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Abstract
Earthquakes are among the most devastating natural disasters, posing a significant threat to human life and prop-
erty. With the rapid pace of urbanization, urban risk against earthquakes has increased, making them an increasingly
pressing concern for human society. Urban infrastructure systems (UISs), such as electric power, water supply, and
gas systems, are essential to the smooth functioning of modern society but are highly vulnerable to ground shaking,
resulting in service interruptions to customers and triggering negative impacts on society. This article focuses on the
seismic retrofit problem, which intends to enhance the resilience of UISs against seismic hazards. First, a two-stage
stochastic programming model is developed for the seismic retrofit problem, where the first stage seeks an optimal
seismic retrofit strategy under a limited budget, and the second stage attempts to identify a repair sequence to max-
imize the system resilience under the given retrofit strategy. Then, this article introduces a heuristic algorithm based
on the scenario reduction method and integer L-shaped method to solve the formulated model. Finally, numerical
experiments on the Qujing power transmission system are conducted to validate the proposed algorithm. Results
show that they can be applied to the resilience-based seismic retrofit problem of large-scale UISs.
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INTRODUCTION
The battle against natural hazards and disasters has been a persistent theme throughout human history. Over
time, mankind has made remarkable progress in eliminating or alleviating the threat posed by natural hazards
and their resulting disasters. Earthquakes, as one of the common natural disasters, present significant risks
to urban infrastructure, human life, and property. For instance, the 2008 Wenchuan earthquake collapsed 20
power plants and 170 substations, destroyed 80% of the buildings in Beichuan County, and caused approxi-
mately 150 billion dollars in economic losses and 69,180 known deaths [1]. Urban infrastructure systems (UISs),
including electric power, water supply, and gas systems, are quite vulnerable to earthquakes as their physical
facilities, such as substations, pipes, and roads, are sensitive to ground shaking [2]. The collapse of these physi-
cal facilities not only threatens the lives of people but also affects post-disaster humanitarian relief due to the
essential roles of UISs in the functioning of modern society. A successful solution to mitigate the impact of
disaster events is to build more resilient UISs [3,4]. Compared to other concepts such as reliability, risk, and
safety, resilience emphasizes the comprehensive ability of UISs to resist and absorb negative impacts, recover
rapidly from disasters, and adapt to better cope with future events [5,6].

Numerous researchers committed to the resilience enhancement problem of UISs against earthquakes and put
forward a variety of constructive strategies across the four phases of disaster relief, including mitigation, pre-
paredness, response, and recovery phases. The mitigation phase entails identifying risks and hazards to either
substantially reduce or eliminate the impact of an incident usually through structural measures. The prepared-
ness phase intends to reduce the system failure probability, and the relevant actions include deploying backup
systems [7], extending system topology [8], and retrofitting components [9–11]. The response phase attempts to
resist the diffusion of failures and takes emergency actions to ensure the normal functioning of critical facili-
ties. For example, operators can adjust the topology of electric power networks by the pre-installed switches on
transmission lines to isolate the faulty section [12]. The recovery phase aims to make an effective plan to repair
damaged facilities and restore the services of UISs [13,14]. Researchers established many mathematical models
to describe the recovery process of UISs, in which various factors are taken into account, such as available
resources, routes of repair crews, preferences of stakeholders, decision environments, and interdependencies
across UISs [15–17]. This article mainly focuses on the strategy of component retrofitting, which can decrease
the failure probabilities of components facing disturbances and has been widely adopted in the literature and
practice.

Generally, a UIS consists of thousands of components with different types, indicating that retrofitting each
component is impracticable and costly. Hence, only partial components that are essential to system resilience
are selected to be retrofitted. Researchers in the literature have proposed numerous methods to explore the
critical components of UISs, and a common approach is based on the component importance index, which
describes the importance of a component to the whole system [18–20]. The component importance index could
be measured in accordance with component types, topological characteristics (e.g., degree and betweenness),
and geographical location [21–23]. In the context of electric power systems, plants are the most critical facilities,
followed by transmission substations and lines and distribution substations and lines. Also, a component with
a large degree value has a high priority to be retrofitted as it connects many components in the system, and its
failure might cause a large impact. Moreover, some studies measure the component importance index from
the perspective of reliability and vulnerability. Espiritu et al. introduced several existing reliability criticality
measures in the literature, including Birnbaum importance, criticality importance, reliability reduction worth,
and reliability achievement worth, and then developed a novel measure for electric power systems [24]. Salman
et al. utilized risk achievement worth to evaluate the importance of components in electric power distribution
systems subjected to hurricanes [25]. Here, risk achievement worth describes the “worth” of a component in
achieving system reliability. Li et al. developed a probability-based method to evaluate the seismic reliability
of substations and identify the critical components in an electric power system [26]. Rocco et al. described a
vulnerability analysis method to identify critical components for protection from the perspective of improving
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network performance [27].

The aforementioned component importance-based methods are straightforward and easily implemented, but
they ignore the synergistic effect between components, resulting in a low improvement performance to sys-
tem resilience. Selecting a limited set of components for reinforcement is a typical combinatorial optimization
problem, and researchers have established corresponding optimization models to seek the set of components
that can bring the largest benefit to system resilience. Yuan et al. focused on the resilience enhancement prob-
lem of electric power distribution systems and established a two-stage robust optimization model with the
consideration of the uncertain occurrence of disasters due to natural hazards [28]. Two resilience enhancement
strategies, retrofitting components and deploying distributed generation resources, are incorporated into this
model. Yan et al. studied the seismic retrofit problem of a railway system and formulated a stochastic model
to seek the optimal railway stations and tracks to be strengthened under a limited budget [29]. Ma et al. devel-
oped a tri-level optimization model to enhance the resilience of power distribution networks against extreme
weather events, whose objective is to minimize the hardening investment and load shedding cost [30]. Lu et
al. developed a mean-risk two-stage stochastic programming model to investigate the transportation network
protection problem against extreme events [31]. The first stage intends to seek the retrofitting strategy of high-
way bridges with the minimum retrofitting cost, whereas the second stage minimizes the travel cost given
retrofitting decisions and hazard scenarios. Liu et al. established a two-stage stochastic model to study the
seismic retrofit problem of UISs and developed a novel heuristic method to solve this problem [32]. Numerical
experiments were implemented on three electric power systems under seismic scenarios to illustrate the valid-
ity and superiority of this method. Several studies integrated the post-disaster restoration decision problem
into the pre-disaster retrofit problem. Miller-Hooks et al. studied the resilience enhancement of freight trans-
portation networks and developed a two-stage stochastic model which simultaneously considers pre-disaster
preparedness and post-disaster recovery actions [33]. Gomez and Baker also developed a two-stage stochastic
model to address the coupled pre-disaster and post-disaster decision problem in a transportation network
under seismic hazards [34].

