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Abstract
Stacking fault energy (SFE) significantly influences plastic deformation, strength, and processing performance, 
making accurate assessment and prediction of SFE essential for material design and optimization. Traditional SFE 
calculations mainly rely on experimental measurements and thermodynamic theories, with the former usually 
being time-consuming and the latter limited in applicability at different compositions. To overcome these 
limitations, this study proposes a machine learning (ML) strategy introducing physical metallurgy (PM) parameters 
relevant to SFE, aiming to achieve robust predictions. Specifically, this study evaluates three methods for 
introducing PM information into ML (as an input, an intermediate parameter, and a transfer source), with transfer 
learning as the best strategy. Initially, various PM parameters were calculated based on alloy composition and 
temperature, and subsequently used as outputs  to train a convolutional neural network (CNN). This source model 
was then transferred to the SFE prediction model. The results from the model transfer using different PM 
information show that incorporating phase-transformation driving force (DF) as a source model for SFE prediction 
provided the most accurate and reliable results. This approach of introducing PM parameters into ML significantly 
improves the predictive capability of SFE models, offering a new perspective and solution for the prediction of SFE. 
Furthermore, this method may also be applicable to the prediction of other material properties during material 
design and optimization.

Keywords: Stacking fault energy, austenitic stainless steel, physical metallurgical parameter, machine learning, 
transfer learning
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INTRODUCTION
Stacking fault energy (SFE) plays an important role in determining the susceptibility of a crystal to 
dislocation sliding and phase transformation during deformation. The outstanding mechanical properties of 
austenitic stainless steel, such as high plasticity and toughness, are partly attributed to its face-centered cubic 
(FCC) structure and relatively low SFE. Under specific conditions, a lower SFE facilitates deformation 
twinning and can induce a phase transformation from an FCC to a hexagonal close-packed (HCP) 
structure, enhancing the deformation mechanism, strength and processing performance of the alloy[1-4]. 
Therefore, accurate assessment and prediction of the SFE are essential for material design, as mastering SFE 
variations facilitates optimizing material microstructure, resulting in higher strength while maintaining 
plasticity and better addressing the need for high-performance materials in fields such as aerospace[5].

SFE calculation methods are categorized into experimental and theoretical approaches[6-10]. Experimental 
methods such as transmission electron microscopy (TEM), X-ray diffraction (XRD), and neutron 
diffraction (ND) directly measure stacking fault characteristics, which are then used to calculate the SFE. 
Whelan[11] established a theoretical foundation by examining extended dislocation nodes in steel grades; 
advancements in imaging techniques enabled researchers[12,13] to observe partial dislocation separations 
through weak-beam dark-field modes, a method widely applied in multi-component austenitic steels but 
limited to low SFE values. Reed and Schramm[14] determined the SFE using XRD line profile analysis, 
relating SFE to stacking fault probability, and rms microstrain. ND, similar to XRD but using thermal 
neutrons, also enables SFE determination. However, these experimental methods encounter a significant 
problem: the material constants in computational equations often derive from approximated values based 
on similar compositions, introducing uncertainties, and experimental measurement of the SFE is time-
consuming and complex, hindering rapid material discovery. Given the dependence of SFE on alloy 
composition and temperature, empirical equations, thermodynamic models, and density functional theory 
(DFT) have emerged as alternative calculation methods. While several authors have developed empirical 
equations tailored to limited alloy compositions[15-17], their applicability is restricted. de Bellefon et al. 
collected 144 austenitic steel composition measurements and accurately predicted the SFE using linear 
regression[18]. As discussed in Supplementary Figure 1, Olson and Cohen[19] introduced a thermodynamic 
model conceptualizing stacking fault occurrence as an FCC-to-HCP transformation, calculating the change 
in energy per unit area, though its reliability depends heavily on the quality of the calculation of phase 
diagrams (CALPHAD) database[20-24]. The DFT suggested by Hohenberg and Kohn[25] calculates the SFE 
when the slip surface slides into a stable crystal structure by creating a crystal cell from an atomic 
perspective rather than depending on thermodynamic models or empirical equations. However, model 
building and optimization remain challenging and time-consuming.

