
O’Reilly et al. Microbiome Res Rep 2023;2:35
DOI: 10.20517/mrr.2023.41

Microbiome Research 
Reports

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 
International License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, sharing, 
adaptation, distribution and reproduction in any medium or format, for any purpose, even commercially, as 

long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and 
indicate if changes were made.

www.oaepublish.com/mrr

Open AccessReview

Interplay between inflammatory bowel disease 
therapeutics and the gut microbiome reveals 
opportunities for novel treatment approaches
Catherine O’Reilly1,2,3,#, Susan Mills3,#, Mary C. Rea1,3, Aonghus Lavelle3, Subrata Ghosh3, Colin Hill2,3, 

1Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork P61C996, Ireland.
2Microbiology Department, University College Cork, Co. Cork T12TP07, Ireland.
3APC Microbiome Ireland, University College Cork, Co. Cork T12YT20, Ireland.
#Authors contributed equally.

Correspondence to: Prof. R. Paul Ross, APC Microbiome Ireland, Biosciences Building, College Road, University College Cork, Co. 
Cork T12YT20, Ireland. E-mail: p.ross@ucc.ie

How to cite this article: O’Reilly C, Mills S, Rea MC, Lavelle A, Ghosh S, Hill C, Ross RP. Interplay between inflammatory bowel 
disease therapeutics and the gut microbiome reveals opportunities for novel treatment approaches. Microbiome Res Rep 
2023;2:35. https://dx.doi.org/10.20517/mrr.2023.41

Received: 3 Jul 2023   First Decision: 1 Sep 2023   Revised: 19 Sep 2023  Accepted: 22 Sep 2023   Published: 26 Sep 2023

Academic Editor: Marco Ventura   Copy Editor: Dong-Li Li   Production Editor: Dong-Li Li

Abstract
Inflammatory bowel disease (IBD) is a complex heterogeneous disorder defined by recurring chronic inflammation 
of the gastrointestinal tract, attributed to a combination of factors including genetic susceptibility, altered immune 
response, a shift in microbial composition/microbial insults (infection/exposure), and environmental influences. 
Therapeutics generally used to treat IBD mainly focus on the immune response and include non-specific 
anti-inflammatory and immunosuppressive therapeutics and targeted therapeutics aimed at specific components 
of the immune system. Other therapies include exclusive enteral nutrition and emerging stem cell therapies. 
However, in recent years, scientists have begun to examine the interplay between these therapeutics and the gut 
microbiome, and we present this information here. Many of these therapeutics are associated with alterations to 
gut microbiome composition and functionality, often driving it toward a “healthier profile” and preclinical studies 
have revealed that such alterations can play an important role in therapeutic efficacy. The gut microbiome can also 
improve or hinder IBD therapeutic efficacy or generate undesirable metabolites. For certain IBD therapeutics, the 
microbiome composition, particularly before treatment, may serve as a biomarker of therapeutic efficacy. Utilising 
this information and manipulating the interactions between the gut microbiome and IBD therapeutics may enhance 
treatment outcomes in the future and bring about new opportunities for personalised, precision medicine.
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INTRODUCTION
Inflammatory bowel disease (IBD) is characterised by recurring chronic inflammation of the 
gastrointestinal tract (GIT) and is divided into two main disorders, Crohn’s disease (CD) and ulcerative 
colitis (UC). CD can affect any part of the GIT, though it is usually associated with the large and small 
intestines, while UC refers to recurring inflammation of the large intestine and rectum[1]. Symptoms of CD 
and UC include abdominal pain, fever, constipation or diarrhoea, and passage of blood and/or mucus, 
though the passage of blood is more common for UC, while CD is often associated with weight loss[2,3].

Most recent global data suggest that in 2019, 4.9 million people suffered from IBD, an increase of 47.45% 
between 1990 and 2019[4]. In the past, IBD was considered a disease of Western societies; however, now its 
incidence is growing as more countries become industrialised[5].

While the exact aetiology of IBD is unknown, a combination of genetic susceptibility, environmental 
factors, an altered immune response, shifts in microbial composition, or loss of tolerance to resident gut 
microbes is thought to be involved. In terms of gut microbes, compared to healthy individuals, the IBD gut 
microbiome is characterised by decreased species richness and diversity, a reduction in beneficial bacteria 
such as bifidobacteria, Faecalibacterium prausnitzii, and Bacteroides species, and an increase in potentially 
pathogenic bacteria such as Proteobacteria (e.g., adherent, invasive Escherichia coli), Fusobacterium species 
and Rumincoccus gnavus, as examples[6]. The fungal microbiota also exhibits dysbiosis in IBD. Indeed, 
disease-specific alterations in diversity indicate that fungi may be favoured at the expense of bacteria in 
CD[7]. IBD subjects have been reported to exhibit an increased gut Basidiomycota/Ascomycota ratio, 
increased Candida albicans and decreased Saccharomyces cerevisiae compared to healthy individuals[7]. 
Faecal concentrations of the gut microbial metabolites, short chain fatty acids (SCFAs), are reduced in 
active IBD[8]. SCFAs are derived from “microbiota-accessible carbohydrates” that include dietary fibre[9] and 
are the end-products of microbial fermentation. They are involved in several essential cellular and 
regulatory functions in the human body. For example, SCFA butyrate is the main source of energy for gut 
epithelial cells[10], and it also has anti-inflammatory properties[11]. Propionate activates intestinal 
gluconeogenesis[12], while acetate has been shown to promote intestinal IgA responses to gut microbiota[13]. 
Thus, changes to the levels of SCFAs produced in the gut can negatively impact physiological processes with 
deleterious consequences for the host. Bile acid metabolism, another important function of the gut 
microbiome[14], is dysregulated in IBD, with rates of bacterially-produced secondary bile acids significantly 
lower in faecal samples from IBD patients while sulphated bile acids are higher[15]. Based on in vitro 
experiments, the anti-inflammatory properties of secondary bile acids are abolished upon their 
sulphation[15]. To add to this, secondary bile acids have been associated with anti-inflammatory properties in 
a mouse model of colitis[16], indicating that bile acid dysmetabolism could impact inflammation in IBD.

There is no single pharmaceutical treatment for UC or CD, given that both are multifaceted disorders. 
Therapeutics that are used to treat IBD are generally designed to reduce inflammation, thus fostering 
mucosal healing, and focus on the immune system. These include non-specific anti-inflammatory and 
immunosuppressive therapeutics such as 5-aminosalicylic acid (5-ASA), methotrexate, glucocorticoids and 
calcineurin inhibitors, the targeted oral synthetic drug, tofacitinib, and injectable biologics [tumour necrosis 
factor (TNF) inhibitors, anti-integrin therapy, and anti-interleukin- (IL-)12/23-p40 agents] that target 
specific components of the immune system. When such conventional treatments fail to work, stem cell 
therapies, including hematopoietic stem cell transplantation (HSCT) and mesenchymal stem cell therapy 
(MSCT), have been shown to improve clinical disease. In pediatric CD patients, exclusive enteral nutrition 
(EEN) is the first treatment choice with proven efficacy.
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In recent years, scientists have begun to examine how these therapeutics impact the gut microbiome - an 
essential consideration given that the gut microbiome is involved in disease pathogenesis. But the impact of 
the gut microbiome on these therapeutics is also gaining attention, and indeed, research now shows that the 
gut microbiome itself may improve therapeutic efficacy in some cases but may also hinder efficacy in others. 
It not only impacts orally delivered therapeutics but also injectable therapeutics since they reach the 
intestines through enterohepatic circulation. Furthermore, the microbiota could provide a biomarker of 
treatment efficacy and even recovery for specific therapeutics.

In this review, we provide current knowledge on the interplay between IBD therapeutics and the gut 
microbiome - how the microbiome can alter IBD therapeutics to positively impact efficacy or contribute to 
limited performance and the therapeutic-associated changes to gut microbiome composition and 
functionality [Table 1]. For certain IBD therapeutics, the microbiome composition, particularly before 
treatment, may serve as a biomarker of efficacy and this is highlighted here [Figure 1], although causality 
has yet to be identified in these associations. While further studies are warranted with larger cohort sizes to 
confirm findings, results to date suggest that current IBD therapeutics are impacted by the gut microbiome 
and vice versa. Thus, future IBD therapies should be developed that focus not only on altering the immune 
response in IBD but also on gut microbiome composition and functionality to improve therapeutic 
treatment efficacies in the form of personalised, precision medicine.