The retrofit problem of UISs includes massive uncertainties, such as seismic hazard occurrence probabilities,
components failure probabilities, and restoration time, whichmake those developed optimizationmodels diffi-
cult to be exactly solved.Researchers utilized variousmethods to reduce the computation complexity, including
robust programming, Monte Carlo simulation, and importance sampling. Miller-Hooks et al. proposed a so-
lution methodology with the incorporation of the integer L-shaped method and Monte Carlo simulation [33].
Romero et al. developed a knapsack-based heuristic method to optimize the selection of seismic retrofit strate-
gies [35]. Also, several studies put forward methods to generate damage scenarios. Adachi and Ellingwood
used seismic hazard maps to determine component failure probabilities and generate component damage sce-
narios [7]. Gomez and Baker utilized a probabilistic risk assessment of transportation networks to generate
hazard-consistent scenarios [34].

This article studies the seismic retrofit problem of UISs and formulates a two-stage stochastic model. The first
stage attempts to seek an optimum seismic retrofit strategy under a limited budget that takes its future benefit
into account, whereas the future benefit is quantified by the expected system resilience to all possible seismic
scenarios in the second stage. The restoration decision model for each seismic scenario is established in the
second stage, and the system resilience describes the cumulative system functionality during the whole restora-
tion process (i.e., from the initial time of a disaster event to the completion time of all repair actions). Then, a
resilience-based heuristic method is introduced to solve this mathematical model. This heuristic method first
generates a limited set of component damage scenarios, and then the original stochastic model is reformulated
into an approximated model, which is solved by the integer L-shaped method. Also, the sample average ap-
proximation method is adopted to enhance the solution accuracy. Finally, this heuristic method is applied
to the resilience-based seismic retrofit problem of the Qujing power transmission system to demonstrate its
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validity.

The main contributions of this article include (1) establishing a resilience-based seismic retrofit optimization
model for UISs with the incorporation of post-disaster repair actions; (2) proposing an efficient heuristic
method to solve the stochastic model; and (3) validating the heuristic method on an electric power transmis-
sion system. The proposed retrofit optimization model and efficient heuristic algorithm can be integrated into
a decision support system and help the government officials with the seismic investment decision-making. The
remainder of this article is organized as follows. Section 2 presents the resiliencemetric andmodels the seismic
hazard scenarios. Section 3 formulates the resilience-based seismic retrofit problem. Section 4 introduces a
heuristic solution method. Taking the Qujng power transmission system as an example, Section 5 presents the
numerical results. Section 6 concludes and discusses the findings and provides directions for future research.

MODEL DESCRIPTION
This article studies the seismic retrofit problem of UISs to maximize system resilience under a limited budget.
A general UIS can be modeled as an undirected network 𝐺(𝑁 , 𝐸), where 𝑁 and 𝐸 denote the set of nodes
(e.g., power/water plants and substations) and edges (i.e., transmission lines and pipes), respectively. Nodes
are roughly classified into source nodes (e.g., power/water plants) and demand nodes (i.e., substations). The
set of source nodes and demand nodes are denoted by 𝑁𝑆 and 𝑁𝐷 . Let 𝑠𝑛 and 𝑠𝑛 be the real and maximal
output of a source node 𝑛 ∈ 𝑁𝑆 and 𝑑𝑛 and 𝑑𝑛 be the real and required demand of a demand node 𝑛 ∈ 𝑁𝐷 .

As the investment budget is limited, only some components can be retrofitted. Compared with un-retrofitted
components, retrofitted components have lower failure probabilities of being damaged when facing a seismic
event. For simplicity, this article only considers node retrofit, and the candidate of nodes to be retrofitted
is denoted by 𝑁𝑅 . Let binary variable 𝑤𝑛 denote retrofit decision, with 1 indicating that node 𝑛 ∈ 𝑁𝑅 is
retrofitted, and 0 otherwise. The cost of retrofitting node 𝑛 is represented by 𝑐𝑛, and the total investment
budget is expressed by the parameter 𝐵𝑅 .

Note that UISs provide essential services (i.e., electricity, water, and transportation) to customers (i.e., residents,
factories, and other UISs); the evaluation of UIS resilience needs to consider the expectations of customers, i.e.,
whether system service can be restored within expected critical times after a disruptive event. So, it is more
reasonable and practical to quantify UIS resilience based on those time points that are critical to customers.
As shown in Figure 1, 𝑃𝑅(𝑡) denotes the real restoration curve of a UIS, and time series

{
𝑡𝑐1 , 𝑡𝑐2 , 𝑡𝑐3 , 𝑡𝑐4

}
are

four critical time points of concern. To capture this characteristic, this article quantifies UIS resilience based
on a series of time points that are critical to customers. Here, critical time points could be determined by
the preference of customers or expert opinions. Hence, the resilience 𝑅 of a UIS under a disruptive event is
measured as follows [36]:

𝑅 =∑𝑚
𝑖=1 𝑤𝑖×𝑃𝑅 (𝑡𝑐𝑖) (1)

where {𝑡𝑐1, 𝑡𝑐2, . . . , 𝑡𝑐𝑚} represent the critical time points of concern, 𝑃𝑅 (𝑡𝑐𝑖𝑖) denotes the system functionality
level at the time point 𝑡(𝑐𝑖), and 𝑤𝑖 describes the weight of system functionality at time point 𝑡(𝑐𝑖).

