
and sample size N; and (2) a target (i.e., response) variable of interest T∈V. The output of the algorithm is 
the local causal structure around T.

The GLL framework can be instantiated in many ways, giving rise to existing state-of-the-art and novel 
algorithms. Different instantiations of the GLL can discover different components of the local causal 
structure. For example, the GLL-PC sub-family discovers the direct causes and direct effects of the target of 
interest, whereas the GLL-MB sub-family discovers the Markov boundary of the target of interest, 
consisting of the direct causes, direct effects, and direct causes of the direct effects. In the current study, 
intending to identify the target’s direct causes and direct effects, we chose to instantiate the GLL-PC family, 
more specifically, as the HITON-PC algorithm[46-48].

The GLL algorithmic framework is sound under well-defined and sufficient conditions. Moreover, it is 
computationally efficient and applicable to datasets of very high dimensionalities (i.e., millions of variables 
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using modest computing equipment). Empirically, benchmark studies on simulated and various real-world 
data demonstrated that GLL outperforms other methods with excellent local structure reconstruction 
accuracy given moderate sample sizes[46,47]. GLL algorithms have been applied to many real-world data for 
causal discovery and feature selection with great success[49-53]. In addition, GLL algorithms can be used for 
global causal discovery through local-to-global learning[46,47] and equivalent class discovery[54].

Conditional independence tests
The GLL algorithm framework infers the local causal neighborhood of the target of interest via 
systematically examining the statistical dependencies and independencies in the data using statistical tests of 
conditional independence. Briefly, a pair of variables X and Y are conditionally independent given variable 
set Z, if P(X|Y, Z) = P(X|Z), where P(Z) > 0. Intuitively, knowing the value of variable Y does not provide 
more information regardingX, if we already know Z. The conditional independence relationship is 
connected to a causal relationship under the faithfulness condition and the causal Markov condition[44,55], 
e.g., in a faithful causal network. A variable X is the direct cause or the direct effect of a variable T if and 
only if X and T are conditionally dependent given all subsets of observed variables, excluding X and T[45].

The GLL algorithm framework leverages this foundational principle of causality to identify a target 
variable’s direct causes and effects. Its search strategy optimizes for correct statistical inference given the 
available sample size and computational efficiency. To identify a variable’s direct cause and direct effects, 
the GLL algorithm conducts multiple conditional independence tests among variables iteratively. The error 
incurred on individual conditional independence tests would affect the quality of the discovery. In general, 
the error rate of a conditional independence test (like any statistical test) depends on the assumptions of the 
test, effect size, sample size, and the trade-off between type I (false positive rate) and type II error (false 
negative rate).

The comparative advantage of various conditional independence tests for local causal discovery leveraging 
count data (such as the scRNAseq data) has not been characterized systematically in the literature. 
Therefore, we evaluated five conditional independence tests on systematically generated simulated and real 
datasets. The five conditional independence tests include:

● Fisher: this is the classical Fisher’s z test. This test uses Fisher’s z-transformation of the partial correlation 
and tests for zero partial correlation between variable X and T, given variables in the conditioning set, 
assuming linear additive relationships among variables and Gaussian noise[56]. We chose to evaluate Fisher’s 
test even though it is not appropriate for count data because of its simplicity and previously reported good 
empirical performance in datasets that violate test assumptions[47].

● Log-Fisher: the Fisher’s z test is applied to log-transformed count data. The log transformation of count 
data reduces the over-dispersion and is often applied to count data before subsequent analysis. Although the 
appropriateness of log transformation for count data has been under debate[33], we evaluated this method 
owing to its simplicity and prevalence of log transformation in the literature[57-60].

● Poisson CI test: conditional independence test based on Poisson regression. It tests for non-zero partial 
correlations between X and T conditioned on variables in the conditioning set based on two Poisson 
regressions[35]: the first with T as the dependent variable and X and the variables in the conditioning set as 
the independent variables, the second with X as the dependent variable; and T as well as the variables in the 
conditioning set as the independent variables. The overall test is considered significant if either of the two 
tests is significant, indicating statistical dependence.
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● Kernel conditional independence (KCI) test: Kernel-based conditional independence test. This test does 
not explicitly estimate the conditional or joint densities of the variables in question but computes test 
statistics based on kernel matrixes of the variables. This test does not make assumptions regarding the 
distribution of the variables or about the functional relationships among the variables[36]. Notably, the KCI 
test is designed for continuous variables. Even though count data violate the test assumption, we choose to 
test its empirical performance.