NON-SPECIFIC ANTI-INFLAMMATORY AND IMMUNOSUPPRESSIVE THERAPEUTICS
5-aminosalicylic acid
5-ASA, including mesalamine or mesalazine, is used to treat mild to moderate UC[17] and is generally 
administered orally. It was initially developed in the 1940s as a prodrug linked to sulfapyridine via an azo 
bond, known as sulfasalazine, where sulfapyridine prevents the absorption of 5-ASA in the small 
intestine[18]. Although developed to treat rheumatoid arthritis, sulfasalazine was soon recognised to be an 
effective treatment for IBD in patients with mild to moderate disease[18]. However, due to the adverse events 
associated with the sulfapyridine moiety of sulfasalazine, including nausea, headaches, dyspepsia and 
anorexia[18,19], other 5-ASA products have since been developed that do not require sulfapyridine. Balsalazide 
and olsalazine are azo-bonded 5-ASA prodrugs, but the former is composed of 5-ASA bonded with 
4-aminobenzoyl-β-alanine, while the latter consists of two azo-bonded 5-ASA molecules[20].

According to the Biopharmaceutics Classification System (BCS), 5-ASA itself is categorized as a BCS class 
IV drug (low solubility, low permeability). It is slightly soluble in water and, following its oral 
administration, is poorly absorbed (approximately 25%)[21]. Most of the oral 5-ASA products on the market 
have a pH-dependent coat, which enables them to withstand the release of 5-ASA in the stomach (which 
has a low pH) and be released in the intestine with a higher pH[20,22].

The mechanism of action of 5-ASA for the treatment of IBD is still not completely understood; however, it 
is thought to downregulate inflammation and reduce inflammatory cytokine release by activating nuclear 
receptors (i.e., the gamma form of peroxisome proliferator‐activated receptors (PPARs)[23]. It affects a range 
of signalling pathways and mediators which are involved in leukocyte chemotaxis and function 
(eicosanoids, IL-8, NF-kB, and PPAR-γ) and epithelial defence (scavenging free radicals, fortifying epithelial 
resistance to injury, promoting cellular proliferation and inhibition of apoptosis)[24].
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Table 1. Overview of the interplay between IBD therapeutics and gut microbiome and future possibilities/recommended actions

Drug Impact of gut microbiota on 
therapeutic Impact of therapeutic on gut microbiota Future possibilities/recommended actions

5-ASA -Bacterial azoreductases release active 
moiety[18] 
-Acetylates 5-ASA to ineffective acetyl-5-
ASA[28,29]

-Inhibits growth of certain species including Bacteroides sp., 
Clostridium sp.[32], Campylobacter concisus, and Escherichia coli[33] 
-Exacerbates growth of certain C. concisus strains[33] 
-Downregulates Salmonella invasiveness[38] 
-Inhibits bacterial polyphosphate kinase[39] 
-Increases SCFA-producers, decreases Proteobacteria[43] 
-Alters Firmicutes: Bacteroidetes ratio[46] 
-Alters fungal microbiota diversity and composition, restores 
bacteria-fungi correlation patterns[48]

-Increase the abundance of azo-reducing bacteria in the gut using 
specifically designed “azo-reducing” probiotic strains 
-Develop inhibitor molecules to microbial acetyltransferases 
-Investigate the impact of 5-ASA on the gut resistome

Methotrexate -Metabolise methotrexate to methotrexate-
PG[57] 
-Reduce methotrexate-PG to inactive 
metabolite DAMPA[58,59]

-Inhibits bacterial growth[52,57,65,67] 
-Selects for antimicrobial resistance genes[70]

-Investigate the impact of methotrexate on the gut resistome 
-Develop methotrexate-specific probiotic strains, e.g., Bacteroides fragilis, 
that ameliorate undesirable changes to the gut epithelium

Glucocorticoids -Metabolise the drug[78,79] 
-Convert the drug to androgens[83] 
-May convert the drug to a metabolite that 
causes proliferation of prostate cancer 
cells[86]

-Alters microbiome composition to a healthier profile[87,88,90,91] -Investigate drug-metabolising capabilities of the microbiome using 
metabolomics and metatranscriptomics  
-Assess the safety of resulting metabolites 
-Identify microbial enzymes responsible for drug metabolism

Calcineurin inhibitors -Metabolise drug to less potent 
metabolites[100]

-Alters microbiome composition and functionality[88,101-103] -Investigate drug-metabolising capabilities of the microbiome using 
metabolomics and metatranscriptomics 
-Assess the safety of resulting metabolites 
-Identify microbial enzymes responsible for drug metabolism 
-Develop strategies to prevent drug metabolism

Tofacitinib - -Alters microbiome composition[113] -Investigate the impact of gut microbiota on the drug

TNF inhibitors -May bind to the drug[122] 
-May cleave the drug[123]

-Alters microbiome composition and functionality to a healthier 
profile[127,128,130]

-Investigate the impact of gut microbiota on drug stability 
-Develop strategies to prevent drug cleavage

Vedolizumab 
ustekinumab

- - -Investigate the impact of gut microbiota on the drugs 
-Investigate the impact of the drugs on gut microbiota

Exclusive enteral nutrition - -Alters microbiome composition[160,163,166] 
-Can reduce microbial diversity[157,158,161,162] 
-Improves/normalises bile acid metabolism[161,163,165] 
-Alters SCFA levels[166]

-Administer Akkermansia muciniphila before treatment to improve 
remission maintenance

Hematopoietic stem cell 
transplantation

- -Alters microbiome composition to a healthier profile[173,174] -Investigate the impact of gut microbiota on therapy efficacy

Mesenchymal stem cell 
therapy

- -Alters microbiome composition to a healthier profile[187-189] 
-Decreases sulphur metabolism[189] 
-Increases Cetobacterium relative abundance[190]

-Investigate the impact of gut microbiota on therapy efficacy

DAMPA: 4-amino-4-deoxy-N-methylpteroic acid; IBD: inflammatory bowel disease; methotrexate-PG: methotrexate-polyglutamate; SCFA: short chain fatty acid; TNF: tumour necrosis factor; 5-ASA: 
5-aminosalicylic acid.
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Impact of the gut microbiota on 5-ASA
Azo-bonded therapeutics depend on the gut bacteria for activation, as they are split in the colon by bacterial 
azoreductases to release the active 5-ASA moiety[18]. Azoreduction is considered to be a ubiquitous function 
within the gut microbiome, and a recent study reported potentially uncharacterised gut microbiota 
azoreductases based on a search of the 4,644 genome sequences in the representative Unified Human 
Gastrointestinal Genomes collection[25]. However, another study reported that the total relative abundances 
of azo-reducing bacteria for the majority of individuals (healthy and IBD patients) fell below 3% such that 
the authors concluded that gut microbiota azoreductases are sparse in both health and disease, a finding 
that was further supported by the lack of azoreductases in the complementary metatranscriptomics and 
metaproteomics datasets[26]. The authors conclude that poor efficacies and idiopathic responses associated 
with azo-linked prodrugs could be partially attributed to the low levels of gut microbial azoreductases[26]. 
Yet, using an in vitro colonic simulator, Sousa et al. reported that individual faecal slurries were capable of 
degrading sulfasalazine within 4 h[27]. In the same study, pooled faecal slurries degraded sulfasalazine much 
faster (2 h) than other azo-bonded prodrugs of 5-ASA, including balsalazide (3 h) and olsalazine (> 4 h).

However, some gut bacteria can acetylate 5-ASA[28,29], as can the intestinal mucosa[30], and the resulting acetyl 
5-ASA is ineffective for treating IBD[28]. Until recently, the microbial enzymes responsible remained 
unknown. Indeed, a multi-omics work-flow consisting of gut microbiome metagenomics, metabolomics 
and metatranscriptomics identified 12 previously uncharacterised microbial acetyltransferases capable of 
acetylating 5-ASA which belong to two protein superfamilies, namely thiolases and acyl-CoA 
N-acetyltransferases[31]. The presence of three thiolases and one acyl-CoA N-acetyltransferase in the human 
gut microbiome was associated with an increased risk of treatment failure of 5-ASA based on the analysis of 
the discovery cohort and the SPARC IBD cohort (Study of a Prospective Adult Research Cohort with IBD)
[31]. While this relationship needs to be confirmed with larger cohorts of patients, it does pave the way 
toward future “personalised microbiome-based medicine”. Indeed, the authors suggest that 5-ASA-
modifying thiolase sequences in the gut microbiome of a patient could be used as a biomarker of treatment 
efficacy and that microbiome-specific inhibitors of enzymes such as thiolases could be developed to 
enhance 5-ASA treatment efficacy[31].

Impact of 5-ASA on the gut microbiota
A number of studies have investigated the impact of 5-ASA on the gut microbiota. Ex vivo studies have 
found that it can inhibit the growth of gut Bacteroides and Clostridium species grown in pure culture[32]. 
5-ASA has also been shown to inhibit some strains of Campylobacter concisus while promoting the growth 
of other C. concisus strains and it can inhibit E. coli[33]. Interestingly, C. concisus is believed to initiate a 
subgroup of IBD[34,35]. Moreover, 5-ASA has, in the past, been reported to exacerbate some cases of IBD[36]. 
Thus, Liu et al. propose that 5-ASA-related worsening of IBD symptoms could be due to 5-ASA promoting 
the growth of certain IBD-causing bacteria in the gut[33]. 5-ASA has been shown to inhibit IBD- and 
colorectal cancer-associated E. coli in a dose-dependent manner and it down-regulated E. coli virulence 
genes associated with both diseases[37]. E. coli motility was inhibited by 30%-70% in the presence of 5-ASA 
and it also inhibited E. coli adherence to and invasion of Caco-2 cells while promoting a cellular 
anti-inflammatory response. Kaufman et al. studied the effect of 5-ASA on bacterial gene expression of 
Salmonella enterica serovar Typhimurium[38]. They found that 5-ASA downregulated invasiveness genes in 
Salmonella, which correlated with the ability of 5-ASA to attenuate the invasiveness of S. enterica serovar 
Typhimurium exposed to cultured epithelial monolayers.

