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Abstract

Patients undergoing hemodialysis (HD) are at high risk for both atherothrombosis and hemorrhage. Compared to
healthy individuals, these patients show significant alterations in platelet dynamics, potentially contributing to
cardiovascular complications and bleeding. This review presents a hypothesis-generating model to elucidate the
mechanisms of platelet turnover, reactivity, and premature aging in HD patients. It also examines the roles of
pulmonary thrombopoiesis, inflammation, and oxidative stress in platelet dysfunction. Furthermore, the review
highlights the importance of platelet heterogeneity and proposes a strategy for developing personalized antiplatelet
therapies for HD patients. Future research directions, such as single-cell analyses, are recommended to enhance
understanding of platelet dynamics in HD and improve patient care.

Keywords: Clonal hematopoiesis, extramedullary hematopoiesis, hematopoietic stem cells, inflammation,
megakaryocytes, oxidative stress

INTRODUCTION

Patients with end-stage renal disease (ESRD) are at high risk for bleeding, atherothrombosis, and resistance
to antithrombotic therapies". These complications largely arise from uremia and the underlying disease
burden associated with kidney dysfunction, both of which result in changes to the endothelium, coagulation
factors, and blood cells, including platelets. Although hemodialysis (HD) helps reduce uremic toxicity,
patients on HD remain vulnerable to both thrombotic and hemorrhagic complications”*. One contributing
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factor is the deterioration of their overall condition during treatment. Additionally, hypoalbuminemia and
hypovolemia may develop, further increasing coagulability. The use of anticoagulants during HD increases
the risk of systemic bleeding, while bioincompatibility can promote thrombosis'®. More importantly, altered
platelet quality and function drive these risks. This review examines the role of platelets in the adverse
outcomes observed in HD patients and presents a hypothetical model of how HD impacts platelet quality
and function. We also identify key areas of platelet research relevant to HD that support this hypothesis. A
deeper understanding of these mechanisms could lead to the development of personalized antithrombotic
therapies aimed at preventing both atherothrombosis and hemorrhage.

Platelet dynamics under physiological conditions

Platelets, involved in the hemostatic process, are unique to mammals"”. They are produced in the bone
marrow through thrombopoiesis, much like other blood cells. Megakaryocytes (MgKs), the precursors of
platelets, originate from hematopoietic stem cells (HSCs) in response to growth factors such as
thrombopoietin (Tpo). After undergoing sufficient nuclear division through endomitosis, MgKs terminally
differentiate and produce platelets, generating approximately 100 billion platelets daily™. Tpo, continuously
produced by the liver, is cleared from the bloodstream by platelets. When platelet counts decrease, plasma
Tpo levels rise, thereby stimulating platelet production”. Aged platelets activate an intrinsic apoptotic
pathway, likely regulated by an unidentified internal timer"". This mechanism facilitates their recognition
and clearance by the reticuloendothelial system, concluding their lifespan of approximately ten days. Under
healthy conditions, platelets function optimally to maintain proper blood clotting.

Platelet dynamics in bleeding

When bleeding occurs, platelets are exposed to elements in the extravascular space, such as collagen bound
to von Willebrand factor. This exposure activates the platelets, triggering the release of soluble factors that
attract additional platelets and amplify the clotting cascade. The coordinated consumption of platelets and
clotting factors forms a thrombus to stop bleeding. When platelet demand increases, larger, denser, and
more reactive platelets are produced"”, enhancing hemostasis"”. These platelets are thought to originate
from MgKs with higher ploidy, which have undergone additional endomitosis in response to Tpo and
inflammatory cytokines*'*. Erythropoietin (Epo), a stimulant for red blood cell production, has also been
linked to increased MgK ploidy in mice'”, possibly making platelets more reactive during blood loss. While
Tpo and Epo take days to impact platelet production*, rapid mechanisms like MgK rupture may provide
platelets within hours, as observed in mouse models of acute platelet depletion. This rapid response may
help meet urgent platelet demands in cases of acute bleeding in humans.