To calculate the system functionality level at each time point, two factors should be known: the state of each
component and the operation mechanisms of the UIS of concern. The state of each component depends on
the initial component damage scenario 𝜉 ∈ Ξ and the restoration decision. Here, the component damage
scenario 𝜉 is a vector consisting of the state of each component. The definitions of damage states are based on
the 𝐻𝑎𝑧𝑢𝑠′𝑠𝑡𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙𝑚𝑎𝑛𝑢𝑎𝑙, a total of five damage states are defined for UIS components, and they are none,
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Figure 1. A typical restoration curve and four critical time points of concern.

slight, moderate, extensive, and complete [37]. This article assumes that a component will lose its functionality
if it falls into the damage limit state exceeding “extensive” (i.e., extensive and complete). Let binary variables
𝜉𝑛𝑜𝑛 , 𝜉𝑒𝑥𝑛 , and 𝜉𝑐𝑜𝑛 denote the normal, extensive, and complete damage states, respectively. For a given seismic
scenario, the failure probability of each component can be estimated through its fragility curves for the “exten-
sive” and “complete” limit states. As for the restoration decision, this article assumes that the available repair
resources are characterized by the number of the repair crews, and the maximum amount of available repair
resources is represented by 𝑅𝑅. This article assumes that the working efficiency of repair crews is identical,
and each repair crew repairs the assigned damaged components independently, with each damaged compo-
nent needing only one repair crew. The repair time of damaged component 𝑛 under the component damage
scenario 𝜉 is expressed by 𝜏𝑛 (𝜉).

Each type of UISs, transporting commodities (i.e., electricity, water, and gas) from the supply side (i.e., power
and water plants) to the demand side (i.e., factories and residential districts) through lines (i.e., transmission
lines and pipes), has a particular operating mechanism. The network flow model has been frequently used to
simulate the operatingmechanisms of UISs. However, for the electric power transmission system to be studied
in the case study, the direct current power flow (DCPF) model is a better alternative and has been frequently
used in the field of electrical engineering [38].

MATHEMATICAL FORMULATION
This section proposes a two-stage stochastic optimization model for the resilience-based seismic retrofit to
maximize the seismic resilience of UISs under a limited retrofit budget. A graphical representation of the
optimizationmodel is shown in Figure 2, the first stage is for the system planner to make retrofit decisions, and
the second stage is for the system operator to accelerate the restoration process and optimize system operation
under the given retrofit strategy. The first stage attempts to seek an optimum seismic retrofit strategy under a
limited budget that takes its future benefit into account, whereas the future benefit is quantified by the expected
resilience to all possible seismic scenarios in the second stage. The second stage searches for the best repair
decision given component damage scenarios and retrofit strategy.

Denote a binary variable 𝑥𝑛(𝜉, 𝑡𝑐𝑖 ) by the damage state of node 𝑛 at time point 𝑡𝑐𝑖 under damage scenario 𝜉, with
its value 1 indicating normal operation, and 0 otherwise. Denote a binary variable 𝑟𝑘𝑛(𝜉, 𝑡𝑐𝑖 ), which represents
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Figure 2. A graphical representation of the two-stage stochastic optimization model.

whether node 𝑛 is repaired by repair team 𝑘 at the time point 𝑡𝑐𝑖 , with 1 for repaired and 0 otherwise. The
proposed mathematic model is introduced as follows:

max
𝒘

∑
𝜉 ∈Ξ

(
𝑃(𝜉 |𝒘) max

𝑥,𝑟,𝑠,𝑑, 𝑓

∑𝑚
𝑖=1 𝜆𝑖

∑
𝑛∈𝑁𝐷 𝑑𝑛 (𝜉,𝑡𝑐𝑖 )

)
(2)

∑
𝑛∈𝑁𝑅 𝑐𝑛𝑤𝑛≤𝐵

𝑅 (3)

𝑤𝑛 ∈ {0, 1},∀𝑛 ∈ 𝑁𝑅 (4)

𝜃𝜑
(
𝜉, 𝑡𝑐𝑖

)
= 0, 𝜉 ∈ Ξ (5)

𝑓𝑒
(
𝜉, 𝑡𝑐𝑖

)
= 𝐵𝑒

[
𝜃𝑜(𝑒)

(
𝜉, 𝑡𝑐𝑖

)
− 𝜃𝑑 (𝑒)

(
𝜉, 𝑡𝑐𝑖

) ]
𝑥𝑜(𝑒)

(
𝑡𝑐𝑖

)
𝑥𝑑 (𝑒)

(
𝑡𝑐𝑖

)
,∀𝑒 ∈ 𝐸, 𝜉 ∈ Ξ (6)

𝑠𝑛
(
𝜉, 𝑡𝑐𝑖

)
−∑

{𝑒∈𝐸 |𝑜 (𝑒)=𝑛} 𝑓𝑒 (𝜉,𝑡𝑐𝑖 )+
∑

{𝑒∈𝐸 |𝑑 (𝑒)=𝑛} 𝑓𝑒 (𝜉,𝑡𝑐𝑖 )=𝑑𝑛 (𝜉,𝑡𝑐𝑖 ),∀𝑛∈𝑁,𝜉,𝑖 (7)

− 𝑓𝑒𝑥𝑜(𝑒)
(
𝑡𝑐𝑖

)
𝑥𝑑 (𝑒)

(
𝑡𝑐𝑖

)
≤ 𝑓𝑒

(
𝜉, 𝑡𝑐𝑖

)
≤ 𝑓𝑒𝑥𝑜(𝑒)

(
𝑡𝑐𝑖

)
𝑥𝑑 (𝑒)

(
𝑡𝑐𝑖

)
,∀𝑒, 𝜉, 𝑖 (8)
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0 ≤ 𝑠𝑛
(
𝜉, 𝑡𝑐𝑖

)
≤ 𝑠𝑛𝑥𝑛

(
𝑡𝑐𝑖

)
,∀𝑛 ∈ 𝑁𝑆, 𝜉, 𝑖 (9)