Interestingly, 5-ASA has been shown to decrease polyphosphate levels in a diverse range of bacteria, 
including gut bacteria, by inhibiting bacterial polyphosphate kinase[39]. Polyphosphates are made up of 
multiple phosphate monomers and are involved in virulence, persistence, biofilm formation, and oxidative 
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Figure 1. Baseline gut microbiota differences between responders and non-responders to therapeutics used to treat IBD. IBD: 
Inflammatory bowel disease.

stress[40,41], and have been shown to help bacteria evade host immunity by interfering with macrophages[42]. 
5-ASA inhibition of bacterial polyphosphate kinase has been shown to reduce bacterial colonisation and 
biofilm formation and sensitize bacteria to oxidative stress and has been suggested as another mode of 
action in the treatment of IBD[39].

Zheng et al. investigated the impact of sulfasalazine on the gut microbiota in experimental colitis in rats 
induced by 2,4,6-trinitrobenzenesulfonic acid (TNBS)[43]. Sulfasalazine restored the TNBS-induced gut 
microbiota dysbiosis as evidenced by the increase in SCFA-producing bacteria and decrease in 
Proteobacteria, and it also restored gut microbiome functionality, decreased oxidative stress and bacterial 
pathogenesis. 5-ASA ameliorated dextran sulfate sodium (DSS)-induced colitis in mice by activating 
PPAR-γ signalling in the colonic epithelium[44]. Interestingly, the DSS-associated reduction of mitochondrial 
activity in the intestinal epithelium was associated with increased oxygen which fuelled the expansion of 
E. coli. However, the activity of 5-ASA restored mitochondrial activity through PPAR-γ signalling and 
prevented E. coli expansion. In DSS-induced colitis in piglets, 5-ASA alleviated symptoms, decreased 
diamine oxidase activity and D-lactate levels, improved mucosal damage, reduced the colon macrophage 
CD11b+ and CD3+ T-cell infiltrations, and was also found to decrease the abundance of methanogens[45].

Andrews et al. measured the effect of 5-ASA treatment on faecal microbiota composition, mucosal 
proteolytic activity, and clinical efficacy in 14 patients with irritable bowel syndrome-diarrhoea (IBS-D)[46]. 
5-ASA treatment caused the responding patients to have a more similar faecal microbiota to each other than 
non-responders. Before treatment, 95% of the microbiota in the patients’ stool samples were made up of 
Firmicutes and Bacteroidetes. Following 5-ASA treatment, there was an increase in the abundance of 
Firmicutes and a decrease in Bacteroidetes. These changes were not statistically significant, however 
(possibly due to the small number of patients in the study). The clinical benefits observed were not 
sustained after the four-week treatment period and the changes in gut microbiota composition returned to 
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levels comparable to pretreatment levels. Patients with quiescent UC in receipt of 5-ASA therapies and 
showing high levels of mucosal 5-ASA had a reduced abundance of mucosal pathogenic bacteria such as 
Proteobacteria and an increased abundance of health-associated bacteria such as Faecalibacterium; this 
correlation was not observed for faecal bacteria[47]. 5-ASA has also been shown to alter fungal microbiota 
diversity and composition in UC patients, and it was able to restore bacteria-fungi correlation patterns[48].

METHOTREXATE
Methotrexate is an immunosuppressive drug that has been used effectively for over 20 years in patients with 
CD. It is recommended for use in combination with anti-TNF agents[49]. It is an analogue of dihydrofolate; 
thus, it inhibits dihydrofolate reductase - preventing the synthesis of purines and pyrimidines, the building 
blocks of DNA synthesis. Methotrexate can be administered orally or parenterally, where the latter is the 
preferred option, as injection is deemed more effective with fewer side effects[50]. Parenterally-administered 
methotrexate can also interact with the intestinal microbiota due to biliary secretion[51,52]. Within the cells, 
methotrexate undergoes polyglutamation through the addition of varying numbers of glutamic acid 
molecules, resulting in a much more active version of the drug, methotrexate-polyglutamate 
(methotrexate-PG), where the longer-chain methotrexate-PGs are more potent[53,54]. Because of its ability to 
inhibit nucleic acid synthesis in rapidly proliferating cells, it was initially used in oncology[53]. However, it is 
used at lower concentrations to treat IBD, where it exerts an anti-inflammatory response through inhibition 
of the enzyme 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/inosine monophosphate 
cyclohydrolase (ATIC)[55]. Inhibition of ATIC results in the excretion of accumulated adenosine from the 
cell, which then binds to G-protein coupled receptors on target cells, inducing an anti-inflammatory 
cascade[56].

Impact of gut microbiota on methotrexate
In 2016, a conference abstract reported that out of 25 gut bacterial isolates, two were capable of metabolizing 
methotrexate into methotrexate-PG[57]. However, Sayers et al. state that given that methotrexate-PG is not as 
easily transported as methotrexate from cells, intestinal bacterial cells will more than likely retain 
methotrexate-PG or reconvert it to methotrexate before export; thus, bacterially-generated 
methotrexate-PG is unlikely to influence methotrexate treatment efficacy[55].

The efficacy of methotrexate-PG can be reduced through the removal of glutamate entities via 
carboxypeptidases[55], resulting in the inactive metabolite 4-amino-4-deoxy-N-methylpteroic acid 
(DAMPA)[58,59]. Such an enzyme was isolated from a strain of Pseudomonas stutzeri, named 
carboxypeptidase G2 (CPG2)[58,60]. The enzyme has been developed to prevent methotrexate-PG toxicity in 
patients due to high doses as it rapidly decreases methotrexate-PG levels in the blood[55,61]. Other bacterial 
species have been shown to harbour orthologs of CPG2 including E. coli (p-aminobenzoyl-glutamate 
hydrolase)[62]. Shin et al. showed that Lactobacillus casei (now Lacticaseibacillus casei) was also able to 
metabolize methotrexate mainly to DAMPA[63]. However, Sayers et al. state that bacterial removal of 
glutamate from methotrexate-PG would be unlikely to decrease the efficacy of treatment as it would not 
impact already-absorbed and modified methotrexate-PG in eukaryotic cells, particularly for parenterally-
administered methotrexate[55].

Impact of methotrexate on gut microbiota
Methotrexate is structurally similar to the antibiotic trimethoprim, which is also an analogue of 
dihydrofolate, although trimethoprim predominantly targets prokaryotic dihydrofolate reductases[64]. 
However, methotrexate has been reported to inhibit microbial growth. In combination with 
6-mercaptopurine, methotrexate was shown to inhibit the growth of Mycobacterium avium subspecies 
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paratuberculosis in vitro[65], which is believed to be a causative agent of idiopathic IBD[66]. Methotrexate was 
reported to inhibit the growth of 19 out of 25 gut isolates[57]. The same research group later reported that 
although drug sensitivity varied across strains, the mechanism of action against bacterial cells was similar to 
that against mammalian cells - the inhibition of dihydrofolate reductase[52]. In the same study, methotrexate 
was found to decrease Bacteroidetes in gnotobiotic mice colonised with human gut microbiota. 
Furthermore, in vitro methotrexate treatment of faecal samples from rheumatoid arthritis patients divided 
into responders and non-responders to methotrexate revealed that while both microbiotas were sensitive to 
methotrexate, the changes in bacterial taxa and gene family abundance were distinctly different between the 
two groups. The authors propose that the changes to the gut microbiome could have subsequent 
consequences for host immunity[52]. Indeed, transplantation of methotrexate-treated stool samples from 
responding patients into inflammatory-triggered germ-free mice resulted in reduced immune activation.

Other studies have reported the impact of methotrexate on the Bacteroidetes phylum[59,67]. Interestingly, a 
significant decrease in Bacteroides fragilis was observed in mice treated with methotrexate and consequently 
suffering mucosal injury which appeared to be inversely proportionate to macrophage density[67]. However, 
the gavage of the mice with B. fragilis ameliorated the inflammatory damage induced by methotrexate and 
normalised macrophage levels. This finding may be of significance to patients who experience 
methotrexate-induced colitis even at low doses. While this is rare, a recent case report described the 
development of colitis and pancytopenia in a patient receiving chronic low-dose methotrexate[68].