HYPOTHETICAL MODEL: PLATELET DYNAMICS IN HD PATIENTS

Platelet activation and exhaustion in ESRD patients on HD

Compared to physiological conditions, the production and function of blood cells in ESRD patients are
significantly altered. Decreased Epo production by the kidneys, iron deficiency, secondary
hyperparathyroidism, and bone marrow fibrosis contribute to severe anemia in these patients"”. Changes in
the innate immune system, such as reduced monocyte activity and impaired neutrophil function, are also
common"*", Uremic toxins and malnutrition further alter T cell-induced adaptive immune responses"**’.
Similarly, platelets in ESRD are characterized by hyporeactivity associated with altered surface receptors and
granule content”*”. Uremia also disrupts the balance between coagulation and platelet function, leading to
either thrombosis or bleeding”** [Table 1].

Although HD reduces uremia, it temporarily exacerbates immune alterations due to interactions with the
HD circuit™. Analogously, while HD partially corrects coagulation imbalances and improves platelet
function™, it also activates platelets as blood flows through the dialyzer. Platelets exhibit increased
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Table 1. Mechanisms of thrombosis and hemorrhage in hemodialysis patients

Thrombosis Causing factors Bleeding
Changes due to uremia
Enhanced coagulability[S] — Uremia — Surface receptor alterations"??
Hypovolemia/hypoalbuminemia[S] — Overall health complications in ESRD
patients
Changes due to HD
Bio-incompatibility[él — Anticoagulants used during HD — Hypocoagulability
Platelet-leukocyte aggregation[zg’m — Platelet over-activation — Exhausted platelets[m
Antiplatelet resistance™’ — Increased platelet turnover
Altered platelet priming/biogenesisms] — Inflammatory mediators/ROS
Increase inMgK pIoidym — Excessive platelet consumption — Thrombocytopenia
Changes due to biological aging
Altered platelet priming by SASpH! — Senescent leukocytes
Rapid release of larger & hyperactive — Fast-tracked emergency MgK production
pla‘[eletsmo’m
Potentially thrombotic mutations!™"! — CHIP-related mutations — Potentially hemorrhagic
mutations"*”!
(e.g, DNMT3A, TET2, JAK2)M®! (eg, GFNB)'™?

CHIP: Clonal hematopoiesis of indeterminate potential; ESRD: end-stage renal disease; HD: hemodialysis; MgK: megakaryocytes; ROS: reactive
oxygen species; SASP: senescence-associated secretory phenotype.

activation, evidenced by higher levels of platelet CD62P on the venous side of the HD circuit®®. Some
activated platelets aggregate with leukocytes”*), while others undergo degranulation”'. Although platelet
activation starts immediately after HD begins'”, it gradually diminishes over the course of the session,
accompanied by a reduction in platelet size®™. Electron microscopy reveals that these smaller platelets
contain fewer dense granules, confirming degranulation™. These platelets are likely overactivated and are
unable to participate in subsequent hemostatic processes, representing exhausted platelets”*. Exhausted
platelets are also observed in trauma™), stroke®”, and cancer™, contributing to their bleeding
complications. Given that up to 80% of platelets are exhausted in HD patients"”, this is likely the cause of
increased bleeding risk in these patients.

Robust consumption of platelets

A study by Dewanjee et al. investigates platelet consumption in a swine model of HD". They inject
autologous 111-indium-labeled platelets into pigs and find that radioactivity counts from the lungs increase
by 1.5-fold immediately after starting HD, indicating significant platelet trapping in the lung vasculature.
The radioisotope counts in the spleen and liver also increase, suggesting that activated platelets are
phagocytized by macrophages in these organs. Twenty-four hours after injection, HD animals retain twice
as many platelets in the lungs compared to control animals, confirming the lungs' role in capturing HD-
induced thrombi. Remarkably, platelet levels in the blood drop by nearly half after three hours of HD. The
isotope count lost from the bloodstream was nearly equal to the sum of that trapped in the HD circuit,
adhered to the lung vasculature, and presumably embolized to other organs. Robust platelet consumption
following intense activation mirrors the pathology of disseminated intravascular coagulation (DIC)*,
heparin-induced thrombocytopenia (HIT)", and thrombotic thrombocytopenic purpura (TTP)“". These
conditions are characterized by a bleeding tendency despite a hypercoagulable state, supporting the idea
that excessive platelet consumption may contribute to both thrombosis and bleeding in HD patients.
Moreover, significant platelet loss due to HD aligns with findings from a clinical study on cardiopulmonary
bypass circuits, where several days are needed to restore platelet counts'*”. A single session of extracorporeal
circulation induces the production of larger, hyperreactive platelets, resembling the response to bleeding
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events that increase megakaryocyte ploidy""*’. Notably, larger platelets are linked to atherothrombosis in
HD patients*. This supports the idea that HD activates compensatory mechanisms for bleeding, which
may, in turn, lead to thrombotic events.

