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Abstract
As the most representative and widely utilized hole transport material (HTM), spiro-OMeTAD encounters 
challenges including limited hole mobility, high production costs, and demanding synthesis conditions. These 
issues have a notable impact on the overall performance of perovskite solar cells (PSCs) based on spiro-OMeTAD 
and hinder its large-scale commercial application. Consequently, there exists a strong demand for high-throughput 
computational design of novel small-molecule HTMs (SM-HTMs) that are cost-effective, easy to synthesize, and 
offer excellent performance. In this study, a systematic and iterative design and development process for SM-
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HTMs is proposed, aiming to accelerate the discovery and application of high-performance SM-HTMs. A custom-
developed molecular splicing algorithm (MSA) generated a sample space of 200,000 intermediate molecules, 
culminating in the creation of a comprehensive database of over 7,000 potential SM-HTM candidates. In total, six 
promising HTM candidates were identified through MSA, density functional theory calculations and high-
throughput screening. Furthermore, three machine learning algorithms, namely random forest, gradient boosting 
decision tree, and extreme gradient boosting (XGBoost), were employed to construct predictive models for key 
material properties, including hole reorganization energy, solvation free energy, maximum absorption wavelength, 
and hydrophobicity. Among these, the XGBoost-based model demonstrated the best overall performance. The 
MSA methodology combining comprehensive SM-HTM database and performance prediction models, as 
introduced in this study, offers a powerful and universal toolkit for the design and optimization of next-generation 
SM-HTMs, thereby paving the way for future advancements of PSCs.

Keywords: Perovskite solar cell, small-molecule hole transport materials, molecular splicing, density functional 
theory, high-throughput computational screening, machine learning

INTRODUCTION
With the growing urgency of addressing energy demands, climate change, and environmental challenges, 
the development of solar cells, which play a pivotal role in converting solar energy into electricity, has 
become increasingly significant[1-3]. Among various solar cell technologies, perovskite solar cells (PSCs) have 
emerged as a groundbreaking innovation. Due to their high power conversion efficiency (PCE), low cost, 
tunable optical bandgap, excellent carrier transport properties, broad spectral response, and straightforward 
fabrication processes, PSCs have rapidly become a focal point of research in the field of solar energy[4-7]. 
Notably, their PCE has reached an impressive value of 26.7%[8].

Hole transport materials (HTMs) are the essential component in PSCs for facilitating the transport of 
photo-generated holes to the electrodes, and the optimization of their performance can significantly 
improve the PCE of solar cells[9-11]. These materials can be broadly categorized into inorganic, polymeric and 
small-molecule HTMs (SM-HTMs)[9,12]. Inorganic HTMs, while promising, are limited by poor film-
forming properties and a narrow range of material options, hindering their development. Polymer HTMs 
face limitations in their application scope due to the relatively intricate synthesis and purification processes, 
along with the challenges associated with accurately characterizing their molecular weight. On the other 
hand, SM-HTMs offer abundant availability and flexible structural tunability, enabling the design of target 
molecules with high hole mobility through various structural combinations[9,13]. Currently, spiro-OMeTAD 
is the most representative SM-HTM used in PSCs. It consists of two rigid π-conjugated systems connected 
by an orthogonal molecular conformation, offering excellent thermal stability and strong film-forming 
capabilities[14,15]. However, due to weak intermolecular interactions, spiro-OMeTAD films exhibit low hole 
mobility. To enhance device performance, dopants such as lithium salts and tBP are often introduced to 
improve conductivity and hole mobility. Unfortunately, the use of dopants can lead to device 
instability[16,17]. Moreover, the commercialization of spiro-OMeTAD is hindered by its complex synthesis, 
low yield, difficult purification, and high production cost[9]. Consequently, there is growing interest in the 
development of new SM-HTMs to overcome these limitations.