A number of laboratory strains of E. coli have been found to be resistant to methotrexate due to the 
expression of a TolC-dependent AcrAB multidrug resistance efflux pump[69]. Furthermore, exposure of 
E. coli and Klebsiella pneumoniae strains to methotrexate selected for acquired trimethoprim resistance 
genes on a chromosome or plasmid[70]. It also co-selected for genetically linked resistance genes when 
co-present with trimethoprim resistance on a multidrug resistance plasmid. These effects occurred at low 
concentrations, 40- to > 320-fold below the minimum inhibitory concentration of methotrexate. This is a 
worrying concern for patients receiving this drug since its use could cause expansion/amplification of the 
gut microbial resistome and could impact the efficacy of future antimicrobial therapies in patients.

GLUCOCORTICOIDS
Glucocorticoids are a class of corticosteroid hormones. They are generated in the human body in the 
adrenal cortex and secreted into the blood. They are involved in several essential physiological functions, 
from regulation of immunity to metabolism of fat, glucose, and protein, as examples[71,72]. They can also be 
synthesised in the laboratory. Prednisone (prodrug of prednisolone) and methylprednisolone are 
first-generation glucocorticoids used to treat IBD, while budesonide and beclomethasone dipropionate 
represent second-generation glucocorticoids for IBD treatment[73,74]. The second-generation drugs have less 
severe adverse effects than the first-generation glucocorticoids[73,74].

Glucocorticoids are effective in inducing remission in IBD[75] and can be administered orally, parenterally, 
or rectally. In the current European Crohn’s and Colitis Organization (ECCO) guidelines, systemic 
corticosteroids are recommended in patients with active, moderate-to-severe CD and UC for the induction 
of clinical response and remission[76]. However, glucocorticoids are not effective for the maintenance of 
remission, and long-term use should be avoided due to the risk of adverse events or comorbidities[77].

Glucocorticoids work by binding to the glucocorticoid receptor in the cytoplasm of immune cells[74]. This 
results in a conformational change of the glucocorticoid receptor and the translocation of the complex to 
the cell nucleus, where it regulates the expression of genes involved in inflammation, resulting in an 
anti-inflammatory cascade.
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Impact of gut microbiota on glucocorticoids
Incubation of prednisone with a human faecal inoculum resulted in 9 different metabolites[78]. 
Computer-aided prediction revealed that the majority of the metabolites could be capable of inhibiting 
prostaglandin E2 9-ketoreductase, an enzyme found in a variety of animal species and tissues, although 
further studies are warranted to confirm this. Yadav et al. investigated the impact of a mixed human faecal 
inoculum in simulated colonic conditions on a number of glucocorticoid drugs including prednisolone, 
budesonide, beclomethasone (17,21) dipropionate and its active metabolite beclomethasone (17) 
monopropionate, each at three different concentrations, 0.00274, 0.0137, and 0.0274 mM, which represent 
the typical oral drug doses[79]. Within 3 h, prednisolone was completely degraded at all concentrations; 
likewise, beclomethasone (17,21) dipropionate was degraded within 2 h, while its active metabolite 
remained stable. Budesonide was degraded within 7 h. In the absence of the faecal inoculum, all drugs were 
stable. Another study reported that the degradation of budesonide in the distal small intestine and proximal 
colon, based on in vitro analysis by incubating with different dilutions of faecal material, would be clinically 
irrelevant since the degradation half-life was estimated to be 203 and 147 min, respectively[80], while the 
estimated fraction absorbed after colonic administration was shown to be 101% in humans[81].

A few studies have investigated the bacterial enzymes involved in glucocorticoid degradation. The gut 
microbe Clostridium scindens has been found to be capable of degrading prednisone[82] and converting 
glucocorticoids to androgens by cleaving the side chain[83]. A cortisol-inducible operon was located in 
C. scindens that encoded at least one enzyme involved in side-chain cleavage, including 
steroid-17,20-desmolase, although phylogenetic analysis suggested that the encoding-operon is rare[83]. 
Steroid-17,20-desmolase only works under anaerobic conditions such as those in the gut[84,85]. Ly et al. also 
reported that bacterial steroid-17,20 desmolase is taxonomically rare but proved that it converts prednisone 
to 1,4-androstanediene-3,11,17-trione, a metabolite that causes the proliferation of prostate cancer cells[86]. 
This finding warrants further investigation into the impact of the gut microbiome on prednisone using a 
combination of approaches including shotgun metagenomics, metatranscriptomics, and metabolomics and 
an assessment of the safety of the resulting metabolites.

Impact of glucocorticoids on gut microbiota
A study in adult male C57B1/6 mice reported that injection with synthetic glucocorticoid, dexamethasone 
(DEX), once daily for 10 days (representing acute treatment) or once every 3 days over a four-week period 
(chronic treatment) resulted in substantial shifts in the gut microbiota for both treatments[87]. Specifically, 
the genus Bifidobacterium was significantly elevated after DEX treatment and Lactobacillus was also 
increased, while the colonic mucin degrader, Mucispirillum, was absent after DEX treatment. Transferring 
microbiota from DEX-treated mice to a genetically susceptible mouse model of colonic inflammatory 
disorders (IL-10 knockout mice) ameliorated inflammation, suggesting that the DEX-induced microbiota 
changes are a factor in its efficacy. Another study in mice revealed that 14 days of prednisolone treatment 
resulted in disruption to the faecal microbiota community by decreasing Bacteroidetes and increasing 
Firmicutes[88]. Prednisolone was associated with dramatic reductions in ileal levels of Clostridium sensu 
stricto which correlated with altered ileal expression of C-type lectins and IL-22. Prednisolone also resulted 
in alterations to the faecal microbiota at the family level, though changes were non-consistent between 
replicates. A combination of prednisolone with two other immunosuppressive drugs, mycophenolate 
mofetil and tacrolimus, was also associated with reduced Clostridium sensu stricto in the ileum. The 
combined treatment also enabled a commensal E. coli to flourish and increased colonization of a 
uropathogenic strain of E. coli.
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In healthy dogs, prednisolone administration for 14 days had no impact on faecal bacterial composition or 
diversity based on 16s rRNA metagenomic sequencing[89]. In contrast, in dogs with IBD, prednisone was 
associated with significant alterations in the spatial distribution of mucosal bacteria, resulting in elevated 
levels of bifidobacteria and streptococci across all mucosal apartments, while increasing bifidobacteria, 
faecalibacteria, and streptococci in adherent mucus[90]. Furthermore, the drug increased the expression of 
the tight junction proteins occludin and E-cadherin while reducing zonulin.

In humans with microscopic colitis, treatment with budesonide drove the composition of the faecal 
microbiota toward that of healthy individuals during and after treatment[91]. More studies are warranted that 
examine the impacts of these drugs on the gut microbiota.

Calcineurin inhibitors
Calcineurin inhibitors such as cyclosporine A and tacrolimus are immunosuppressants that work by 
inhibiting calcineurin, a eukaryotic Ca2+- and calmodulin-dependent serine/threonine protein 
phosphatase[92] and in doing so prevent calcineurin from dephosphorylating the nuclear factor of activated 
T-cells (NFAT), thus inhibiting T cell activation and blocking the transcription of proinflammatory 
cytokines[93]. Cyclosporine A is a poorly soluble cyclic peptide, while tacrolimus is a macrolide. The efficacy 
of intravenous cyclosporine treatment in patients with severe UC has been confirmed by several clinical 
trials[94-97]. Tacrolimus has been used in more recent times for the treatment of IBD and has demonstrated 
“remarkable” efficacy in the treatment of steroid-refractory UC[98]. Both tacrolimus and cyclosporine can be 
administered orally or intravenously.

Impact of gut microbiota on calcineurin inhibitors
Only a limited number of studies have investigated the impact of gut bacteria on calcineurin inhibitors. 
However, the results to date reveal that further studies are warranted, particularly in the case of tacrolimus.

In a study investigating the stability of peptide molecules in a model of the large intestine using a mixed 
human faecal inoculum, cyclosporine proved to be highly stable, with 87% still intact after 120 min 
exposure[99]. Indeed, the degradation rate was directly correlated with peptide lipophilicity. In contrast, 
tacrolimus was found to be metabolized by commensal gut bacteria, including F. prausnitzii and members 
of Clostridiales[100]. One of the degradation compounds was identified as a C-9 keto-reduction product of the 
drug and was 15-fold less potent in terms of immunosuppressive activities than intact tacrolimus. The 
authors concluded that the gut microbial metabolism of the drug could be contributing to its low oral 
bioavailability.