0 ≤ 𝑑𝑛
(
𝜉, 𝑡𝑐𝑖

)
≤ 𝑑𝑛𝑥𝑛

(
𝑡𝑐𝑖

)
,∀𝑛 ∈ 𝑁𝐷 , 𝜉, 𝑖 (10)

𝑥𝑛
(
𝜉, 𝑡𝑐𝑖

)
=∑𝑖

𝑗=0
∑𝑅𝑅
𝑘=1 𝑟𝑘𝑛

(
𝜉,𝑡𝑐 𝑗

)
,∀𝑛∈𝑁𝐴,𝜉,𝑖 (11)

𝑥𝑛
(
𝜉, 𝑡𝑐𝑖

)
= 1,∀𝑛 ∈ 𝑁\𝑁 𝐴, 𝜉, 𝑖 (12)

𝑟𝑘𝑛
(
𝜉, 𝑡𝑐0

)
= 0,∀𝑛 ∈ 𝑁 𝐴, 𝜉, 𝑘 (13)

∑𝑖
𝑗=0

∑
𝑛∈𝑁𝐴 𝑟𝑘𝑛 (𝜉,𝑡𝑐𝑖 )𝜏𝑛 (𝜉)≤𝑡𝑐𝑖 ,∀𝜉,𝑖,𝑘 (14)

∑𝐼
𝑖=0

∑𝑅𝑅
𝑘=1 𝑟𝑘𝑛 (𝜉,𝑡𝑐𝑖 )≤1,∀𝑛∈𝑁𝐴,𝜉,𝑖,𝑘 (15)

𝑥𝑛
(
𝜉, 𝑡𝑐𝑖

)
, 𝑟𝑘𝑛

(
𝜉, 𝑡𝑐𝑖

)
∈ {0, 1},∀𝑛 ∈ 𝑁 𝐴, 𝜉, 𝑖, 𝑘 (16)

The objective function (2) is to maximize the expected resilience under all generated component damage sce-
narios, where 𝑃(𝜉 |𝒘, 𝑞) is a retrofit decision-dependent probability, capturing the fact that the occurrence
probability of component damage scenario 𝜉 is affected by retrofit strategy 𝒘 and seismic scenario 𝑞. The
expansion equation of 𝑃(𝜉 |𝒘, 𝑞) is shown as follows:

𝑃(𝜉 = 𝜉 | 𝒘, 𝑞) =∏
𝑛∈𝑁

{
𝜉𝑛𝑜𝑛

[
(1−𝑤𝑛)𝑝𝑛𝑜,𝑏𝑛,𝑞 +𝑤𝑛𝑝𝑛𝑜,𝑎𝑛,𝑞

]
+

𝜉𝑒𝑥𝑛
[
(1 − 𝑤𝑛) 𝑝𝑒𝑥,𝑏𝑛,𝑞 + 𝑤𝑛𝑝𝑒𝑥,𝑎𝑛,𝑞

]
+ 𝜉𝑐𝑜𝑛

[
(1 − 𝑤𝑛) 𝑝𝑐𝑜,𝑏𝑛,𝑞 + 𝑤𝑛𝑝𝑐𝑜,𝑎𝑛,𝑞

]}
,∀𝑞 ∈ 𝑄

(17)

where 𝑝𝑛𝑜,𝑏𝑛,𝑞 , 𝑝
𝑒𝑥,𝑏
𝑛,𝑞 , 𝑝

𝑐𝑜,𝑏
𝑛,𝑞 , 𝑝

𝑛𝑜,𝑎
𝑛,𝑞 , 𝑝

𝑒𝑥,𝑎
𝑛,𝑞 , 𝑝

𝑐𝑜,𝑎
𝑛,𝑞 represent the probability of node 𝑛 falling into three different dam-

age states before and after being retrofitted under a seismic scenario 𝑞. The product term on the right side
of Equation (17) is the occurrence probability that nodes have the functionality states defined by 𝜉, where[
(1 − 𝑤𝑛) 𝑝𝑛𝑜,𝑏𝑛,𝑞 + 𝑤𝑛𝑝𝑛𝑜,𝑎𝑛,𝑞

]
gives the probability that node 𝑛 works normally (𝜉𝑛𝑜𝑛 = 1) under the retrofit deci-

sion 𝑤𝑁𝑛 ,
[
(1 − 𝑤𝑛) 𝑝𝑒𝑥,𝑏𝑛,𝑞 + 𝑤𝑛𝑝𝑒𝑥,𝑎𝑛,𝑞

]
and

[
(1 − 𝑤𝑛) 𝑝𝑐𝑜,𝑏𝑛,𝑞 + 𝑤𝑛𝑝𝑐𝑜,𝑎𝑛,𝑞

]
are the probabilities that node 𝑛 falls into

“extensive” (𝜉𝑒𝑥𝑛 = 1) and “complete” (𝜉𝑐𝑜𝑛 = 1) damage states, respectively, under 𝑤𝑁𝑛 .

Constraint (3) limits the retrofit budget, and Constraint (4) enforces binary retrofit decision variables. Con-
straints (5)-(10) describe the DCPF model. Constraint (5) sets the phase angle of the reference node as zero.
Constraint (6) states that the flow of each edge is determined by its susceptance and the phase angles and op-
eration states of its origin and destination nodes. Constraint (7) ensures flow conservation, and Constraint (8)
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states the flow capacity of each edge. Constraints (9)-(10) state the maximum output of each source node and
the target demand of each demand node at different critical time points. The constraints for the recovery deci-
sion variables are described by Constraints (11)-(16). Constraint (11) ensures that if node 𝑛 is operational in
the network at the beginning of time period 𝑖, it must have been repaired by some repair group at the beginning
of that period. Constraint (12) states that non-damageable nodes are always operational. At the beginning of
the restoration process, no damaged component is repaired, as stated by constraint (13). Constraint (14) en-
sures that the total elapsing time for those components which have been repaired from period 1 to 𝑖 does not
exceed time point 𝑡𝑐𝑖 . Constraint (15) states that a damaged node is only repaired one time at most. Constraint
(16) enforces the recovery decision variables as binary.