● Partial distance correlation (pdcor) test: partial distance correlation test is a test for zero partial distance 
correlation for variable sets X and T conditioned on Z. Although the test can handle three variable sets of 
arbitrary dimensions, for our purpose (of testing the independence between X and T given Z), X and T 
would always have a fixed dimension of one. The partial distance correlation does not have distributional 
assumptions regarding the variables and can capture non-linear dependenceies[37].

Simulated data experiments
We systematically simulated the count dataset to test the performance of different conditional independence 
tests for local causal discovery under various conditions that affect the discoverability of causal structure. 
The following simulation conditions were explored: network structure, the form of the data generation 
function, the signal-to-noise ratio, and the sample size.

Network structure
The task of qualitative causal discovery is to learn the causal structure that generates the data distribution 
from the analysis of experimental data or from an observational sample from that data distribution. The 
goal of quantitative causal discovery is to estimate the magnitude of causal effects that variable 
manipulations have on some target variable of interest using experimental or observational modeling 
methods. We focused on the discovery process based on observational data. Local causal discovery aims to 
learn the local causal structure (e.g., direct causes and direct effects) of a target variable.

Therefore, the first step in our data generation process is to generate a network structure that encodes a set 
of causal relationships among variables. Specifically, we generated random directed acyclic graphs (DAGs) 
with a specified number of vertices (NV)and a number of directed edges (NE). Each vertex in a DAG 
corresponds to a variable in its generated data. Each directed edge represents the direct causal relationship 
between the pair of variables connected by the edge, i.e., X → Y represents variable X is a direct cause of 
variable Y. The DAG encodes all the causal relationships (direct and indirect) among the set of variables 
generated from it. We generated four types of DAGs with different numbers of nodes (NV), number of 
edges (NE), and different densities: (1) NV = 20, NE = 20; (2) NV = 20, NE = 50; (3) NV = 200, NE = 200; (4) 
NV = 200, NE = 500.

Data generation functions
Given the qualitative causal information encoded in the generated DAG, the second step in the data 
generation process is to define the quantitative causal relationship among variables. Most studies in the 
statistical and machine learning literature generate multivariate Poisson data in two ways: (1) using the 
Poisson distribution; and (2) using the Poisson LogNormal distribution. We generate data using both 
methods because it is unknown which method better approximates true multivariate Poisson data observed 
in various domains.

The first method specifies the conditional distribution of a variable Vi given its parents Pa(Vi) as a Poisson 
distribution, with the Poisson λ determined by the weighted sum of the values of the parents and an 
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intercept term:

The second data generation method uses the Poisson-LogNormal distribution which contains a latent 
multivariate normal distribution over the variables U, with the corresponding observed count variables V 
being conditionally Poisson distributed:

It is worth noting that the exponential function in the conditional distribution for the Poisson and Poisson 
LogNormal distributions. Due to the exponential function, some choices of β will result in extremely large 
values for Vi. Therefore, we constrained the coefficients’ value to better reflect real-world distributions. In 
addition, we generated positive and negative coefficients to represent positive and negative causal effects, 
paralleling the up- and downregulations observed in true scRNAseq data. The distribution of β in our 
simulated studies is shown in Supplementary Section S1.

Signal-to-noise ratio concerning causal effect sizes
We explored two signal-to-noise conditions to study the effect of the signal-to-noise ratio of causal effect 
size on the local causal discovery. As specified in the previous section, the data generated is considered to 
have a low noise condition. We also generated data with added noise (low signal-to-noise ratio) by 
randomly selecting 30% of the data and permuting them per variable, referred to as the high noise 
condition. This strategy injects additional noise while preserving the marginal distribution.

Sample size
We study the effect of sample size by examining simulated data of sample sizes of 100, 500, and 1000 
observational units.

Summary of simulation conditions
To summarize, we explored four types of network structure, two types of data generation functions, and two 
signal-to-noise ratios, resulting in 4 × 2 × 2 = 16 types of data generation processes. To reduce artifacts due 
to (and assess the variability of) simulated datasets, each data generation process was repeated 50 times to 
produce 16 × 50 = 800 datasets. Each simulated dataset contained 1000 samples. To test the influence of 
sample sizes, subsamples of 100, 500, and 1000 were sampled from each simulated dataset. Local causal 
discovery with different conditional independence tests was conducted on each data sample.