The material genome initiative (MGI) has spurred data-driven, machine learning (ML)-based 
approaches[26,27] for SFE calculations. For example, Chaudhary et al. constructed a ML-based classifier for 
SFE prediction, facilitating the prediction of deformation mechanisms for unknown alloys[28]. Khan et al. 
proposed a framework combining DFT calculations, ML, and physical properties to predict SFE in entropy 
alloys[29]. Although these studies correlate alloy composition with SFE, predictive accuracy remains limited, 
and the ML model often lacks interpretability. Therefore, incorporating domain expertise [physical 
metallurgy (PM) parameters] into ML models to improve predictive accuracy and interpretability has 
become an important strategy, with promising results demonstrated[30-32]. For instance, Shen et al. 
incorporated thermodynamic methods on precipitated phases in ultra-high-strength stainless steels as ML 
model inputs for hardness prediction, achieving accurate, generalized predictions and optimizations in alloy 
design[33]. Basha et al. considered the role of fully connected layers in convolutional neural networks (CNNs) 
by analyzing layer-dataset feature relationships by changing their numbers, providing a novel approach for 
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the incorporation of PM information into deep learning models[34]. Wei et al. showed that using source 
features related to target performance aids in predictive transfer, highlighting effective incorporation of PM 
mechanisms into ML models[35]. Despite these advancements, ML-based SFE prediction models introducing 
PM knowledge remain underexplored.

In this study, we systematically compare different strategies for introducing PM information into ML, 
examining PM variables affecting SFE to obtain a generic prediction model. Using experimentally collected 
datasets on alloy composition, temperature, and SFE, we derived relevant PM data through thermodynamic 
calculations. Three PM introduction methods were explored: (i) direct input as features; (ii) inclusion in 
CNN fully connected layers; and (iii) transfer learning, where the source model predicting PM data 
transfers to the SFE prediction model. We evaluated the performance of each method and identified transfer 
learning as the optimal approach, providing methodological insights for universal SFE prediction and 
contributing to alloy design and development.

MATERIALS AND METHODS
Dataset and data preprocessing
Multiple publicly available SFE databases for austenitic alloys[28] were referenced and employed, containing 
experimental SFE measurements for several steel grades at different temperatures. Since the majority of data 
were measured at 300 K and SFE measurements at other temperatures are scarce and highly variable, only 
the SFE data recorded at 300 K were retained for this study. In addition, the original database was further 
screened to remove data with large errors, and the same compositions were averaged. This process resulted 
in a high-quality dataset of 188 samples containing 11-dimensional compositional features and SFE values, 
which were used for model training. To further refine the quality of the data, the phase transformation 
driving force (DF), and the Gibbs free energies of the FCC (GFCC) and HCP (GHCP) phases of the 188 sample 
alloys were computed using Thermo-Calc® software and the TCFE9 database. The details of the dataset are 
listed in Table 1. The distribution of the main elements and related PM parameters of the alloys in the 
dataset is shown in Figure 1, which contains compositional data for austenitic stainless steel, high-
manganese steel, etc.

To ensure model stability and avoid the “lucky split” issue caused by random partitioning, this study 
rigorously divided the data into training and test sets at a ratio of 4:1, and repeated this random partitioning 
process 100 times to conduct a more in-depth analysis of the model’s robustness. Additionally, for a 
comprehensive evaluation of each model’s performance, we specifically selected 63 austenitic stainless steel 
SFE data[18] points as an independent validation set. This validation set is completely isolated from the 
training and test sets, with the aim of assessing the model’s generalization capability in handling novel, 
unseen data.

This study also explores PM parameters of existing alloy systems to establish an extended dataset. 
Specifically, as shown in Figure 2A, 6,000 sets of new alloy samples were randomly generated within 
specified compositional ranges [chromium (Cr) < 25.85 wt.%; nickel (Ni) < 26.4 wt.%; manganese (Mn) < 
27.5 wt.%; silicon (Si) < 6.22 wt.%]. All PM parameters for these samples, including DF, GFCC and GHCP, were 
calculated using Thermo-Calc®.

For data normalization, the inputs and outputs were normalized using the z-score, which is a standard 
method for eliminating dimensional differences between feature ranges[36], as determined by:
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Table 1. Input and output ranges of the various parameters in the SFE database

Features Minimum Maximum Mean Standard deviation

Ferrum/wt.% 48.623 85 67.208 6.537

Cr/wt.% 0 25.85 15.23 5.777

Ni/wt.% 0 26.4 11.93 6.473

Mn/wt.% 0 27.5 4.35 7.106

Si/wt.% 0 6.22 0.41 1.12

Molybdenum/wt.% 0 2.7 0.64 1.06

Carbon/wt.% 0 0.69 0.054 0.124

Nitrogen/wt.% 0 0.88 0.059 0.135

Phosphorus/wt.% 0 0.08 0.009 0.015

Sulfur/wt.% 0 0.043 0.002 0.007

Aluminum/wt.% 0 3.98 0.11 0.551

DF/J·mol-1 -1,663.99 1,892.676 -513.779 834.899

Gibbs free energy of the FCC phase/J·mol-1 -18,546.5 -3,087.44 -6,174.99 3,186.666