SOLUTION ALGORITHM
This section introduces an efficient heuristic method that takes advantage of several existing methods. The
proposed method mainly includes the following three steps: (1) generates limited component damage scenar-
ios to reformulate the original problem as an approximated model; (2) adopts a retrofit efficacy-based method
to reduce the solution space and applies the integer L-shaped method to solve the approximated model; (3)
employs the sample average approximation method to enhance the solution quality.

For the first step, this article adopts the following procedures to generate the limited component damage sce-
narios: (1) randomly generates a large number 𝐾 of pre-retrofit and post-retrofit component damage scenarios{
𝑟𝑁,𝑏𝑛,𝑘,𝑞 , 𝑟

𝑁,𝑎
𝑛,𝑘,𝑞

}
(1 if node 𝑛 fails, and 0 otherwise, 𝑘=1,2,…,𝐾) for each seismic scenario 𝑞 using Monte Carlo

simulations (“post-retrofit” refers to the case that all candidate components are retrofitted); (2) selects 𝐻 from
𝐾 scenarios to minimize the total gap error for both component failure probability and system resilience. The
gap error, in terms of component failure probability, is the sum of the overestimating and underestimating
errors for component failure probabilities before and after being retrofitted. The gap error, in terms of system
resilience, is the sum of the absolute difference between the estimated system resilience calculated using those
limited component damage scenarios and the “true” system resilience calculated using large-scale component
damage scenarios in the case with no component being retrofitted, plus that difference for the case with all the
components being retrofitted. The two types of gap errors are respectively normalized by the “true” compo-
nent failure probability and “true” system resilience to make them comparable, and the weight coefficient 𝛼 is
initially set as 0.5.

Define a binary decision variable 𝑦𝑘,𝑞 which is 1 if pre-generated scenario 𝑘 ∈ 1, 2, , 𝐾 under seismic sce-
nario 𝑞 is selected; and define the occurrence probability of this scenario by a continuous decision variable
𝜌𝑘,𝑞 . Denote the gap errors resulting from overestimating and underestimating the pre-retrofit and post-
retrofit failure probabilities of node 𝑛 under seismic scenario 𝑞 by 𝑒𝑟𝑟𝑏+𝑛,𝑞 , 𝑒𝑟𝑟𝑏−𝑛,𝑞 , 𝑒𝑟𝑟𝑎+𝑛,𝑞 , 𝑒𝑟𝑟𝑎−𝑛,𝑞 ; the gap er-
rors between the estimated and the “true” system resilience for the pre-retrofit and post-retrofit systems by
𝑒𝑟𝑟𝑏+𝑟,𝑞 , 𝑒𝑟𝑟

𝑏−
𝑟,𝑞 , 𝑒𝑟𝑟

𝑎+
𝑟,𝑞 , 𝑒𝑟𝑟

𝑎−
𝑟,𝑞 ; the system resilience under pre-retrofit component damage scenario 𝑟𝑁,𝑏𝑛,𝑘,𝑞 and

post-retrofit scenario 𝑟𝑁,𝑎𝑛,𝑘,𝑞 by 𝑓
𝑏
𝑘,𝑞 , 𝑓

𝑎
𝑘,𝑞 ; the “true” system resilience for the pre-retrofit and post-retrofit sys-

tems by 𝐹𝑏𝑟,𝑞 , 𝐹𝑎𝑟,𝑞 , respectively. The mathematical model for identifying a limited set of component damage
scenarios together with their occurrence probabilities under seismic scenario 𝑞 is formulated as follows:

min𝛼
[∑

𝑛

(
𝑒𝑟𝑟𝑏+𝑛,𝑞+𝑒𝑟𝑟𝑏−𝑛,𝑞

𝑝𝑏𝑛,𝑞
+ 𝑒𝑟𝑟

𝑎+
𝑛,𝑞+𝑒𝑟𝑟𝑎−𝑛,𝑞
𝑝𝑎𝑛,𝑞

)]
+ (1 − 𝛼)

(
𝑒𝑟𝑟𝑏+𝑟,𝑞 + 𝑒𝑟𝑟𝑏𝑟,𝑞−

𝐹𝑏𝑟,𝑞
+
𝑒𝑟𝑟𝑎+𝑟,𝑞 + 𝑒𝑟𝑟𝑎−𝑟,𝑞

𝐹𝑎𝑟,𝑞

)
(18)

∑𝐾
𝑘=1 𝜌𝑘,𝑞𝑟

𝑁,𝑏
𝑛,𝑘,𝑞

−𝑒𝑟𝑟𝑏+𝑛,𝑞+𝑒𝑟𝑟𝑏−𝑛,𝑞=𝑝𝑁,𝑏𝑛,𝑞 ,∀𝑛 (19)
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∑𝐾
𝑘=1 𝜌𝑘,𝑞𝑟

𝑁,𝑎
𝑛,𝑘,𝑞

−𝑒𝑟𝑟𝑎+𝑛,𝑞+𝑒𝑟𝑟𝑎−𝑛,𝑞=𝑝𝑁,𝑎𝑛,𝑞 ,∀𝑛 (20)

∑𝐾
𝑘=1 𝜌𝑘,𝑞 𝑓

𝑏
𝑘,𝑞−𝑒𝑟𝑟

𝑏+
𝑟 ,𝑞+𝑒𝑟𝑟𝑏−𝑟 ,𝑞=𝐹𝑏𝑟,𝑞 (21)

∑𝐾
𝑘=1 𝜌𝑘,𝑞 𝑓

𝑎
𝑘,𝑞−𝑒𝑟𝑟

𝑎+
𝑟 ,𝑞+𝑒𝑟𝑟𝑎−𝑟 ,𝑞=𝐹𝑎𝑟,𝑞 (22)

∑𝐾
𝑘=1 𝑦𝑘,𝑞≤ℎ𝑞 (23)

𝜌𝑘,𝑞 ≤ 𝑦𝑘,𝑞 ,∀𝑘 ∈ {1, 2, . . . , 𝐾} (24)

∑𝐾
𝑘=1 𝜌𝑘,𝑞=1 (25)