Experiments with real-world data
We analyzed two single-cell RNAseq datasets to reconstruct the local causal neighborhood of transcription 
factors. For the THP-1 dataset, the scRNAseq data was obtained from Park (2021)[61] (GSE176294), and we 
used the network described in Tomaru (2009)[62] as the gold standard. The gold standard was developed with 
knock-down experiments and transcription factor binding experiments. For the Yeast dataset, the 
scRNAseq was obtained from Jackson (2020)[63], and we used the network developed in Tchourine (2018)[64] 
as the gold standard. This gold standard was derived by combining binding and expression information 
from various sources. The description of these datasets is displayed in Table 1. The coverage of the 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202302/5466-SupplementaryMaterials.zip
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Table 1. Characteristics of the single-cell datasets

Name #Variables #Samples #TFs #Edges in GS Description Ref.

THP1 40 3159 10 58 scRNAseq from THP-1 cell line [61,62]

Yeast 1071 38,225 98 1402 scRNAseq from Yeast [63,64]

scRNAseq datasets and their corresponding gold standards differed; therefore, we focused on the 
overlapping gene sets and the regulatory relationships among them. We conducted local causal discovery on 
each dataset and examined the effect of sample sizes by sampling ten sets of samples of sizes 100, 5000, and 
1000.

Application of GLL for local causal discovery
The GLL algorithm instantiated with the five conditional independence tests was applied to individual 
variables in each data sample (simulated and real-world data) for local causal discovery. The output of the 
GLL algorithm is the estimated local causal neighborhood of the variable in questions from the data sample 
given by the specific conditional independence test. The pseudo-code and detailed discussions regarding the 
GLL algorithm have been described previously[46,47]. We implemented the GLL algorithm using MATLAB.

Performance evaluation
The true local causal neighborhood of a variable consists of its direct causes and direct effects. The 
performance of local causal discovery is evaluated by comparing the discovered local causal neighborhood 
to the true local causal neighborhood. Because a variable is either in the local neighborhood of another 
variable or is not (i.e., a binary decision where being in the local neighborhood is considered positive), we 
chose metrics for binary classification for performance evaluation. Specifically, we computed the following 
metrics: sensitivity, specificity, positive predictive value (PPV), negative predictive value, and F1 score. The 
metrics were computed using each variable as a target separately. The mean and variability were reported.

As stated in the previous sections, for the simulated data, the true local neighborhood is determined by the 
true network structure that generated the data. The true network was obtained from the prior literature for 
the actual data.

RESULTS
Simulated data experiments
We compared the performance of GLL instantiated with five different conditional independence tests for 
local causal discovery across all simulation conditions and multiple performance metrics. We reported 
sensitivity [Figure 1], specificity [Figure 2], and PPV [Figure 3] in the main text. Figures reporting negative 
predictive values and the F1 score are in Supplementary Section S2.

The sensitivity metric is the number of true positives over the total number of positives. In our case, it is the 
number of identified neighbors that are true neighbors over the total number of neighbors for a vertex. 
Higher sensitivity indicates that the algorithms identify a higher proportion of true neighbors. The Poisson 
conditional independence test (PoissonCI) achieved the best sensitivity in 35 out of 48 simulation 
conditions nominally. In the remaining 13 of 48 simulation conditions, pdcor achieved the best sensitivity.

As the sample size increases, the sensitivity of all conditional independence tests improves, as evidenced by 
Figure 1. The discovery of local causal edges in smaller scRNA data is achievable with high sensitivity using 
the Poison or Fisher tests and a sample size of 500 or more. Adding additional noise to the data decreased 
the sensitivity of all conditional independence tests. We could not directly compare the performances using 
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Figure 1. Local causal neighborhood discovery sensitivity for various conditional independence tests and simulation conditions. The 
numerical value represents the mean sensitivity of a gven conditional independence test for a given simulation condition over 50 
randomly generated datasets. We colored the cells according to their sensitivity to aid the inspection of the figure. Deeper red indicates 
better performance, and deeper yellow indicates worse performance. Bolded cells indicate the best performance among the five 
conditional independence tests for a given simulation condition.

Figure 2. Specificity of local causal neighborhood discovery for various conditional independence tests and simulation conditions. Cells 
were colored according to the performance to aid the inspection of the figure. Deeper red indicates better performance, and deeper 
yellow indicates worse performance. Bolded cells indicate the best performance among the five conditional independence tests for a 
given simulation condition.