Accelerated turnover of platelets

In the swine study, indium-bound proteins from platelets degrade within macrophage phagosomes in the
spleen and liver, with the isotope likely remaining inside and potentially binding to other intracellular
proteins™’. Despite the accumulation of significant residual isotopes through this process, the levels of
radioactivity in the spleen and liver remain comparable between sham-operated animals and those after
HD. This suggests that these organs provide live platelets to compensate for platelet consumption!, which
may explain the rapid recovery of platelet counts in HD patients. More importantly, increased platelet
turnover might indicate significantly heightened thrombopoiesis. We hypothesize that, with the fast and
repetitive turnover of platelets, patients may eventually reach a threshold where even a slight reduction in
thrombopoiesis leads to mild thrombocytopenia. This aligns with reports showing that HD patients tend to
have lower platelet counts*), which decline further with age™ much faster than in the general
population™. Notably, mild thrombocytopenia appears to be associated with worse cardiovascular
outcomes in chronic HD patients, particularly those resistant to antiplatelet therapy™", similar to patients
with venous thrombosis and exhausted platelets””. These observations are in line with the notion that
increased platelet turnover contributes to antiplatelet therapy resistance™ [Table 1].

Variance in platelet reactivity among HD patients

The impact of platelet activation, exhaustion, and consumption on overall platelet reactivity remains
unclear, and the prognostic significance of accelerated platelet turnover and the resulting mild
thrombocytopenia® requires further validation. Interestingly, some studies indicate that platelet reactivity
varies significantly among HD patients. Gackler et al. report that up to 15% of HD patients show extreme
increases or decreases in ex-vivo platelet aggregation®. This variability may result from differences in
platelet reactivity before and after HD", which could partially explain the mixed results in studies
examining platelet function in these patients™. Notably, patients who experience thrombotic vascular

[57]

access failure exhibit increased platelet reactivity””, while those with bleeding events display altered platelet
function™. Therefore, we hypothesize that the outliers in platelet reactivity identified by Gackler et al. may
be linked to either thrombotic or bleeding diatheses". It is also important to note that platelet reactivity is
not consistently high or low within the same individual; rather, both hyperactive and exhausted platelets
likely coexist. Proteomics studies reveal a mixed activation pattern in platelets from patients with acute
coronary syndrome™® or COVID-19""*’. In a chronological analysis of patients with critical limb-
threatening ischemia, researchers observe a dramatic decrease in platelet alpha granule secretion prior to

[63

cardiovascular events (and unpublished data'®'). These studies suggest that both hyperactive and exhausted

platelets can be present in a single individual. This may also apply to HD patients.

The extent of accelerated platelet turnover may also differ among patients. Although reticulated platelets,
detected by mRNA-binding thiazole orange and corresponding to younger platelets, indicate rapid
4, conflicting studies report varying levels of these cells in HD patients®*. Tassies et al. find that
in HD patients with renal anemia, thiazole orange-dim platelets do not reach the threshold for detecting
immature platelets'”. Interestingly, after treatment with recombinant human Epo, thiazole orange intensity
normalizes, and platelet function improves. Given that Epo may influence MgK ploidy"”, the findings of
Tassies et al. suggest that the mechanism of thrombopoiesis significantly impacts platelet quality and
reactivity'”. Notably, patient responses to Epo vary'”, implying that differences in progenitor or stem cell
susceptibility to thrombopoietic stimuli may also affect platelet reactivity, thereby contributing to variations
in platelet quality. Collectively, we hypothesize that some HD patients are under a precarious balance

turnover



Tateno et al. Vessel Plus 2024,8:37 | https://dx.doi.org/10.20517/2574-1209.2023.120 Page 5 of 13

between hyperactive and exhausted platelets, and when either side shifts, patients may experience
thrombosis or hemorrhage.