Impact of calcineurin inhibitors on the gut microbiota
In mice, tacrolimus administration was associated with altered faecal microbiota at the family level, 
although the changes differed between replicates[88]. Another study in mice reported that high-dose 
tacrolimus treatment (10 mg/kg body weight/day by oral gavage - closely resembling serum concentration 
of the drug in humans) was associated with a significant increase in the relative abundance of 3 taxa, namely 
Allobaculum, Bacteroides and Lactobacillus[101]. It also significantly increased colonic mucosal and 
circulatory levels of CD4+CD25hiFoxP3+ regulatory T cells. Faecal microbiota transfer from the high-dose 
tacrolimus donors induced the same immunomodulatory effects in the recipients. Bioinformatic analysis 
indicated that tacrolimus resulted in altered microbiome functionality with one pathway involved directly 
or indirectly in the oxidation of the SCFAs, acetate and pyruvate, respectively. The authors propose that the 
altered microbiota may lead to altered levels of SCFAs, which in turn enhance the anti-inflammatory effects 
of T-regs, suggesting that the tacrolimus-induced gut microbiota alterations are important in the 
immunosuppressive effects of the drug. In a more recent study, the same researchers investigated the impact 
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of tacrolimus in a mouse model of DSS-induced colitis[102]. The drug (10 mg/kg) significantly ameliorated 
colitis in mice and induced a “remarkable” expansion of Lactobacillus. Furthermore, the administration of 
Lactiplantibacillus plantarum with tacrolimus improved gut microbiome diversity and promoted the 
therapeutic effect of the drug.

Following liver transplantation in rats, tacrolimus at 0.5 mg/kg body weight was identified as the optimal 
dose of the drug as it induced immunosuppression, normal graft function, and a stable gut microbiota 
characterised by increased species richness, reduced Bacteroides-Prevotella group and Enterobacteriaceae, 
and increased commensals, F. prausnitzii and Bifidobacterium species[103]. Interestingly, lower and higher 
concentrations (0.1 and 1.0 mg/kg body weight, respectively) proved suboptimal for maintaining 
immunosuppression and inducing normal graft function and both concentrations of tacrolimus were 
associated with decreased species richness, while the low concentration (0.1 mg/kg body weight) was 
associated with an increase in the Bacteroides-Prevotella group and Enterobacteriaceae and a decrease in 
F. prausnitzii and Bifidobacterium species. Another study in mice also reported that tacrolimus at 
1 mg/kg/day i.p. resulted in decreased microbial diversity, increased Firmicutes: Bacteroidetes ratio and 
decreased acetate and butyrate-producing bacteria[104], highlighting the importance of optimising the dose.

Much research in humans on the impact of calcineurin inhibitors on the gut microbiome is in relation to 
organ transplantation. Indeed, tacrolimus is commonly administered to transplant patients to prevent 
rejection of a transplanted organ. The concentration of tacrolimus administered to transplant patients and 
IBD patients is generally within a similar trough range (10-15 ng/mL blood)[105,106]. The impact of tacrolimus 
on the faecal microbiome was assessed in renal transplant patients in conjunction with the 
immunosuppressant mycophenolate mofetil[107]. Based on a bioinformatics approach, the tacrolimus + 
mycophenolate mofetil treatment was associated with the enrichment of a flagellar motion switch protein 
and a type IV pilus assembly protein in faecal microbiome data. The authors suggest that these effects may 
also have resulted from indirect effects; thus, larger multicentre studies with large sample sizes and healthy 
controls are required to further investigate the impacts of immunosuppressive drugs on the gut microbiome 
in humans. Interestingly, encapsulated cyclosporine in a colon-targeted delivery system designed to deliver 
cyclosporine in a solubilised form had negligible impact on gut microbiota composition in healthy 
individuals or when assessed in an ex vivo colon model[108].

TARGETED ORAL SYNTHETIC DRUG
Janus kinase inhibitor (tofacitinib)
Janus kinase (JAK) inhibitors are small synthetic molecules that act intracellularly and can modulate the 
response of a variety of proinflammatory cytokines implicated in IBD pathogenesis[109,110]. Tofacitinib is a 
JAK inhibitor that has high selectivity for JAK-1 and JAK-3 and has been approved for use by the Food and 
Drug Administration (FDA) and the European Medicines Agency (EMA).

Impact of tofacitinib on the gut microbiome
To date, no studies have investigated the impact of the gut microbiome on tofacitinib and very few studies 
have investigated the impact of tofacitinib on the gut microbiome. In a mouse study investigating the active 
components of a traditional Chinese medicine on UC, tofacitinib was used as a positive control[111]. The 
authors report that tofacitinib did not result in any obvious changes to the DSS-altered murine gut 
microbiota following 14 days of treatment. Likewise, short-term treatment with the drug (3.5 days) had 
minimal impact on the colonic microbiota in a mouse model of colitis[112]. In contrast, Hablot et al. reported 
that although tofacitinib was not associated with altered alpha diversity of the gut microbiota in a mouse 
model of rheumatoid arthritis from day 21 of treatment, it was associated with altered beta diversity[113]. In 
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the treated mice, a reduction in potential pathogenic members of the phyla Proteobacteria and Chlamydiae 
was noted, along with an increase in some beneficial members of Actinobacteria and Firmicutes. The 
question remains if some of the anti-arthritic effects of the drug are microbiota-driven. Studies are clearly 
needed to explore the impact of this drug on the gut microbiome in IBD.

INJECTABLE BIOLOGICAL DRUGS, MONOCLONAL ANTIBODIES
TNF inhibitors
TNF is a cell signalling cytokine involved in inflammation whose primary role is the regulation of immune 
cells. TNF signalling drives the expression of acute-phase proteins and influences cell migration, 
proliferation, and cell death[114]. However, TNF can become harmful if over- or inappropriately expressed, 
resulting in chronic inflammation, eventually leading to autoimmune diseases, and is a prominent 
pathological cytokine in IBD[114-117]. Therapies that target TNF in IBD, namely TNF inhibitors, have been 
shown to induce mucosal healing, minimize the use of steroids, reduce hospitalizations and surgeries, and 
improve the overall quality of life in IBD patients[118]. TNF inhibitors are immunoglobulin G (IgG) 1 
monoclonal antibodies or fragment antigen binding (Fab) antibodies and include infliximab, adalimumab, 
certolizumab-pegol, and golimumab[117]. More specifically, golimumab and adalimumab are human IgG1 
antibodies, infliximab is a chimeric IgG1 antibody, while certolizumab-pegol is a PEGylated Fab fragment of 
a humanized anti-TNF antibody[119]. These drugs are intravenously or subcutaneously administered[120]. 
However, the effectiveness of these therapies is limited. Up to 30% of IBD patients are non-responsive to 
treatment (show no clinical benefit after induction therapy), while a further 30%-40% of patients may lose 
responsiveness within one year, requiring them to switch to another biologic or require dose-escalation[121]. 
This has been attributed to several factors, from the pharmacokinetics and immunogenicity of the drug 
itself to patient genetics and disease activity, the location and severity of disease, and/or the treatment 
strategy (dosage, combination therapy)[121]. However, the gut microbiota may also be a contributing factor to 
the limited effectiveness of this drug.

Impact of gut bacteria on TNF inhibitors and treatment efficacy
A number of bacterial species have been shown to harbour IgG-binding proteins which have been suggested 
as additional virulence factors that reduce IgG reactions with the microbial cell[122]. In addition, certain 
bacterial species including Streptococcus pyogenes, Pseudomonas aeruginosa, Staphylococcus aureus, Proteus 
mirabilis and Treponema denticola have been shown to harbour enzymes that can cleave IgG1[123]. This 
suggests that members of the gut microbiome could be capable of interfering with the efficacy of TNF 
inhibitors, especially intramucosal bacteria which are more frequent and more extensively distributed in 
IBD patients[124]. Deveuve et al. reported that S. pyogenes protease, IdeS, is capable of cleaving monoclonal 
antibody therapies including infliximab[125]. It has been suggested that proteolytic degradation may be 
responsible for the non-responsiveness of patients, given that high levels of cleaved IgG have been detected 
in the sera of IBD patients, although this cleavage was caused by matrix metalloproteinases 3 and 12[126]. 
Thus, studies are warranted to determine if microbial cleavage of or binding to TNF inhibitors contributes 
to treatment non-responsiveness in some patients.

Impact of TNF inhibitors on the gut microbiota
In paediatric CD patients, infliximab treatment was associated with increased faecal microbiota diversity 
and shifted its composition and functional capabilities toward a healthy profile[127]. The faecal microbiota 
before treatment showed a significant loss of SCFA-producing bacteria; however, infliximab treatment 
failed to significantly expand SCFA-producing taxa. Despite this, sustained response to the treatment 
correlated with the abundance of SCFA producers in the faecal microbiota. In adults, infliximab treatment 
was also associated with increased faecal microbiota diversity and richness, but, unlike the previous study, it 
resulted in a significant increase in SCFA-producers while pathogenic bacteria decreased[128]. Interestingly, 



Page 13 of O’Reilly et al. Microbiome Res Rep 2023;2:35 https://dx.doi.org/10.20517/mrr.2023.41 27

significant increases in Lachnospiraceae and Blautia during treatment were associated with infliximab 
efficacy. Ditto et al. also reported that treatment of enteropathic arthritis patients with TNF inhibitors was 
associated with a remarkable increase in faecal levels of Lachnospiraceae along with the Coprococcus genus 
while an increased trend in Clostridia was observed, but it was also was associated with a decreasing trend 
in Proteobacteria and Gammaproteobacteria[129]. Successful adalimumab therapy was associated with a 
significant decrease in Proteobacteria in CD patients, a change that was not observed in non-responding 
patients[130]. Effenberger et al. also reported a significant relative decrease in Proteobacteria during treatment 
with TNF inhibitors in CD patients, along with an increase in Bacteroidetes[131]. During 8 weeks of 
infliximab maintenance therapy in IBD patients in clinical remission, the treatment did not significantly 
impact faecal microbiota composition, species diversity, or richness between weeks 1 and 7, but at week 7, 
patients with trough levels of infliximab ≥ 5 μg/mL showed increased species richness while those with 
mucosal healing showed increased species diversity[132]. At the same time period, the relative abundances of 
certain bacteria were also seen to significantly differ between patients with trough levels of ≥ 5 μg/mL and 
< 5 µg/mL infliximab, with bacteria such as F. prausnitzii and Bacteroides uniformis associated with ≥ 5 μg/
mL and the Enterococcus faecium group associated with < 5 µg/mL.