Poisson vs. the Poisson LogNormal data generation function in our simulation setting because the signal-to-
noise ratio in the two conditions differed. However, our results showed that all five conditional 
independence tests could achieve similar sensitivity for simulated data generated from the two data 
generation functions.
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Figure 3. PPV of local causal neighborhood discovery for various conditional independence tests and simulation conditions. Cells were 
colored according to the performance to aid the inspection of the figure. Deeper red indicates better performance, and deeper yellow 
indicates worse performance. Bolded cells indicate the best performance among the five conditional independence tests for a given 
simulation condition.

Moreover, the sensitivity for the simulation condition generated from graphs with the same edge-to-vertex 
ratio but a different number of vertices (NV) and a number of edges (NE) were comparable (e.g., NV = 20, 
NE = 20 vs. NV = 200, NE = 200; NV = 20, NE = 50 vs. NV = 200, and NE = 500). This effect was observed in 
other benchmark studies on local causal discovery algorithms on non-count data[46,47]. Comparing low- and 
high-edge density given the same number of vertices (e.g., NV = 20, NE = 20 vs. NV = 20, NE = 50, 
NV = 200, NE = 200 vs. NV = 200, and NE = 500), sensitivity is reduced regardless of method.

In summary, as evidenced by Figure 1, the discovery of local causal edges in networks with lower edge-to-
vertex ratio (NV = 20, NE = 20 and NV = 200, and NE = 200) is achievable with good sensitivity by using 
either the Poison or Fisher tests and sample size 500 or more. In higher density networks (NV = 20, 
NE = 50, NV = 200, and NE = 500), the sensitivity is reduced for all sample sizes tested regardless of the 
method and more severely for the data generated by PoissonLogNromal data generation function, 
suggesting that sample size of 1000 or more is desirable for networks with higher edge-to-node ratio. 
Furthermore, in networks with higher edge-to-vertex ratios, PoissonCI, pdcor, and Fisher have similar 
sensitivity and comparative advantage over the other methods.

Turning to specificity (the number of true negatives over the total number of negatives), nominally, the KCI 
test achieved the best performance in 42 of 48 simulation conditions. In the remaining six of 48 simulation 
conditions, Fisher’s test (Fisher) achieved the best performance.

As the sample size increases, the specificity of all conditional independence tests decreases in general, as 
expected. However, for the sample size tested, the influence of sample size on specificity is small. Adding 
additional noise to the data resulted in similar specificity for the Poisson data generation function but 
increased specificity for the Poisson LogNormal data generation function. It is worth noting that the mean 
difference in specificity among the conditional independence tests is relatively low (< 0.02) within each 
simulation condition with the data generated using the Poisson data generation function. However, when 
the data are generated with the Poisson log normal data generation function, the specificity for PoissonCI, 
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the most sensitive conditional independence test in most conditions, is lower than other conditional 
independence tests.

In summary, as evidenced by Figure 2, the discovery of local causal edges in scRNA data is achievable with 
very high specificity using any examined methods.

PPV is the number of true positives over the number of predicted positives. In our case, it is the number of 
identified neighbors that are true neighbors over the number of identified neighbors. A higher PPV 
indicates that a higher proportion of the identified neighbors are true. For PPV, Fisher’s test (Fisher) 
nominally achieved the best performance in 41 out of 48 simulation conditions. In the remaining seven 
conditions, the KCI test achieved the best performance.

PPV increased as the sample size increased and decreased as more noises were added to the data. Unlike 
sensitivity and specificity, PPV is mathematically affected by the prior (i.e., the NE over pairs of vertices in 
our setting); as a result, we observed a decrease in the positive predictive value when the NV in the graph 
increased.

In summary, as evidenced by Figure 3, the discovery of local causal edges in a network with a small NV is 
achievable with high PPV using Fisher’s tests and to a comparable degree by other tests except for the pdcor 
test with a sample size larger or equal to 500. The PPV is substantially reduced in data with a higher NV, 
and the KCI and Fishers’ tests performed better.

Real-world data experiments
We applied GLL with different conditional independence tests to two real-world scRNAseq datasets for 
local causal discovery. We subsampled these datasets to assess the change in performance as a function of 
sample size (core results in Figure 4, all results in Supplementary Section S3). The pdcor test achieved the 
best sensitivity for all datasets and sample sizes in the real-world data. The KCI test achieved the best 
specificity for all datasets and sample sizes. The KCI is often the best for PPV (in three of six experimental 
conditions).

In these two datasets, not all methods performed as well as in simulated data, suggesting that the data are 
unusually hard outliers or that the gold standards are not as precise as needed (see DISCUSSION).