Central role of the lungs in hyperactive platelet formation

Platelet subpopulations with varying reactivity likely arise from the diversity of MgK, different modes of
thrombopoiesis, and environmental priming*”. However, the exact origins, characterizations, and
mechanisms behind these variations in platelet quality remain unclear. It is plausible that multiple
pathways, including some yet to be identified, regulate platelet reactivity to maintain hemostatic balance,
even in HD patients. Thus, when outliers in platelet function occur, it is likely that extreme conditions or
environments in platelet biogenesis and maintenance exist beyond the typical homeostatic controls. In this
context, we hypothesize that platelet biogenesis and retention in the lung may play a critical role for two
reasons. First, although thrombopoiesis in HD patients is expected to accelerate significantly to meet the
increased platelet demand, it is surprising that the bone marrow MgK count remains low despite
thrombocytopenia. This suggests the presence of substantial extramedullary thrombopoiesis. The role of
MgK in the pulmonary vessels in platelet production has been debated”™ " since it was first reported nearly
fifty years ago””". Notably, recent research by Lefrancais et al. reveals that bone marrow-derived MgKs
contribute significantly to platelet biogenesis in the mouse lungs, accounting for nearly 50% of total platelet
production”. They also discover that hematopoietic stem and progenitor cells in the lungs can reconstitute
bone marrow in response to thrombocytopenia and bone marrow stem cell deficiency. Given that
thrombocytopenia“”* and bone marrow fibrosis””” are relevant in HD patients, replenishment of HSC
from the lungs may be vital for HD patients.

Second, the lung vasculature receives venous blood directly from the HD circuit. As mentioned, platelets
lose their granule contents in the HD circuit, releasing platelet-secreted molecules including thrombopoietic
and inflammatory cytokines"" directly into the hematopoietic niche. Thus, it is hypothesized that
thrombopoiesis may occur significantly in the lungs of HD patients. Recent studies have identified MgK in
the extravascular space of the lungs, where it participates in the local immune response rather than being
involved in thrombopoiesis®*. However, Qiu et al. observe that inhaled particles increase MgKs in the
alveoli and rapidly boost activated platelets in circulating blood™*”. Although the impact of intravascular
mediators on MgKs and resident hematopoietic progenitor cells in the lungs remains unclear'®!, this may
support the hypothesis that HD-derived contents in the venous blood alter platelet biogenesis in the lungs.

Notably, blood collected from the dialyzer also contains high levels of reactive oxygen species (ROS), mainly
generated by activated polymorphonuclear neutrophils during HD"™*. Conversely, reduced erythropoiesis
in renal anemia and increased apoptotic death from eryptosis™ compromise the antioxidant properties of
red blood cells™, significantly increasing oxidative stress in venous blood®**. Since inflammation and ROS
are associated with platelet hyper-reactivity!®**>*", both fresh platelets produced in the lungs and other
platelets passing through the lung vasculature may be primed by inflammatory cytokines and ROS in
venous blood" . This priming may contribute to the development of hyperactive platelets.

Role of premature aging in platelet priming

Inflammation and oxidative stress are hallmarks of cellular aging processes involving telomere attrition (i.e.,
Hayflick's replicative cellular senescence)”**. Cellular senescence is believed to contribute significantly to
biological aging, and various age-related diseases have been associated with premature aging****. Previous
reports show that hematopoiesis in HD patients exhibits features of premature aging, such as producing
leukocytes with aged phenotypes. For instance, 40% of peripheral blood mononuclear cells display telomere
shortening, compared to 5% in age-matched control®”, which is associated with increased p53 expression
and altered cell surface markers from a CD14-bright/CD16-dim to a CD14-dim/CD16-bright phenotype.
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Telomere shortening correlates with future cardiovascular events in HD patients”, highlighting the role of
premature senescence in adverse HD outcomes. Cellular senescence is generally linked to the secretion of
proinflammatory cytokines'™, known as the senescence-associated secretory phenotype (SASP), which is
mainly attributed to prematurely aged cells, including monocytes and endothelial cells"*'*"'. SASP factors
like IL-6, IL-1B, and TNF-a from these cells create an inflammatory environment that may sensitize platelets
to activation signals*". Studies indicate that SASP significantly alters platelet function in prematurely aged
patients, including those with cardiovascular diseases, diabetes, obesity, and chronic kidney diseases""*.

This supports the notion that platelet priming by senescent cells is a mechanism that makes platelets
hyperactive in HD patients.