Gut microbiome biomarkers of responders and non-responders to TNF inhibitors
Interestingly, scientists have investigated the gut microbiota of responders and non-responders to TNF 
inhibitors by studying the microbiota before and after treatment to determine the signatures of each. For 
example, gut microbiota differences were established in UC patients (n = 56) at baseline (before 
commencement of treatment) that differentiated responders from non-responders who underwent 
anti-TNF therapy[133]. Specifically, responders to the infliximab/adalimumab therapy had lower dysbiosis 
indexes and higher F. prausnitzii abundance compared with non-responders, while the relative abundance 
of F. prausnitzii increased in responders during therapy. The American Gastroenterology Association 
published an abstract that reported that panels of specific gut taxa in UC patients at baseline differentiated 
responders from non-responders to the TNF inhibitor golimumab at week 6 (n = 801) of treatment[134]. 
These panels included B. fragilis, Bacteroides ovatus, and several members of the Enterobacteriaceae family. 
Furthermore, at the end of treatment, the microbiota of responders was significantly more diverse than 
non-responders. In patients suffering from spondyloarthritis (n = 19), a higher proportion of 
Burkholderiales at baseline was indicative of clinical response to anti-TNF treatments after 3 months of 
therapy[135]. Additionally, the alpha diversity of the gut microbiota of non-responders at baseline was lower 
than that of responders and partial responders. In contrast, microbiota diversity indices across time points 
(baseline to week 30 of treatment) did not differ greatly between responding and non-responding IBD 
patients receiving TNF inhibitors[136]. However, in this study, in silico modelling to identify metabolic 
interactions between gut microbes revealed that intercellular exchange of butyrate was reduced by 81% in 
baseline samples of non-responders compared to responders. In a later study, in silico simulations predicted 
a 1.7-fold greater butyrate production capacity in patients who achieved remission compared to 
non-responders treated with either TNF inhibitors or azathioprine[131]. A lack of SCFA-producing bacteria, 
increased opportunistic pathogens and fungi and decreased biodiversity have also been identified as 
microbiome features of non-responding IBD patients to anti-TNF agents[137,138]. Along with baseline 
microbial richness, the abundance of microbial species capable of 7α/β-dehydroxylation of primary bile 
acids to secondary bile acids correlated with preferential response of IBD patients to anti-TNF therapy[139]. 
In the same study[139], the identification of two metacommunities amongst the faecal microbiota of IBD 
patients revealed that those showing dominance of Firmicutes species including F. prausnitzii and 
Ruminococcus bromii had higher rates of clinical remission and endoscopic remission following the 
anti-cytokine therapy. Relapsing disease and poor response to treatment with TNF inhibitors was associated 
with disturbances to SCFA-producing bacteria including Lachnospiraceae and Ruminococcaceae which was 
replicated across two cohorts of CD and UC patients[140]. In children with CD, sustained response to 
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infliximab treatment was associated with higher abundances of faecal concentrations of amino acids, 
including L-aspartic acid, as well as linoleic acid and L-lactic acid, and higher abundances of Streptococcus, 
Staphylococcus, Methylobacterium and Sphingomonas at baseline[141]. In a proof-of-concept study, Busquets 
et al. designed an algorithm to identify bacterial biomarkers of non-responding IBD patients to anti-TNF 
agents involving 38 IBD patients[142]. Based on this, patients prone to respond have high counts of 
F. prausnitzii and Ruminococcus and a low abundance of Methanobrevibacter smithii. The algorithm was 
reported to have a positive predictive value of 100% and a negative predictive value of 75% for predicting 
response to treatment. However, this would need to be tested in much larger patient cohorts. A systematic 
review of 10 studies involving biologic therapies reported that the gut microbiota of IBD patients who 
responded to anti-TNF agents (8 studies) had higher α-diversity and greater relative abundances of genera 
from the Clostridiales order, including Faecalibacterium, Roseburia or Clostridium (butyrate-producers) 
either at baseline or during follow-up[143].

It thus appears that the SCFA-, and especially butyrate-producing capacity of the gut microbiome is an 
important consideration for anti-TNF treatment efficacy.

VEDOLIZUMAB
Vedolizumab is a monoclonal antibody that blocks the binding of α4β7 integrin, expressed on a subset of 
gastrointestinal-homing T lymphocytes, to mucosal addressin cell adhesion molecule-1 (MAdCAM-1), 
expressed by endothelial cells of the GIT - this action selectively prevents the infiltration of lymphocytes 
into the inflamed gastrointestinal submucosa[144,145]. Approved in recent years, it is used to treat patients with 
moderate to severe IBD who have not achieved treatment success with at least one conventional therapy[144]. 
It can be intravenously or subcutaneously administered. A systematic review of vedolizumab efficacy for UC 
involving 9 studies concluded that most studies reported clinical response and clinical remission in UC 
patients[146].

Gut microbiome biomarkers of responders and non-responders to vedolizumab
Ananthakrishnan et al. demonstrated the ability to predict treatment response to anti-integrin therapy using 
the gut microbiome and clinical data of IBD patients[147]. Their study highlighted the role of both microbial 
taxonomy and functional pathways that may be relevant to treatment. Specifically, in CD patients who 
achieved remission, gut microbiota alpha diversity was significantly higher at baseline compared with those 
who failed to achieve remission. For UC patients, the difference in alpha diversity between responders and 
non-responders at baseline was not significant, but a wider range of baseline community diversity was 
noted for those who achieved remission. Furthermore, for CD patients, beta diversity within the responders’ 
group at baseline was lower than that within the non-responders group. The relative abundance of the 
species Roseburia inulinivorans and a Burkholderiales species in CD patients was significantly greater at 
baseline in those who responded to therapy. R. inulinivorans is a butyrate producer[148]. In CD patient 
responders, 13 microbial pathways were also enriched at baseline, including branched-chain amino acid 
biosynthesis. In terms of the longitudinal trajectory of the microbiome, the following five species decreased 
in relative abundance in those who achieved remission: Bifidobacterium longum, Eggerthella, R. gnavus, 
R. inulinivorans, and Veillonella parvula. However, in those who did not achieve remission, Streptococcus 
salivarium significantly increased in relative abundance. By follow-up, several microbial pathways were 
significantly decreased in CD patients who had achieved remission. These included many tricarboxylic acid 
pathways and a nicotinamide adenine dinucleotide salvage pathway, which the authors suggest indicates 
decreased oxidative stress in responders. Also decreased was O-antigen building blocks biosynthesis in 
E. coli, though E. coli abundance did not change. The changes were not as marked in UC patients, where 
those who achieved remission showed higher relative abundances of three pathways by follow-up: 
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polyamine biosynthesis, non-oxidative pentose phosphate pathway, and sucrose degradation compared with 
non-responders. To determine if strain variability at baseline impacts treatment outcome, the authors 
employed a strain-resolution approach focusing on the pathways that differentiated responders from 
non-responders and found that CD patient responders harboured a cluster of unique single nucleotide 
polymorphisms (SNPs) in L-arginine biosynthesis pathways predominantly contributed by B. longum and 
Dialister invisus. In UC baseline samples, responders had a more diversified group-specific SNP profile 
found in the uridine monophosphate biosynthesis pathway and pentose phosphate pathway and the 
differentiating species contributing to the SNPs included B. longum, Ruminococcus torques and E. coli. 
Using baseline clinical data, microbial taxa, particularly species-level data, and pathways in a neural network 
algorithm enabled the prediction of treatment response, achieving a true positive discovery rate of > 80% 
with a less than 25% false negative discovery rate. Interestingly, other factors that compounded treatment 
response success were shorter duration of the disease, a diagnosis of CD as opposed to UC, and 
non-exposure to anti-TNF therapies in the past.