Gibbs free energy of the HCP phase/J·mol-1 -17,033.4 -3,823.53 -6,688.77 2,550.788

SFE/mJ·m-2 3.26 70.15 35.3 13.7

SFE: Stacking fault energy; DF: driving force; FCC: face-centered cubic; HCP: hexagonal close-packed.

Figure 1. Scatterplot of the distribution matrix of the main features in the dataset.
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Figure 2. SFE prediction framework. (A) Data processing and dataset expansion; (B) different frameworks for 3 PM parameter 
introduction methods. SFE: Stacking fault energy; PM: physical metallurgy.

where z denotes the normalized value, x is the original value from the dataset, and μ and σ represent the 
mean and standard deviation of the original values for a certain dimensional feature, respectively.

SFE prediction framework
As previous studies primarily established direct relationships between alloy composition, temperature, and 
SFE, this study further introduces PM parameters related to the SFE, such as the DF, GFCC, and GHCP. Three 
approaches for introducing PM parameters in increasing “depth” [Figure 2B] were considered: (1) Direct 
input: PM parameters, along with alloy composition, were used as input features to predict SFE; (2) 
Intermediate layer in CNN: PM parameters were introduced into the fully connected layer of the CNN; and 
(3) Transfer learning: PM parameters were used to train a source model that was then transferred to the SFE 
prediction model.

(1)



Page 6 of Song et al. J. Mater. Inf. 2025, 5, 2 https://dx.doi.org/10.20517/jmi.2024.7014

When the PM parameters were used as input features, five common ML algorithms were selected to 
construct the regression prediction models: random forest (RF), gradient boosting regression (GBR), 
multilayer perceptron (MLP), support vector regression with a radial basis function kernel (SVR), and 
extreme gradient boosting (XGB). After optimizing each model using grid search, RF was found to perform 
best for SFE prediction. Various PM-composition combinations were evaluated to assess the influence of 
PM parameters on SFE prediction accuracy.

In addition to the above approaches, this study explores the introduction of PM parameters into an 
intermediate layer of the deep learning model. A simple CNN structure was developed, comprising a 
sequential arrangement of a convolutional layer and a fully connected layer. As shown in Supplementary 
Figure 2, in this setup, the 11-dimensional constituent features of the alloy samples were finally reshaped 
into a 4 × 4 matrix (with the alloy compositional features filtered into the matrix by filling them sequentially, 
and the values of the remaining five elements set to zero) and then fed into a convolution module 
containing two convolutional layers (4 × 4 × 8 and 4 × 4 × 16). This convolutional module was followed by a 
fully connected layer with two architectures (64 and eight layers, respectively). At this fully connected layer, 
PM parameter information was incorporated, and the combined data was fed into the next fully connected 
layer to predict SFE.

For the transfer learning model, a CNN source model was initially constructed using the aforementioned 
PM parameter dataset to predict DF, GFCC and GHCP based on the alloy composition. This source model was 
then used to construct the SFE prediction model. Specifically, the convolutional and fully connected layers 
of the source model were replicated in the target transfer model, creating a new structure called the 
transferred feature layer. The parameters of this layer were frozen and did not participate in further training; 
only the remaining fully connected layers were randomly initialized for model training on SFE prediction.

All data preprocessing and model training were performed using the TensorFlow and Scikit-learn packages. 
For the CNN model, training was conducted over 500 iterations with mean square error (MSE) as the loss 
function, a learning rate of 0.1, and the Adam optimizer.

For model performance evaluation, to objectively evaluate the generalization ability of various models and 
identify the optimal model, the squared correlation coefficient (R2) and mean absolute error (MAE) were 
used as evaluation metrics[37,38]. These metrics are expressed as follows:

where n is the number of samples, and f(xi) and yi are the predicted and experimental values of the ith 
sample, respectively.