𝑒𝑟𝑟𝑏+𝑛,𝑞 , 𝑒𝑟𝑟
𝑏−
𝑛,𝑞 , 𝑒𝑟𝑟

𝑎+
𝑛,𝑞 , 𝑒𝑟𝑟

𝑎−
𝑛,𝑞 , 𝑒𝑟𝑟

𝑏+
𝑟,𝑞 , 𝑒𝑟𝑟

𝑏−
𝑟,𝑞 , err𝑎+𝑟,𝑞 , err𝑎−𝑟,𝑞 ≥ 0,∀𝑛 ∈ 𝑁 (26)

𝜌𝑘,𝑞 ≥ 0,∀𝑘 ∈ {1, 2, . . . , 𝐾} (27)

𝑦𝑘,𝑞 ∈ {0, 1},∀𝑘 ∈ {1, 2, . . . , 𝐾} (28)

The objective function (18) minimizes the sum of gap errors for component failure probability and system
resilience. Constraints (19)-(20) define the gap errors with respect to pre-retrofit and post-retrofit failure
probabilities of components. Constraints (21)-(22) define the gap errors with respect to pre-retrofit and post-
retrofit system resilience. Constraint (23) ensures the number of selected scenarios under seismic scenario 𝑞
not larger than a pre-set size ℎ𝑞 . The value of ℎ𝑞 is proportional to the product of the occurrence probability
of seismic scenario 𝑞 and the expected functionality loss of the pre-retrofit system under seismic scenario 𝑞.
Note that a rigorous restriction of 𝐻 (the total number of required component damage scenarios under all
seismic scenarios) might cause ℎ𝑞 decimal, so to the algorithm rounds ℎ𝑞 . This may make the number of final
generated component damage scenarios slightly more or less than 𝐻. Constraint (24) forces the occurrence
probability of a component damage scenario to zero if it is not selected. Constraint (25) makes the sum of
the occurrence probabilities of all scenarios as one. Constraints (26)-(28) ensure that each error term and
occurrence probability is nonnegative, and each scenario selection variable is binary.

Based on limited component damage scenarios, the original seismic retrofit optimization problem can be re-
formulated as an approximated model, which is a standard integer program with linear constraints, with the
objective function (2) updated as follows:

max
𝒘

∑
𝑞 𝑟𝑞

∑ℎ𝑞
𝜉=1 𝜌𝜉 ,𝑞 max

𝑥,𝑟 ,𝑠,𝑑, 𝑓

∑𝑚
𝑖=1 𝜆𝑖

∑
𝑛∈𝑁𝐷 𝑑𝑛 (𝜉,𝑡𝑐𝑖 ) (29)
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For the second step, this article adopts a retrofit efficacy-based method to reduce the solution space of the
seismic retrofit optimization problem and then solves the updated problem using the integer L-shapedmethod.
In the retrofit efficacy-based method, the original objective function is replaced by some leading terms of
its Taylor series expansion. Peeta et al. approximated the objective function of a pre-disaster investment
decision problem by using the first-order term of its Taylor series expansion [9] and then reformulated the
problem as a knapsack problem, with its solution being a local optimum of the original problem. Denote
the objective function in Equation (29) by 𝐹 (𝒘), which is defined only at the vertices of the unit hypercube,
𝑈 =

{
𝒘 | 0 ≤ 𝑤𝑛 ≤ 1, 𝑛 ∈ 𝑁𝑅

}
. Relaxing the integrality restrictions on the components of 𝒘 allows 𝐹 (𝒘) to be

continuously differentiable in the domain𝑈, and hence enables the consideration of its Taylor series expansion
in the neighborhood of some 𝒘0 ∈ 𝑈:

𝐹 (𝒘) = 𝐹 (𝒘0) +∑
𝑛∈𝑁 𝑔𝑛 (𝒘0)(𝑤𝑛−𝑤0𝑛)+ 1

2!
∑
𝑛1∈𝑁

∑
𝑛2∈𝑁 𝑔𝑛1𝑛2 (𝒘0)(𝑤𝑛1−𝑤0𝑛1) (𝑤𝑛2− 𝑤0𝑛2)

. . . + 1
|𝑁 |!

∑
𝑛1∈𝑁

∑
𝑛2∈𝑁 ...

∑
𝑛 |𝑁 | ∈𝑁 𝑔𝑛1𝑛2 ...𝑛 |𝑁 | (𝒘0)(𝑤𝑛1−𝑤0𝑛1)(𝑤𝑛2−𝑤0𝑛2) ...

(
𝑤𝑛|𝑁 |−𝑤0𝑛|𝑁 |

) (30)

where 𝑔𝑛 (𝒘0) = 𝜕𝐹 (𝒘)
𝜕𝑤𝑛

���
𝒘=𝒘0

is the first-order derivative with respect to the investment decision for node 𝑛

at 𝒘0, 𝑔𝑛1𝑛2 (𝒘0) = 𝜕2𝐹 (𝒘)
𝜕𝑤𝑛1 𝜕𝑤𝑛2

���
𝒘=𝒘0

is the second-order derivative with respect to the investment decision for
node 𝑛1 and node 𝑛2 at 𝒘0, and so forth. Applying the retrofit efficacy-based method with the first order
approximation, the original seismic retrofit problem is reformulated as follows:

max
𝒘

∑
𝑛∈𝑁𝑟 𝑔𝑛 (0)𝑤𝑛

Subjectto : (3) − (4)
(31)

Where 𝑔𝑛 (0) = 𝐹 (𝑢𝑛) − 𝐹 (0), 𝑢𝑛 is the unit vector of dimension |𝑁 | with 1 at node 𝑛 and 0 at the remaining
nodes. 𝐹 (𝒘) could be calculated through the Monte Carlo simulation method or based on the importance
sampling. Once 𝑔𝑛 (0) is calculated, the reformulated program is a 0-1 knapsack problem, which can be solved
efficiently by the dynamic programming algorithm [39] or by the branch-and-bound algorithm.