Role of premature aging in thrombopoiesis

In contrast, interpreting how cellular senescence alters platelet biogenesis is complex, as Hayflick's
senescence machinery is crucial for the physiological differentiation of MgKs”>"**. However, telomere
attrition skews hematopoietic stem cells (HSC) toward MgK lineages"". Studies in rodents"*'”” and
humans"* reveal that platelet-skewed hematopoiesis is associated with the thrombogenic features of
aging"”. Remarkably, this pathway of thrombopoiesis in this pathway rapidly produces hyperactive
platelets during acute platelet depletion'*"'.. Moreover, reports show that platelets from aged individuals
exhibit higher reactivity to classical agonists than those from younger individuals, with aggregability
increasing by up to 8% per decade"'”. Transcriptome studies reveal differentially expressed platelet RNA
with age"'”, potentially shifting platelets toward a proinflammatory state'*), which is associated with age-
related diseases. This body of evidence supports the view that altered thrombopoiesis driven by stem cell
aging may be a pivotal factor contributing to the generation of hyperactive platelets in HD patients.

109

114

An alternate feature of hematopoietic aging is clonal hematopoiesis of indeterminate potential (CHIP)""*/,
which refers to the expansion of HSC with age-related somatic mutations without apparent hematologic
malignancies. CHIP occurs in 10% of individuals over 65 years of age'* and is a prominent risk factor for
atherothrombosis"'”. Specific CHIP mutations, such as those in DNMT3A and TET2, are linked to genome
instability that drives excessive production of inflammatory cytokines, potentially contributing to
cardiovascular impairment'®. A study shows a higher prevalence of these CHIP mutations among ESRD
patients, which is associated with the progression of kidney disease!'”. Other CHIP mutations may affect
platelet function, especially considering the thrombogenic and bleeding risks previously associated with
mutations in these genes from other contexts"*’. For instance, the JAK2 mutation, linked to ischemic stroke
in individuals with CHIP"™", also contributes to increased thrombosis risk through enhanced platelet
activation in essential thrombocythemia. Similarly, mutations in GFI1B, found in CHIP, are associated with
gray platelet syndrome, an inherited bleeding disorder characterized by reduced alpha-granules in
platelets"*”. These mutations can affect platelet quality, potentially leading to either thrombosis or
hemorrhage in HD patients.

The exact mechanism behind HSC mutation remains unclear. However, we hypothesize that HSC in HD
patients are more susceptible to mutations for several reasons. First, the proportion of activated to quiescent
HSC is presumably higher in HD patients due to the increased demand for MgK resulting from platelet
consumption. Second, activated HSCs are more prone to mutations because of exposure to replication-
associated errors"”>"*Y. Finally, HD induces significant stimuli in the lung hematopoietic niche as HD-
stimulated blood cells and soluble factors, arriving via venous circulation, increase chronic inflammation
and oxidative stress. This may enhance both HSC activation"”” and mutation"*”. These factors support the
view that hyperactive platelets in HD patients may result from biological aging of the hematopoietic system.
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Hypothetical mechanism of bleeding and thrombotic risks in hd patients

Altogether, we hypothesize that HD-induced inflammatory mediators and oxidative stress likely skew lung
hematopoietic differentiation toward aged phenotypes®. This leads to the production of hyperactive
platelets through the direct impact on thrombopoiesis. Alternatively, platelets may be primed by the
senescence-associated secretory phenotype (SASP) and other proinflammatory signals from aged
leukocytes'*. These hyperactive platelets then enter the HD circuit and become activated, creating a
feedback loop that generates excessive inflammatory cytokines and ROS, which are subsequently
reintroduced to the lungs. In HD patients, this cycle repeats three times a week over a lifetime, promoting
chronic inflammation in the vessel walls and contributing to atherothrombosis”****”. Alternatively, when this
process leads to a predominance of exhausted platelets, it may increase the risk of bleeding [Figure 1].