Lee et al. reported that in IBD patients receiving vedolizumab therapy, increased relative abundances of 
three species, B. ovatus, Bacteroides stercoris, and B. longum, in the baseline microbiota, were linked to early 
clinical remission[139]. Interestingly, in a mouse model of IBD, B. ovatus monotherapy was more effective 
and consistent for ameliorating colitis than faecal microbiota transplantation (FMT)[149].

Ustekinumab
Ustekinumab is a monoclonal antibody that is active against the shared p40 subunit of the proinflammatory 
interleukins IL-12 and IL-23, whose signalling pathways play an important role in IBD pathogenesis[150]. 
Approved for CD treatment in 2016, it is administered subcutaneously or intravenously. It has proven to be 
effective and safe for CD patients who are intolerant to anti-TNF therapy or when anti-TNF therapy has 
failed[151].

Gut microbiome biomarkers of responders and non-responders to ustekinumab
Doherty et al. investigated if the faecal microbiota could be used as a biomarker for response to 
ustekinumab therapy in patients with CD[152]. Researchers found that the relative abundance of Escherichia/ 
Shigella spp. was lower at baseline in subjects who achieved remission after 6 weeks of treatment (270-90 mg 
ustekinumab subcutaneously) compared to subjects with active CD. In addition, Faecalibacterium and 
Bacteroides were significantly more abundant in the baseline stool samples from the subjects who were in 
remission six weeks after treatment than patients with active CD. The beta-diversity of the microbiotas was 
significantly different between responders and non-responders before treatment. Additionally, the median 
baseline microbial diversity in subjects with remission after 6 weeks was 1.7 times higher than in treated 
subjects with active CD (P = 0.020). Faecalibacterium frequently occurred in their random forest models 
and was associated with health, comprising up to 5% of the relative abundance in healthy individuals, and 
was generally rare in CD patients. Each subject in remission 6 weeks after ustekinumab therapy had 
measurable Faecalibacterium present in their baseline samples. Interestingly, a lower dose of ustekinumab 
(45 mg) to treat psoriasis had minimal impact on the gut microbiome[153], indicating that the impact of 
ustekinumab on the microbiome may be dose-dependent.

NUTRITION
Exclusive enteral nutrition
EEN describes the use of a nutritionally replete liquid diet that is exclusively fed to CD patients for a period 
of generally 8 weeks[154], after which foods are slowly introduced[155]. European guidelines recommend EEN 
as a first-line therapy for pediatric patients with luminal CD[156]. EEN formulas can differ in their protein 
and fat content and are classified as elemental, semi-elemental or polymeric, where elemental formulas are 
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generally low in fat, and contain amino acids and glucose polymers; semi-elemental formulas contain 
primarily medium chain triglycerides as fat, peptides of varying chain lengths, simple sugars, glucose 
polymers, or starch; and polymeric formulas contain predominantly long-chain triglycerides, complex 
carbohydrates and intact proteins[157]. EEN is reported to induce remission in up to 80% of patients[158]. It is 
postulated that the efficacy of EEN is due to multiple mechanisms, from altering gut microbiota 
composition and metabolism to impacting immunity, minimising xenobiotic exposure, and improving 
nutritional status, as examples[159].

Impact of EEN on the gut microbiota
EEN has been shown to modulate gut microbiome structure, changing the relative abundances of many 
bacterial families, including Clostridiaceae, Eubacteriaceae, and Bacteroidaceae[160]. Many studies have also 
reported that EEN reduces gut microbial diversity, which has been the topic of review and systematic 
review[157,158] and is attributable to the reduced components of EEN compared to a regular diet[161]. Indeed, 
Quince et al. reported that for every 10 days on EEN, 0.6 genus diversity equivalents were lost[162]. Diederen 
et al. also reported that EEN reduced gut microbiota diversity in 43 children with CD and decreased amino 
acids, trimethylamine, and cadaverine toward control levels[161]. Furthermore, the reduced microbial 
metabolism of bile acids observed in the CD pediatric patients was partially normalised during treatment. In 
contrast, Lv et al. reported that species-level diversity in pediatric CD patients increased toward levels seen 
in controls[163], while Jones et al. reported no change in diversity following treatment[164]. But Lv et al. did 
observe that EEN improved the imbalance of primary and secondary bile acid metabolism in CD pediatric 
patients such that secondary unconjugated bile acids increased and resembled levels in healthy controls 
following EEN[163]. It has been proposed that EEN-induced remission in patients could be partially due to 
microbial bile acid modifications[165]. Following EEN treatment, the enriched bile acids hyocholic acid and 
α-muricholic acid were strongly associated with decreased CD symptom severity[165]. These bile acids 
significantly correlated with increased relative abundances of Clostridium innocuum and Hungatella 
hatherwayi, which express the enzymes 3β-hydroxysteroid dehydrogenase and 5β-reductase. In the same 
study, hyocholic acid suppressed TNF-α production by CD4+ T cells in peripheral blood mononuclear cells 
from CD patients, while intraperitoneal injection of hyocholic acid attenuated DSS-induced colitis in mice.

EEN has also been reported to significantly increase Firmicutes while reducing Proteobacteria in children[163] 
and adults[166] with CD. In the latter study[166], EEN was also associated with significantly increased relative 
abundances of five species, including Ruminococcus, Lachnospiraceae, Anaerotruncus, Flavonifracter, and 
Novosphingobium, accompanied by relative changes in faecal SCFAs.

Gut microbiome biomarkers of responders and non-responders to EEN
A few studies have examined the gut microbiota signatures that are associated with treatment response and 
sustained remission following EEN. In a study involving 10 pediatric CD patients, Dunn et al. reported that 
9 achieved clinical remission by week 12 (the conclusion of EEN therapy), but 4 of these patients 
experienced clinical relapse by week 24[167]. Interestingly, in these 4 relapsing patients, alpha diversity at 
baseline was lowest. In those who sustained remission, EEN decreased diversity by week 12 of treatment, a 
response that was not observed in those who failed to achieve remission; in fact, in this group, EEN 
increased diversity by week 12. At baseline, Proteobacteria was higher in those who did not sustain a 
response to EEN and increased in prevalence over the course of treatment. Those who sustained remission 
also had a number of Akkermansia muciniphila strains and Bacteroides, such that the authors propose that 
patients with a high prevalence of one or more strains of A. muciniphila at the onset of treatment would be 
more likely to benefit from EEN treatment due to early improvements in intestinal epithelial function. 
Based on the results, a Bayesian model trained to differentiate baseline samples into sustained response and 
non-sustained response achieved 80% classification accuracy. The predictive success of the model is due to 
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the “occurrence patterns” of specific predominant OTUs in baseline samples, namely A. muciniphila, 
Bacteroides (including B. fragilis and B. ovatus), Lachnospiraceae, and Ruminococcaceae in patients who 
achieve sustained remission. In contrast, the predominant strains in patients who failed to achieve sustained 
remission are generally members of Bacteroides (including B. plebeius), Enterobacteriaceae (including 
Klebsiella), and Prevotella. In a follow-up study, a random forest model using microbial abundances, species 
richness and Paris disease classification proved the most informative in predicting response to EEN[164]. 
Another study reported that Dorea longicatena, Blautia obeum and E. coli found in non-responders at 
baseline represent examples from the predictive signature of no response to EEN[161].

NON-CONVENTIONAL THERAPY
Hematopoietic stem cell transplantation
Multipotent hematopoietic stem cells can be isolated from bone marrow, umbilical cord or peripheral blood 
and have self-renewal capabilities and the capacity to differentiate into immune and blood cells[168]. They can 
also migrate to damaged tissue and differentiate into immune-modulatory or epithelial cells, thus enabling 
them to restore mucosal tissue and integrity[168,169]. HSCT is thus a promising treatment in cases of severe 
refractory CD, where it is proposed to “establish a new immune system in the intestine of IBD patients”[170]. 
In a multicentre retrospective study evaluating the clinical use and outcomes of autologous HSCT 
performed in 19 European Society for Blood and Marrow Transplantation (EMBT) centres across seven 
countries involving 82 patients, Brierley et al. concluded that it was relatively safe and effective in 
controlling otherwise treatment-resistant CD[171]. Given the role of the gut microbiota in modulating host 
immunity, there is growing interest in the role of the gut microbiota in HSCT[172]. Furthermore, changes to 
the intestinal environment triggered by HSCT will undoubtedly alter the gut microbiome.

Impact of HSCT on the gut microbiota and gut microbiome biomarkers of responders and non-
responders to HSCT
In patients with X-linked inhibitor of apoptosis protein (XIAP) deficiency and who are suffering from 
refractory IBD, HSCT was reported to improve disease symptoms, significantly improve the pediatric 
ulcerative colitis activity index, and improve gut microbiota dysbiosis observed before treatment such that 
the microbiota resembled that of healthy family members following HSCT[173]. Microbial profiles were also 
reported to differ in patients with active CD pre- and post-HSCT (non-responders) and in those with 
inactive disease post-HSCT (responders)[174]. Non-responders to treatment exhibited post-treatment 
microbiotas enriched with members belonging to Enterococcus, Fusobacterium, Haemophilus, Megasphaera, 
and Campylobacter, while treatment responders were enriched in Alistipes, Akkermansia Roseburia, 
Christensenellaceae, Oscillibacter and Odoribacter post-treatment. Interestingly, functional modules 
differentially abundant in responders and non-responders post-HSCT revealed enrichment of basic 
biosynthesis processes in responders, while pathways involved in sulphur transport and other ion transport 
systems (e.g., molybdate and nickel) were enriched in non-responders post-HSCT. However, it was not 
possible to predict response to treatment based on pretreatment microbiota samples as there were no 
significant differences in bacterial community structure, richness, or diversity in baseline samples.