DISCUSSION
We tested the performance of local causal discovery algorithms equipped with different conditional 
independence for reconstructing the local causal neighborhood based on simulated and real-world 
scRNAseq data.

To our knowledge, this study is the first where local causal discovery algorithms and conditional 
independence tests were benchmarked on systematically generated count data. Our simulation study 
showed that local causal discovery methods with appropriate conditional independence tests could result in 
excellent discovery performance given a sufficient sample size. Different conditional independence tests, as 
expected, have different power-sample characteristics. Therefore, the best conditional independence test 
depends on the discovery task. When one wishes to discover as many true neighbors as possible 
(maximizing sensitivity), the Poisson conditional independence test and Fisher’s test has an advantage for 
networks with low edge-to-vertex ratios. In contrast, the Poisson conditional independence test, Fisher’s 
test, and the KCI test have an advantage for networks with higher edge-to-vertex ratios. Our simulation 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202302/5466-SupplementaryMaterials.zip
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Figure 4. Local causal neighborhood discovery performance measured by sensitivity, specificity, and PPV for various conditional 
independence tests and real-world datasets. Cells were colored according to the performance to aid the inspection of the figure. Deeper 
red indicates better performance, and deeper yellow indicates worse performance. Bolded cells indicate the best performance among 
the five conditional independence tests for a given sample size and dataset.

study provides general guidance for choosing a conditional independence test for local causal discovery 
given count data.

Although the primary goal of our simulation study was to compare the effectiveness of various conditional 
independence tests for local causal discovery given count data under laboratory (i.e., controlled and 
simulated) analysis conditions, it can also help in experiment planning[65,66]. For example, our results on 
simulated data can help answer questions such as, “is scRNAseq data from one hundred cells sufficient for 
identifying the local causal neighborhood given specific conditional independence tests and desired level of 
performance metrics?” Across all simulation conditions, we found that sensitivity, PPV, and F1 score 
increased substantially when the sample size increased from 100 to 500, while the difference in performance 
for these metrics was less drastic when the sample size increased from 500 to 1000. For datasets with a larger 
number of vertices and edges (e.g., for simulated data where NV = 200 and NE = 500), the performance was 
less than ideal even at a sample size of 1000.

Several directions for future work can be taken to expand and enrich the results of the current study. First, 
despite being a systematic benchmark study for local causal discovery utilizing various conditional 
independence tests for count data, this benchmark study only explored a subspace of the available methods 
for single-cell regulatory network reconstruction. We did not compare the local causal discovery method 
with previously reported methods that utilize non-causal techniques for neighborhood 
identification[21-24,41-43]. In general, methods not designed for causal discovery have (as expected) 
underperformed causality-optimized methods[46,47]; however, they might be advantageous for specific 
performance metrics (e.g., trading low specificity and many false positives for higher sensitivity). Second, a 
major difficulty in evaluating causal discovery methods on real-world data is the lack of suitable gold 
standards[67]. Despite the increasing availability of scRNAseq data, high-quality gold standards are scarce. 
The gold standards[62,64] we used in our study were constructed from the bulk level rather than single-cell 
data.

Furthermore, they were derived from studies limited to a partial set of genes. These limitations may explain 
the performance gap in our results between simulated and real data. More analyses must be conducted as 
more real-life datasets with reliable true direct causality gold standards become available. Using gold 
standards constructed from single-cell data or conducting experimental validations based on the local causal 
neighborhoods discovered by different algorithms would produce a more accurate evaluation of the 
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performance of the algorithms. Finally, our data simulation methods do not capture all the complexities in
real-world single-cell data. This limitation might contribute to the large difference between the results from
the simulated data and the real-world study. Future studies using simulations that generate data that better
approximate the scRNAseq data (e.g., resimulation methods) for developing and benchmarking methods
are desired.

Until the understanding of the performance of various discovery methods is fully characterized, we propose
that in situations where experiments do not meet apparent requirements for good discovery performance
(e.g., small sample size, large edge-to-vertex ratio for sensitivity, and a large number of vertexes for PPV),
based on our results, a more exploratory attitude and careful (i.e., not over-interpreted) examination of
results is warranted. Similarly, experimental validation of the results is warranted when analysis operates in
high-PPV regions.

In conclusion, the current study is the first to systematically evaluate the performance of the local causal
discovery algorithm given different conditional independence tests on simulated count data with empirical
results in real-world scRNAseq data. It provides an initial set of insights for designing analyses and choosing
discovery methods in research involving scRNAseq data for gene regulatory network reconstruction.
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