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Major depressive disorder (MDD) is associated with a 
significant disability worldwide, relevant psychosocial 
impairment, and increased risk of suicidal behavior.[1] 
Although multiple psychoactive compounds are now 
available,[2] more than 20% of MDD patients treated 
with traditional antidepressant drugs do not 
benefit from complete recovery and are affected by 
treatment-resistance.[3] Traditional antidepressant 
medications may be ineffective and sometimes worsen 
depressive symptoms in a vulnerable subpopulation 
of patients with subthreshold hypomanic symptoms 
that may be better included in the bipolar spectrum 
rather than MDD.[4]

The most recent years have been characterized by the 
paradigm shift from the monoamine conceptualization of 
depression to neuroplasticity hypothesis mainly focused 
on glutamatergic dysfunctions.[5] There are consistent 
evidence reporting that abnormalities of glutamatergic 
neurotransmission are common in depressed 
individuals.[6] Specifically, N-methyl-D-aspartate 
receptors (NMDAR) overactivation seems to play a 
critical role in the pathogenesis of MDD as reducing 
their functioning may be associated with mood recovery. 
For instance, ketamine has been recently investigated for 
its potential antidepressant effects[7] and improvement of 
suicidal ideation[8] beyond the monoamine hypothesis.

In addition, the existence of abnormalities in 
inflammatory processes in depressed patients suggests 

the immunological origin of major depression.[9] 
Inflammatory mediators and oxidative stress may lead 
to glutamate excitotoxicity playing a significant role in 
the pathogenesis of MDD.[10] Notably, immunological 
differences have been frequently observed in patients 
with MDD and suicidal behavior.

Glial cells have been proposed as potential 
candidate targets for both glutamatergic-and 
inflammatory-mediated alterations underlying MDD 
and suicidal behavior.[11,12] Historically, glial cells 
may be grouped in astrocytes, oligodendrocytes, and 
microglia.

Microglial cells derive from the immune system and 
may be considered the immunologic sentinel cells of the 
brain. As the activation of microglial cells was associated 
with the abnormal production of inflammatory 
mediators,[13,14] these cells have been proposed as 
possible effectors of the abnormal immune response in 
MDD. They provide immunomodulatory functions,[15] 
and functionally support neural plasticity-processes.[9]

Importantly, the abnormal activation of microglial 
cells reflected long-lasting depression- and anxiety-like 
behavioral effects.[11] This has been also confirmed 
by the fact that minocycline with anti-inflammatory 
properties and microglia inactivation is not only able to 
reverse microglial alterations,[16] but is also associated 
with antidepressant-like activity in rats exposed to 
learned helplessness.[17]

Unfortunately, some of the existing studies supporting 
the link between abnormal glial activation and MDD/
suicidal behavior are limited by small sample size. 
As an example, Bayer et al.[18] in a postmortem study 
found elevated microglial cells in both frontal cortex 
and hippocampus of 6 depressed and 14 psychotic 
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individuals compared to 13 healthy controls. Steiner 
et al.[19] observed increased microglial cell numbers in 
the anterior cingulate cortex and mediodorsal thalamus 
of two individuals who committed suicide during 
acute psychosis. However, no effect of diagnosis on 
the microglial density but only significant microgliosis 
was reported in dorsolateral prefrontal cortex, 
anterior cingulate cortex, mediodorsal thalamus, and 
hippocampus of 16 schizophrenic and 14 depressed 
subjects died by suicide.[20] The authors hypothesized 
that the link between microglial activation and suicidal 
behavior may be mediated by neuroendocrine factors 
such as inflammatory cytokines and oxidative stress. 
Finally, Dean et al.[21] showed that CD11b (a potential 
microglia/macrophages marker) was not increased 
in the cortex of ten subjects with MDD, and ten with 
bipolar disorder.

To the best of our knowledge, there are no reports 
in the current literature concerning the association 
between microglial glutamatergic abnormalities 
and MDD/suicidal behavior with the exception 
of the review of Niciu et al.[22] suggesting that 
glial-mediated glutamatergic dysfunction is a common 
neuropathological pathway in patients with substance 
use disorders and MDD.

It is currently unclear whether microglial abnormal 
activation may directly induce psychopathological 
conditions, should be considered an epiphenomenon 
of other related processes associated, in turn, with 
psychopathological conditions, or alternatively 
a nonspecific tissue reaction independent of 
psychopathology. Another controversial issue 
concerns the exact relationship between inflammatory 
stressful stimuli, autoimmunity, and abnormalities in 
glutamatergic activity.