The solution space reduction is realized through the following procedures: (1) enlarges the retrofit budget
to be 𝑐𝑝 ∗ 𝐵𝑅 , where 𝑐𝑝 ≥ 1 is a control parameter; (2) applies a retrofit efficacy-based method under the
retrofit budget 𝑐𝑝 ∗ 𝐵𝑅 to get an initial solution 𝑤𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑛 , which defines the reduced solution space. The idea is
based on the assumption that most components in the optimum solution of the original problem are included
in the solution obtained from the retrofit efficacy-based method under an enlarged budget 𝑐𝑝 ∗ 𝐵𝑟 . If 𝑐𝑝 ≥∑
𝑛∈𝑁𝑟 𝑐𝑛/𝐵𝑅 , all components are potential candidates to be retrofitted, so the solution space is not reduced; if

𝑐𝑝 is slightly larger than 1, the solution space will be largely reduced. After reducing the solution space, the
following constraints should be added to the approximated model:

𝑤𝑛 ≤ 𝑤𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑛 ,∀𝑛 ∈ 𝑁𝑅 (32)

Constraint (32) ensures the solution space is limited to the space solved by the retrofit efficacy-based method
with 𝑐𝑝 > 1. Other constraints for the approximated model include Constraints (3)-(16). Together with the
objective function (29), the approximated model can be easily solved using the integer L-shaped method.
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Figure 3. The electric power transmission system in the central area of Qujing, Yunnan province, China.

The third step applies the sample average approximation method to enhance the solution quality. Kleywegt et
al. stated that if the computational complexity of solving the sample average approximation problem increases
faster than linearly with the sample size, it is more efficient to choose a smaller sample size and to replicate
generating and solving several sample average approximation problems [40]. Hence, the proposed method
replicates generating and solving several sample average approximation problems with middle sample sizes
(a small number of component damage scenarios) through the above two steps to return several candidate
retrofit strategies. Among those strategies, the optimum retrofit strategy is determined by comparing their
performance gain using large-scale Monte Carlo simulations.

RESULTS
System test data and seismic hazard simulation
This article adopts the electric power transmission system in the central area of Qujing, Yunnan province,
China, for a case study, which contains 8 gate stations, 35 substations (twenty-six 110 kV substations and
nine 35 kV substations), and 56 transmission lines (forty-five 110 kV transmission lines and eleven 35 kV
transmission lines), as shown in Figure 3. The cost of retrofitting a component is estimated by multiplying the
cost of anchoring a transformer by the number of transformers in the component [41].

Yunnan Province (21-29◦ N, 97-106◦ E), situated in the southeastern region of the Qinghai-Tibetan Plateau, ex-
periences high levels of crustal activity as a result of being extruded by the Indian and Eurasian plates. Qujing is
positioned on the edge of theQiaojia-Dongchuan seismic zone in eastern Yunnan Province, where earthquakes
occur frequently. In accordance with the Seismic Motion Parameter Zonation Map of China GB18306-2015,
there are three distinct ground motion levels: basic ground motion (50-year exceedance probability of 10%),
frequent groundmotion (50-year exceedance probability of 63%), and rare groundmotion (50-year exceedance
probability of 2%). This article adopts the rare ground motion to demonstrate the proposed approach and the
spatial distribution of peak ground acceleration (PGA) is shown in Figure 4.
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Figure 4. Peak ground acceleration (PGA) distribution for rare ground motion in the central area of Qujing.

Figure 5. Comparison of the “true” (circle) and the estimated (dot) fragilities of components in the electric power transmission system
located in the central area of Qujing under the rarely occurred earthquake.

The comparison of the “true” fragilities and estimated fragilities of components in the electric power transmis-
sion system located in the central area of Qujing under the rarely occurred earthquake is shown in Figure 5.
The upper sub-figure is fragilities for all components before retrofitting, and the bottom sub-figure is fragilities
for all components retrofitting. The circle represents the “true” fragility of each component, which is calcu-
lated by using large-scale Monte Carlo simulations with sufficient component damage scenarios, and the dot
represents the estimated fragility of each component with the generated limited component damage scenar-
ios by the proposed heuristic method (PHM). Results show that the positions of the circle and dot basically
coincide and the average error between the “true” and the estimated fragilities is 0.0004, which is quite small.

http://dx.doi.org/10.20517/dpr.2023.07


Liu et al. Dis Prev Res 2023;2:10 I http://dx.doi.org/10.20517/dpr.2023.07 Page 13 of 17

Table 1. Estimated resilience under varied retrofit budgets and different amounts of restoration resources

Methods RR
Retrofit budget (K$)
1,800 2,400 3,000 3,600 4,200

SHM
1

0.7123 0.7215 0.7305 0.7382 0.7431
PHM 0.7123 0.7218 0.7308 0.7384 0.7448
SHM

2
0.7596 0.7669 0.7749 0.7810 0.7851

PHM 0.7596 0.7676 0.7749 0.7812 0.7864
SHM

3
0.7808 0.7872 0.7944 0.7999 0.8036

PHM 0.7808 0.7880 0.7944 0.8000 0.8047

Table 2. Computational cost (s) under varied retrofit budgets and different amounts of restoration resources

Methods RR
Retrofit budget (K$)
1,800 2,400 3,000 3,600 4,200

SHM
1

2,161.42 2,161.42 2,161.42 2,161.42 2,161.42
PHM 488.58 521.11 527.25 534.82 546.72
SHM

2
2,743.95 2,743.95 2,743.95 2,743.95 2,743.95

PHM 547.35 552.66 565.11 577.05 596.27
SHM

3
5,074.83 5,074.83 5,074.83 5,074.83 5,074.83

PHM 1,014.95 1.015.97 1,092.25 1,122.53 1,142.70

Solution quality
To demonstrate the solution quality of the PHM, this article adopts a component importance-based simple
heuristic method (SHM) for comparison. The SHM identifies a set of critical components to be retrofitted
in terms of the retrofit efficacy, which is the resilience difference between the two cases when the component
is retrofitted and the component is not retrofitted. The component with larger retrofit efficacy is retrofitted
in priority. Table 1 shows the estimated resilience values for the SHM and the PHM under varied retrofit
budgets and different amounts of restoration resources. Results show that the solution accuracy of the PHM
is slightly better than the SHM. Although the improvement is small, the significance is great, which can save
a lot of seismic investment funds [42]. For example, when the retrofit budget and the number of restoration
resources 𝑅𝑅 are set to $4.2M and 1, the estimated resilience levels provided by those two methods are 0.7431
and 0.7448, with a difference of 0.23%. Also, increasing the retrofit budget and the number of restoration
resources contributes to the estimated resilience level. When RR equals 1, and the retrofit budget increases
from $1.8M to $2.4M, the estimated resilience level provided by the PHM increases from 0.7123 to 0.7448, and
the improvement ratio is 4.56%; when the retrofit budget is 1,800, and 𝑅𝑅 increases from 1 to 3, the estimated
resilience level provided by the PHM increases from 0.7123 to 0.7808, and the improvement ratio is 9.62%.