Mesenchymal stem cell therapy
Mesenchymal stem cells (MSCs) are also multipotent and can differentiate into multiple mesoderm lineage 
cell types including osteoblasts, adipocytes, myocardiocytes, and chondrocytes[168,175-177] and they are 
immunomodulatory, being capable of downregulating mucosal immune reactivity[168,178] and can thus 
control inflammation[179] fostering the repair of damaged mucosal tissue. They can be isolated from bone 
marrow, adipose tissue and umbilical cord, and unlike hematopoietic stem cells, they have low 
immunogenicity[168]. In clinical trials, MSCT has proven to be safe and effective for the treatment of 
refractory CD[180-182] and UC[183-185], although the long-term efficacy of MSCT must yet be verified[186].
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Impact of MSCT on the gut microbiota
In a DSS-mouse model of colitis, researchers compared the effectiveness of MSCs derived from induced 
pluripotent stem cells or adipose-derived MSCs and reported that both cell types significantly reduced 
lesion scores and gut inflammation and partially restored the gut microbiome to resemble that of healthy 
mice[187]. He et al. reported a similar finding in the study of bone marrow-derived MSC for the prevention of 
cancer in a colitis-associated cancer mouse model[188]. Specifically, MSC treatment resulted in a significant 
reduction in the Firmicutes/Bacteroidetes ratio, increased the relative abundance of potentially beneficial 
b a c t e r i a  i n c l u d i n g  Parabacteroides, Staphylococcus, Acetifactor, Intestinimonas, a n d  C a n d i d a t u s  
Saccharimonas, and reduced potentially pathogenic bacteria including Bilophila and E. branchy.  In another 
mouse model of colitis induced with TNBS, human umbilical cord-derived MSCs improved disease 
symptoms and increased survival rates[189]. MSCT prevented the gut microbiota dysbiosis observed in the 
TNBS group and increased alpha diversity, decreased Proteobacteria, and increased Bacteroidetes, 
Firmicutes, and Tenericutes. It also decreased sulphur metabolism compared to the TNBS group.

In a human study, 8 MSC infusions in CD patients dramatically relieved clinical symptoms[190]. In terms of 
the microbiota, the Cyanobacterium phylum was depleted, while the Nitrospirota phylum was enriched 
after the 8 infusions. The genus Cetobacterium was significantly enriched after 8 infusions and the CD 
activity index score correlated strongly with Cetobacterium abundance. Interestingly, Cetobacterium 
somerae has been reported to improve glucose homeostasis and increase insulin levels in larval zebrafish[191], 
and fermentate of the bacterium has been shown to improve antiviral immunity as well as gut and liver 
health in zebrafish[192].

CONCLUSION AND FUTURE DIRECTIONS
The field of science that investigates the interplay between IBD therapeutics and the gut microbiome is still 
very much in its infancy. However, the studies that have been conducted to date reveal that this is an 
exciting and essential field of investigation that could lead to the development of future novel treatments 
composed of IBD therapeutics and microbial-based therapies that simultaneously focus on the immune 
response of the patient and the gut microbiome to improve treatment efficacy [Table 1]. The interindividual 
variability of the gut microbiome means that such therapies could be developed as personalised, precision-
based treatments. Indeed, the screening of IBD patient stool samples at diagnosis could enable the design of 
better treatments. For example, strategies that increase baseline gut microbiota alpha diversity or increase 
the absolute abundance of particular gut commensals, e.g., butyrate producers, could serve to improve 
treatment responses given that such signatures are common features of responders to IBD therapies 
[Figure 1], leading to the design of IBD-specific probiotics. For 5-ASA azo-bonded therapeutics, increasing 
the abundance of azo-reducing bacteria that release the active moiety of the therapeutic in the intestine may 
serve to improve the effectiveness of treatment in patients with low levels of gut microbial azoreductases. 
Administering A. muciniphila before the commencement of EEN could ensure that remission is sustained 
following treatment. Furthermore, FMT could be used to convert non-responders to responders by 
performing FMT in these patients with a “responder faecal microbiota” or healthy faecal microbiota. The 
efficacy of such an approach has already been proven with the step-up FMT strategy, which consists of 
scheduled FMTs (single or multiple) followed by treatment with steroids, TNF inhibitors, or EEN[193]. It has 
proven efficacious for the treatment of UC and CD[194-196]. Interestingly, donor microbiota tends to be 
derived from healthy young people aged from 5 years to 24 years. Cui et al. propose that one or two FMTs 
prior to therapeutic administration remodel the intestinal microbiota, thus improving the patient’s ability to 
respond to other therapies[193]. Indeed, step-up FMT patients displayed increased gut microbial diversity and 
a composition trending toward that of donors following FMT[194].
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Some studies have reported the clinical benefits of using microbial therapies as adjuncts to conventional 
therapies, yielding promising results - though these studies did not use personalised, precision-based data. 
For example, E. coli Nissle 1917 as an add-on therapy to mesalazine in UC patients resulted in a significantly 
higher number of patients displaying clinical response at four weeks (P = 0.04), and endoscopic remission at 
eight weeks (P = 0.03)[197]. A consortium of live probiotics as an adjunct to 5-ASA and/or 
immunosuppressants in relapsing UC patients improved rectal bleeding and reinduced remission in 
relapsing patients after eight weeks compared to the drug treatments alone[198]. A meta-analysis of 
randomised controlled trials reported that probiotics in conjunction with 5-ASA  can increase the clinical 
remission rate of active UC over the drug alone[199]. We have already seen that L. plantarum with tacrolimus 
is capable of improving gut microbiome diversity and promoting the therapeutic effect of the drug in a 
mouse model of colitis[102].

However, the studies to date have also highlighted potentially concerning interactions between the gut 
microbiome and IBD therapeutics. For example, the bacterial enzyme steroid-17,20-desmolase can convert 
the IBD therapeutic prednisone to a metabolite that causes the proliferation of prostate cancer cells[86]. 
Studies of this nature highlight the importance of investigating the metabolomics of gut microbiota-IBD 
therapeutic interactions and that the activity of the gut microbiome on IBD therapeutics should be 
considered in the safety and adverse effects of these drugs. This is a field that requires much deeper 
investigation. Furthermore, the impact of these therapeutics on the gut resistome is also an important 
consideration, especially in cases where they have antimicrobial effects. Methotrexate has been shown to 
select for antibiotic resistance genes[70]. Antibiotic resistance is a major global health crisis, with antibiotic 
stewardship programs now mandating the safe and appropriate use of antibiotics; however, IBD 
therapeutics, although designed to alter immune function, should be assessed for their impacts on the gut 
resistome.

Gut microbial metabolism can also reduce therapeutic efficacy by degrading the drugs to less potent 
metabolites, as is in the case of the calcineurin inhibitor, tacrolimus[100]. Furthermore, the gut microbiome 
may be capable of cleaving TNF inhibitors[125]. Thus, further studies are warranted to determine the impact 
of the microbiome on the stabilities of IBD therapeutics, which may lead to the design of adjunct molecules 
that inhibit microbial degradation.

While stem cell therapy is emerging as a viable option for refractive IBD, more studies are warranted to 
investigate the impact of these treatments on the gut microbiome and functionality and also to determine 
how microbiome composition and structure can impact stem cell therapy efficacy.

Many studies to date have investigated the interplay between single IBD therapeutics and the gut 
microbiome; however, IBD patients may receive multiple treatments during active disease, and this is 
another consideration that should be taken into account by investigating the impact of combinations of IBD 
therapeutics on the gut microbiome and vice versa[200]. Indeed, Tourret et al. reported that a combination of 
immunosuppressive therapeutics increased colonisation of a uropathogenic strain of E. coli in mice[88].

In conclusion, the studies discussed in this review demonstrate the importance and value of continued 
research and the use of integrated studies for investigating the interplay between IBD therapeutics and the 
gut microbiome. Technologies such as metabolomics that enable investigation into the xenobiotic-
metabolizing capabilities of gut microbes are still in their infancy but will be invaluable in the future for 
understanding the role the microbiota plays in the metabolism of IBD therapeutics and how these 
therapeutics impact microbiota metabolism. Utilising gut microbiome data in conjunction with IBD 
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therapies will ultimately result in more effective, personalized, precision treatments that achieve faster 
remission and increase patients’ quality of life.
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