The sequence of molecular events underlying MDD 
and suicidal behavior is still poorly understood. 
Microglia and monocytes are usually involved in the 
integration of sensory information within the peripheral 
sensory nerves and endocrine system.[23] Stress and 
other signaling molecules (e.g. cytokines, oxidative 
free radicals) may activate the oxidation sensitive 
transcription factor nuclear factor-κB (NF-κB), which 
is highly expressed in microglia with the final result 
of increased NF-κB-DNA binding and transcription 
of genes encoding for chemokines, cytokines, and 
oxidases/proteases. As suggested by the same authors,[24] 
microglia reported morphological changes in response 
to exposure to both environmental and internal stimuli.

Furthermore, antibodies against serotonin have been 
commonly found in more than 50% of depressed 
patients and importantly, in all those conditions 

in which increased inflammatory cytokines were 
observed.[24] They cannot affect brain functions until 
inflammatory mediators do alter the integrity of 
blood-brain barrier. However, when a blood-brain 
barrier alteration occurs, antibodies may presumably 
cross-react with the subunits of NMDAR on glial 
cells inducing the abnormal release of glutamate. 
This enhanced activation of glial cells is associated 
with glutamatergic excitotoxicity, apoptosis, and 
clinically significant behavioral changes.[25,26] Also, as 
suggested by Santello et al.,[27] tumor necrosis factor 
alpha (TNF-a) controls the neuromodulatory action of 
dentate granule cell synapses in astrocytes, through 
Ca2+-dependent glutamate release and pre-NMDAR 
activation. Therefore, gliotransmission together with 
its synaptic effects seem to be controlled not only by 
astrocyte Ca2+ elevations but also by homeostatic factors 
such as TNF-a. Previous studies have shown that both 
the excitatory neurotransmitter glutamate and the 
proinflammatory cytokine TNF-a may be considered 
as effectors of microglial-stimulated death.[28]

Recently, Schnieder et al.[29] also found a 18% greater 
density of perivascular cells in dorsal white matter 
prefrontal cortex of 11 subjects died by suicide 
suggesting the induction of important alterations in the 
characteristics of blood-brain barrier in microglia cells of 
these individuals. Autoimmune activity directed against 
serotonin may directly compromise serotonergic axons 
and their functioning with the final result of relevant 
deficits in serotonergic neurotrasmission. Serotonin 
may be disrupted by abnormal (e.g. hyperactivated) 
pathways such as that of kynurenine inside microglial 
cells due to the enhanced metabolism of tryptophan to 
quinolinic acid.[30,31]

Elevated levels of kynurenic acid, an astrocyte-derived 
metabolite of the kynurenine pathway has been reported 
to significantly reduce glutamate release in some brain 
regions such as the hippocampus.[32,33] Also, increased 
micromolar levels of kynurenic acid have been suggested 
to inhibit a-amino-3-hydroxy-5-methyl-4-isoxazole 
proprionic acid and kainate receptors.[34,35]

Inflammatory cytokines may further induce the 
abnormal release of quinolinic acid in microglia[36] 
related to aberrant stimulation of neurons in the ventral 
prefrontal cortex and altered connectivity between 
cortical structures and limbic system.

The critical role of quinolinic acid in microglia-abnormal 
activation has been also demonstrated by the elevated 
levels of indoleamine 2,3-dioxygenase and kynurenine 
monooxygenase in the quinolinic acid biosynthesis 
pathway in CX3CR1 knockout mice.[37] Notably, 
recent compounds with antidepressant properties 
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such as ketamine[38] as well as selective serotonin 
reuptake inhibitors[39] and tricyclic[40,41] may reverse 
the neurodegenerative activation of microglia induced 
by pathologically increased inflammatory cytokines.

Furthermore, increased glucocorticoids levels may 
affect the integrity of microglial cells in the early phases 
of depression.[42] Abnormal extracellular glutamate 
concentrations may spill into microglial cells exerting 
neurotoxic effects on γ-aminobutyric acid neurons.[43] 
The uptake of glutamate is progressively decreased, 
and the density of glutamatergic pyramidal neurons 
is reduced in depressed individuals[44] with the final 
result of reduced cortical levels of glutamate in the later 
phases of depression.

Overall, microglial cells are able to exert significant 
immunomodulatory functions in the central nervous 
system. Structural changes induced by chronic 
stress and MDD on glial cells may contribute to the 
pathophysiology of these conditions, but they may be 
significantly reversed using modern antidepressant 
medications. Aberrant levels of quinolinic acid 
produced by abnormal pathways inside microglia 
cells represent a valid intracellular mediator of 
pathologically inflammatory- and glutamatergic-related 
changes. A complex interaction between dysfunctional 
inflammatory pathways, increased oxidative stress, 
altered neuroplasticity in glial cells and neuronal 
abnormalities are involved in both MDD and suicidal 
behavior.
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