(2)

(3)
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RESULTS AND DISCUSSION
Feature analysis of composition and PM parameters
In this study, SFE prediction was examined based on the alloy composition and PM parameters. To quantify 
the relationship and importance of these features in SFE prediction, the Pearson correlation coefficient, 
Shapley Additive exPlanations (SHAP) value and mean decrease accuracy (MDA) were used[39-41]. The 
Pearson correlation coefficient was defined as the covariance between two variables divided by the product 
of their standard deviations. It measures the degree of linear correlation between variables, ranging from -1 
to 1, where absolute values closer to 1 indicate a stronger correlation. The SHAP value is a game-theory-
based method for interpreting the predictive results of ML models. It helps us to understand how much 
each feature contributes to the prediction result of the model. MDA assesses the importance of specific 
features for SFE prediction by disrupting selected compositional or PM parameter features and calculating 
the resulting decrease in model prediction accuracy.

The Pearson correlation results [Figure 3A] revealed the relationship between alloying elements and SFE. 
Specifically, Cr, Ni, and Mo exhibited a positive correlation with the SFE values, whereas Mn and Si 
demonstrated a negative correlation. Notably, this finding partially contrasts with conventional 
understanding, particularly in austenitic stainless steels, where Cr is generally believed to lower the SFE. In 
this case, however, the Pearson analysis indicated a positive correlation, potentially influenced by the data 
on high-Mn steels, as Mn, a strong austenite-stabilizing element, can significantly increase the SFE values. 
Additionally, correlations among primary alloying elements, such as Cr, Ni, Mn, Si, and PM, are associated 
with one another, confirming the reasonableness of the selected parameters and underscoring the 
complexity of their influence on the SFE. The absolute values of the R2 between each input feature and the 
SFE were greater than 0 but less than 1, indicating the independent contribution of each feature on SFE and 
emphasizing the importance of considering the elemental interactions in alloy design.

As shown in Figure 3B, the results of SHAP values demonstrate that both alloy composition and PM 
parameters contribute to SFE. Specifically, elements such as Ni and Si exhibit significant contributions, 
highlighting their core position in the process of predicting SFE using the model. Similarly, PM parameters 
also have an impact on SFE prediction. The SHAP values of DF, GFCC, and GHCP are sequentially ordered, 
with GFCC being higher than GHCP. This is similar to the results of MDA, as further analyzed in Figure 3C for 
the predictive significance of each feature: Ni contributed most significantly, with an MDA value exceeding 
50%. Previous thermodynamic theoretical studies have shown SFE in FCC alloys to be closely linked with 
DF and other factors, indicating that PM parameters also contribute to SFE prediction. Among the PM 
parameters, the MDA values ranked as GFCC, DF, and GHCP, with means GFCC in austenitic steels has 
significantly higher importance than GHCP.

Reliability analysis of models with PM parameters
In the modeling strategy, where PM parameters are directly introduced as inputs, various common ML 
algorithms were considered, as outlined previously. In addition, modeling without the PM parameters was 
evaluated, meaning SFE prediction relied solely on the alloy composition. Figure 4 shows the R2 and MAE 
results of different algorithms before and after introducing different PM parameters. All models exhibited 
noticeable overfitting, with most achieving R2 values above 95% and MAE below 2 mJ/m2 for the training 
set, whereas the R2 for the testing set ranged from 65%-70% and MAE values were approximately 6 mJ/m2, 
indicating suboptimal prediction performance. Specifically, the simple introduction of PM information did 
not improve the predictive performance of the models, as the R2 and MAE values were similar between 
models with and without PM information. Furthermore, no significant difference was observed among 
different types or combinations of PM information.
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Figure 3. Feature analysis of alloy compositions and PM parameters with respect to SFE. (A) Pearson’s correlation coefficient; (B) SHAP 
values; (C) MDA. PM: Physical metallurgy; SFE: stacking fault energy; SHAP: Shapley Additive exPlanations; MDA: mean decrease 
accuracy.

Figure 4. Mean R2 and MAE results for different PM models using conventional ML algorithms. R2: The squared correlation coefficient; 
MAE: mean absolute error; PM: physical metallurgy; ML: machine learning.