FUTURE DIRECTIONS AND CONCLUSIONS

Therapeutic strategies for individualized antithrombotic therapy

Efforts to mitigate thrombosis while preventing bleeding have explored various dialysis membranes, ranging
from cellulose diacetate to polysulfone, that reduce inflammatory substances or oxidative stress in the
effluent"”. Individualized anticoagulant treatments, such as fractionated heparin, citrates, or even
anticoagulation-free HD, have shown promise in reducing platelet activity and bleeding risks"*. However,
the effectiveness of these strategies for preventing cardiovascular events in HD patients remains uncertain.
Furthermore, antiplatelet therapy should be precisely tailored based on drug types, combinations, doses,
and treatment durations"*. The thrombotic and hemorrhagic mechanisms in HD are complex and vary
significantly among patients. These conditions may also evolve with hematopoietic aging", and
hematological changes can arise spontaneously due to other conditions, such as infections" and
malnutrition*
antiplatelet resistance and bleeding risks, it is essential to identify distinct platelet subpopulations, including
the roles of hyperactive and exhausted platelets. Although methods like aggregation analyses and
hematology analyzers are commonly used, most studies prepare platelet samples from whole blood or
platelet-rich plasma separated via centrifugation, leading to the analysis of platelets as a bulk population.
Since varying platelet reactivity in HD patients may be linked to different distributions of platelet
subpopulations, a more detailed classification of these bulk populations is needed.

,complicating individualized antithrombotic therapies. To address the paradox of

Single-cell analyses are crucial for identifying specific subpopulations. Fluorescence flow cytometry can
distinguish several surface marker expression patterns, identifying a few platelet subpopulations. Advances
in cytometry, such as time-of-flight mass spectrometry, now enable the staining of up to 100 different
parameters in a single cell. This technology has been used for immunophenotyping various cells"**,
including platelets. Computational clustering of identical cell populations has successfully identified novel
platelet subtypes in both healthy individuals and patients with Glanzmann thrombasthenia*. Recently,
single-cell RNA sequencing (scRNA-seq) has provided detailed snapshots of gene expression in anucleated
red blood cells, helping to identify their subpopulations"**. Applied to platelets, scRNA-seq could become a
powerful tool for defining platelet subpopulations and understanding their functional roles. Leveraging
single-cell analyses to quantify the relative proportions of hyperactive and exhausted platelets may help to
unravel the complexities of platelet reactivity in HD patients, ultimately paving the way for personalized
antiplatelet therapies that can effectively mitigate thrombotic events while minimizing bleeding risks.

Conclusions

HD patients experience the paradoxical coexistence of thrombotic and hemorrhagic diatheses, hindering
antithrombotic therapy. In these patients, the HD circuit over-activates platelets, increasing inflammation
and oxidative stress while simultaneously promoting platelet exhaustion. This over-activation accelerates
hematopoietic aging, likely involving hematopoietic stem and progenitor cells in the lungs, leading to the
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Figure 1. Hypothetical mechanism of bleeding and thrombotic risks in patients undergoing hemodialysis. Platelets become activated
upon entering the hemodialysis circuit, either losing their granule content and becoming exhausted or aggregating with activated
polymorphonuclear neutrophils. These aggregates carry oxidative stress and inflammatory mediators, which are transported to the
hematopoietic niche in the lungs, skewing the differentiation of hematopoietic stem cells (HSCs) and megakaryocytes (MgKs) toward
biologically aged phenotypes. Aged HSCs and MgKs directly impact thrombopoiesis or indirectly prime platelets to become more
sensitive to activation stimuli through the senescence-associated secretory phenotype (SASP) and other proinflammatory signaling in
the presence of aged leukocytes. These hyperactive platelets re-enter the HD circuit, creating a positive feedback loop that increases
inflammatory cytokines and oxidative stress, which are once again delivered to the lungs. The balance between naive, activated, and
exhausted platelets is maintained by homeostatic buffering mechanisms. However, when this vicious cycle sustains chronic
inflammation in vessel walls, it may promote atherothrombosis. Alternatively, if this process leads to significant qualitative changes in
platelets or a depletion of thrombopoietic capacity, the prevalence of exhausted platelets could increase bleeding risk. The bold arrows
indicate cell dynamics while the dotted arrows represent their functional properties. HSC: Hematopoietic stem cell; HD: hemodialysis;
MgK: megakaryocyte; MNC: mononuclear cell; PMN: polymorphonuclear cell; SASP: senescence-associated secretory phenotype.

production of hyperactive platelets and perpetuating a vicious cycle. Meanwhile, platelet exhaustion
heightens the risk of bleeding. Future research focused on characterizing hyperactive platelets and
measuring their proportions relative to exhausted platelets will be crucial for developing tailored antiplatelet
therapies.
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