Table 2 shows the computational cost of the two methods. Results show that with the increase of 𝑅𝑅, the
computational cost of the PHM takes more advantage than that of the SHM. The computational cost of the
SHM is approximately 4 to 5 times that of the PHM.With the increase of the retrofit budget, the computational
cost of the PHM gradually increases, while the computational cost of the SHM is constant, this is because the
SHM evaluates the importance values of components one by one, and its computational cost is independent
of the retrofit budget. Furthermore, the computational costs of the two methods double when 𝑅𝑅 increases
from 1 to 3.

Impact of restoration resources on retrofit strategy
This article further analyzes the impact of restoration resources on retrofit strategy. Table 3 shows the retrofit
strategies under different retrofit budgets and different numbers of restoration resources. Results show that
under the same retrofit budget, the retrofit strategies are varied with different restoration resources, which
means that the number of post-earthquake restoration resources would impact the pre-earthquake retrofit
strategies. For example, when the retrofit budget is set to $2.4M, one retrofitted component is node 34 with
𝑅𝑅 = 1 and 3, and this component is replaced by node 38. Also, nodes 3, 5, 6, 26, 32, and 36 are always retrofitted
under different retrofit budgets and 𝑅𝑅, which indicates that these nodes are the most critical components of
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Figure 6. Resilience curve under varied retrofit budgets and different amounts of restoration resources.

Table 3. Retrofit strategies under varied retrofit budgets and different amounts of restoration resources

Retrofit budget RR = 1 RR = 2 RR = 3

1,800 3, 5, 6, 26, 32, 36 3, 5, 6, 26, 32, 36 3, 5, 6, 26, 32, 36
2,400 3, 5, 6, 26, 28, 32, 34, 36 3, 5, 6, 26, 28, 32, 36, 38 3, 5, 6, 26, 28, 32, 34, 36
3,000 3, 5, 6, 26, 28, 32, 33, 34, 36, 38 3, 5, 6, 7, 26, 28, 32, 34, 36, 38 3, 5, 6, 7, 26, 28, 32, 34, 36, 38
3,600 3, 5, 6, 7, 26, 28, 30, 32, 33, 34, 36, 38 3, 5, 6, 7, 26, 28, 30, 32, 33, 34, 36, 38 3, 5, 6, 7, 26, 28, 30, 32, 33, 34, 36, 38
4,200 3, 5, 6, 7, 19, 26, 28, 30, 32, 33, 34, 35, 36, 38 3, 5, 6, 7, 19, 26, 28, 30, 32, 33, 34, 35, 36, 38 3, 5, 6, 7, 19, 21, 26, 28, 30, 32, 33, 34, 36, 38

this system.

Figure 6 further shows the resilience curves under varied retrofit budgets and different amounts of restoration
resources. Results show that when the amount of restoration resources is equal to 1, and the retrofit budget
increases from 1.8 to 4.2 million dollars, the resilience of the electric power transmission system in the central
area of Qujing is linearly improved from 0.7123 to 0.7448. Moreover, with the number of restoration resources
increasing from 1 to 2 and then to 3, the resilience value enlarges with a similar extent under different retrofit
budgets, and the resilience curves are approximately parallel.

In addition, to illustrate the regional differentiation of resilience, Figure 7 shows the spatial distribution of re-
silience for each street district in the central area of Qujing under varied retrofit budgets and different amounts
of restoration resources. Results show that the retrofit budget and the amount of restoration resources both
influence the resilience of different districts. On the one hand, when the amount of restoration resources
𝑅𝑅 = 1, the area of the green zone gets larger and larger when the retrofit budget increases from 𝐵𝑅 = 0 to
𝐵𝑅 = $4.2𝑀 . On the other hand, when the retrofit budget 𝐵𝑅 = $4.2𝑀 , the area of green zone continues
increasing when the amount of restoration resources increases from 𝑅𝑅 = 1 to 𝑅𝑅 = 3. In sum, with the
increase of the retrofit budget and the amount of restoration resources, the resilience values of different street
districts show an overall rising trend.
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Figure 7. Spatial distribution of resilience for each street district in the central area of Qujing under varied retrofit budgets and different
amounts of restoration resources.

CONCLUSION AND FUTURE WORK
This article proposes a resilience-based seismic retrofit optimization model for UISs under a limited retrofit
budget and an efficient heuristic algorithm for its solution and also analyzes the impact of post-earthquake
restoration resources on pre-earthquake retrofit strategies. Results show that the PHM performs better than
the existing SHM. In addition, the amount of post-earthquake restoration resources not only influences the
calculated resilience level but also affects the pre-earthquake retrofit strategies when the retrofit budgets are
identical. Also, the retrofit budget and the amount of restoration resources influence the spatial distribution
of the resilience at the street district levels served by the UIS. The proposed model and the solution algorithm
can be used by local and central government agencies to aid investment decisions to upgrade UISs for disaster
response.

However, this study still has certain limitations, and there are several areas that can be explored in future
research directions. First, apply the proposed method to the seismic retrofit optimization of interdependent
infrastructure systems and collect hazard scenario data with a higher resolution. Second, formulate and solve
the seismic retrofit optimization problem from a life-cycle perspective with the consideration of different types
of hazards. Third, as the disruptions outside the system of concern significantly affect the system performance,
the system boundary issue needs to be integrated into the problem formulation and taken into account for its
solution.
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