This study further investigated the impact of the simple introduction of PM information on model 
prediction scalability by comparing models without PM information and those introducing all PM 
parameters (including GBR, MLP, RF, SVR, and XGB) for predicting SFE under single compositional 
changes. Figure 5 illustrates the trend of the model-predicted SFE variations with changes in the weight 
percentages (wt.%) of Cr, Ni, Mn, and Si alloying elements. Figure 5A and B shows the average values of 
SFE for 100 model predictions across five algorithms for Cr content variations (0-25 wt.%). Initially, SFE 
decreased with increasing Cr content, and then exhibited an upward trend once it decreased to a certain 
value. Compared to the non-PM control group, the model with the introduction of the PM parameter 
showed a significant reduction in the range of predicted values and an improvement in the error bars, 
indicating improved accuracy and stability in SFE predictions. Similarly, as Si increased, SFE decreased, and 
then increased again before declining [Figure 5G and H]. Guided by PM knowledge, the model with PM 
parameters effectively avoided negative SFE values. Although the introduction of PM information improved 
predictive results, its effect varied by element. For instance, the model prediction performance of Ni 
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Figure 5. Comparison of SFE trends for component prediction before and after the introduction of PM in different models. (A and B) Cr; 
(C and D) Ni; (E and F) Mn; (G and H) Si. SFE: Stacking fault energy; PM: physical metallurgy.
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[Figure 5C and D] and Mn content [Figure 5E and F] following the introduction of PM parameters was not 
as notable as it was for Cr and Si. This may be due to the coordinated influence of several elements on SFE, 
which the model may not capture when only a single element is changed, resulting in predicted values that 
deviate from actual outcomes. Nevertheless, the introduction of PM parameters can minimize prediction 
errors and improve the predictive ability of the model to some extent. However, the direct introduction of 
PM parameters may not be optimal. Further research is needed to better leverage PM information, 
potentially by introducing PM knowledge to optimize and improve the model for more accurate and 
reliable SFE predictions.

Impact of PM parameters on the model in different introduction methods
As discussed, introducing PM information as direct input yielded only limited improvement in SFE 
prediction, even when varying combinations of PM parameters were considered. This section discusses the 
effects of different PM parameter introduction approaches. Figure 6 shows the model prediction results with 
different PM information introduced under three frameworks, containing training, testing, and validation 
sets, including additional austenitic stainless steel samples. The prediction accuracies and errors of the ML 
models introduced across different PM information for both the training and testing sets were similar for all 
three frameworks. The main difference was in validation set predictions, highlighting significant differences 
in model scalability - important for practical applications and alloy design. Before introducing PM 
parameters, it is notable that, compared to RF algorithms, CNNs show higher flexibility in managing 
complex and nonlinear data. The convolutional layer of a CNN can automatically extract complex data 
features, effectively reducing prediction errors in SFE modeling and demonstrating the excellence of CNN 
modeling.

In the simple PM information introduction approach (e.g., Figure 6A), none of the PM parameter variations 
improved the generalization ability of the model, with the validation set MAEs consistently exceeding 
6 mJ/m2. By contrast, a deeper PM information introduction, such as the introduction of PM information 
into the fully connected layer of the CNN [Figure 6B], significantly improved the predictive scalability of the 
model, reducing the MAE of the validation set to approximately 3 mJ/m2. Despite the remarkable 
improvement in prediction ability, the performances of ML models with varying PM information 
combinations were not significantly different, indicating that the models still had difficulty distinguishing 
the critical roles of different PM information. By contrast, the transfer learning model with deeply 
introduced PM information [Figure 6C] achieved the best-extended capacity, and the MAE of the validation 
set remained consistently below 3 mJ/m2. Meanwhile, the prediction results from transfer learning models 
incorporating different combinations of PM information show that building a source model with a single 
PM information as the target yields the best performance. This approach significantly outperforms models 
without PM information or those introducing all PM information. In conclusion, when building the source 
model with DF as the target, the prediction accuracy of the SFE-transferred model was the highest at close 
to 80%. These results demonstrate that the transfer learning model, with PM information as an intermediate 
attribute, achieves highly generalized SFE predictions.

This model is not limited to the original alloys in the dataset, but can deeply analyze PM information for 
both the alloys in the dataset and alloys of similar composition, enabling SFE predictions across a broad 
range of alloy systems and establishing a foundation for robust predictive scalability. However, this model 
constructs complex correlations between composition and PM information across diverse alloy 
composition-PM datasets, an approach absent in previous methods. As shown in Supplementary Figure 3, 
after expanding the database, the R2 of the source model increased from 98.5% to 99.8%. Next, we utilized 
these already-constructed models to further transfer and predict SFE, and verified the generalization ability 
of the models. Supplementary Figure 3C shows that the prediction accuracy has improved, with the R2 
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Figure 6. Comparison of model predictions under different introduction methods. (A) Input features by RF models; (B) fully connected 
layer by CNN models; (C) output of the source model by Transfer learning. RF: Random forest; CNN: convolutional neural network.

increasing from 72.3% to 78.5% while maintaining a low MAE value. This demonstrates that when the 
source model is trained with PM parameters as the output, generating sufficient virtual samples and fully 
training the model allows it to capture the underlying relationships between alloy composition and PM 
parameters. By transferring this complex association to predict SFE compositionally, introducing PM 
information as an intermediate step significantly enhances the predictive scalability of the model, enabling 
accurate prediction results even with small sample data, and truly achieving an enhancement in the 
interpretability of the ML model.

Prediction of SFE based on different PM introduction methods
This study considered three methods for introducing PM parameters into ML modes. As an example of the 
introduction of DF, Figure 7A shows the prediction results of these models, containing the training set, 
testing set, and additional sample data of austenitic stainless steel compositions as the validation set. For the 
training set, all models achieved high accuracy, with R2 > 85% and MAE below 4 mJ/m2, demonstrating the 
effectiveness of the RF algorithm and CNN in modeling SFE. Meanwhile, the slightly lower accuracy 
observed in the model incorporating PM parameters at the fully connected layer splicing may be due to the 
limitation of the small datasets used for deep learning models. For the testing set, the performances of the 
three models were similar, with prediction accuracies of approximately 70% and errors under 6 mJ/m2. The 
validation set, crucial for assessing the generalization ability of the model, revealed more significant 
differences between strategies. R2 values for the three models were above 70%, with the TR model having the 
greatest accuracy (close to 80%). For MAE, the RF model had a significantly higher prediction error (above 
6.5 mJ/m2), whereas the CNN and TR models yielded lower errors (under 3 mJ/m2), indicating that the 
transfer-learn strategy exhibited the best prediction performance.

Figure 7B shows the scatter plots of the predictions of the three models for the validation set. The RF model, 
in which DF was introduced directly as an input, showed the poorest performance, with predictions 
diverging from actual values. The prediction performance of the CNN model improved significantly, 
although performance in lower SFE ranges remained suboptimal. In contrast, most of the points predicted 
by the TR model aligned with the actual values along a line with a slope of 1, achieving the best prediction 
ability in lower SFE ranges, thereby reducing error and improving accuracy. In addition to DF, similar 
results were obtained for other PM parameters, indicating that the transfer learning strategy is the most 
effective approach. The above results indicate that as the “depth” of the PM parameter introduction 
increases - corresponding to enhanced guidance from PM mechanisms in ML - model generalization ability 
also improves. The improvement in the generalization ability of the model is still limited under the simple 
introduction mode of directly taking PM parameter inputs, but improves significantly when PM 
information is the intermediate (fully connected layer) input to the model. The most substantial 
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Figure 7. Comparison of model predictions using different methods of introducing DF. (A) R2 and MAE for training set, testing set, and 
validation set; (B) distribution of predicted and measured values of SFE for austenitic stainless steels. DF: Driving force; R2: the squared 
correlation coefficient; MAE: mean absolute error; SFE: stacking fault energy.

improvement in generalization arises from the transfer learning approach, where a source model with 
deeply mined PM information is constructed and subsequently transferred to the SFE prediction model. 
These results provide a reliable strategy for building ML models for SFE prediction, leveraging PM 
knowledge effectively in small data samples.

CONCLUSIONS
To obtain a generic and accurate prediction of the SFE, this study explored different strategies for 
introducing PM information into ML models, successfully establishing a framework for efficient prediction 
using PM information-guided ML. The specific conclusions are as follows:

(1) After comparing various strategies, we found that transfer learning with PM information as an 
intermediate step yielded the best predictive performance. Specifically, when the RF algorithm is directly 
applied, the model’s MAE reaches as high as 7.1 mJ/m2. On the other hand, when PM information is simply 
introduced into the fully connected layer of CNN, the best-achieved R2 value is only 69.8%. However, when 
PM information is used as an intermediate step in transfer learning, the model not only achieves a higher R2 
value (up to 78.5%) but also significantly reduces the MAE to 2.9 mJ/m2, resulting in a substantial 
improvement in prediction accuracy.

(2) By establishing a component-PM information association as an intermediate section for the 
composition-SFE relationship, the transfer learning model demonstrated significant improvements in 
generalization ability. This transfer learning approach allowed the model to identify the key roles of 
different PM information in SFE prediction, with DF as the source attribute providing the most accurate 
SFE transfer model, outperforming models that incorporated other PM parameters or their combinations.
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