The function of the SM-HTM is to extract holes from the perovskite absorber layer and efficiently transport 
them to the electrode, thereby enhancing the performance of the solar cells. An ideal SM-HTM should meet 
the following criteria[9,18]: (i) its highest occupied molecular orbital (HOMO) energy level should match that 
of the perovskite layer, facilitating exciton separation at the interface, enabling easy hole injection into the 
hole transport layer (HTL), and preventing electron migration into the HTL; (ii) it should exhibit high hole 
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mobility, promoting rapid hole transport to the electrode; (iii) it should have good solubility and film-
forming properties; (iv) it should possess good hydrophobicity, protecting the perovskite layer from 
moisture-induced degradation and improving device stability; (v) it should demonstrate high light 
transmittance, avoiding competition and absorption of light by the HTL that would otherwise be absorbed 
by the perovskite layer; (vi) it should be low-cost and easy to synthesize.

SM-HTMs with methoxyaniline as the terminal group have garnered significant attention from researchers 
due to their advantages of easy synthesis, straightforward purification, tunable energy levels, and strong 
structural functionality[12,19]. These materials typically consist of a central group and two terminal groups. 
Common central units include benzene rings, naphthalene, pyrrole, furan, thiophene, carbazole, and 
dibenzothiophene, while the terminal groups are often composed of dimethoxydiphenylamine and 
dimethoxytriphenylamine[20-23]. Studies have demonstrated that methoxyaniline groups play a critical role in 
influencing the electronic properties of HTMs. Additionally, the incorporation of methoxyaniline groups 
enhances the solubility of these materials, leading to improved film morphology[24-27].

Currently, research on new SM-HTMs primarily relies on traditional laboratory synthesis and trial-and-
error methods, which are inefficient and costly. However, with the rapid advancement of artificial 
intelligence technology, high-throughput computational screening and machine learning (ML) methods 
have become increasingly valuable in materials science[28-30]. These approaches are now widely applied in the 
development of new materials for various fields, including photovoltaics, optoelectronics, and 
photocatalysis[31-34]. Therefore, combining high-throughput computational screening with ML to design new 
SM-HTMs and predict their properties represents a highly promising direction for future research and 
development of SM-HTMs. In recent years, significant progress has been made in the structural design and 
performance investigation of HTMs for solar cells from the perspective of theoretical chemistry[35-39]. 
Building on this foundation, the integration of high-throughput screening and ML has emerged as a pivotal 
driving force in accelerating the discovery of novel SM-HTMs. Wu et al. pioneered a closed-loop workflow 
combining high-throughput organic synthesis with Bayesian optimization (BO) to discover SM-HTMs 
tailored for perovskite devices[40]. By training predictive models on 149 synthesized molecules and screening 
a virtual library of 1 million candidates, they achieved a certified PCE of 25.9%, demonstrating the power of 
data-driven approaches in navigating complex material landscapes with limited datasets. Complementing 
this, Faruque et al. employed a translational dimer model for high-throughput screening of 74 
diacenaphtho-extended heterocycles, coupled with ML-guided crystal structure prediction (CSP) and 
carrier mobility calculations[41]. Their workflow identified candidates with hole mobilities exceeding 
10 cm2/V·s, validated by semiclassical Marcus theory, highlighting the role of computational screening in 
optimizing molecular packing and charge transport. These studies exemplify a paradigm shift toward 
autonomous, ML-enhanced material discovery, offering scalable strategies for designing next-generation 
HTMs with superior optoelectronic properties. However, the success of high-throughput screening and ML 
hinges on the availability of a robust library of candidate structures for HTMs. Consequently, the 
development of innovative design methodologies and algorithms for the structure of SM-HTMs is essential.

In this study, an efficient design strategy for SM-HTMs is proposed, integrating molecular assembly 
algorithms, high-throughput screening, and ML model predictions. A self-developed molecular splicing 
algorithm (MSA) was employed to construct a database of potential SM-HTMs for PSCs. By integrating 
density functional theory (DFT), high-throughput computations were conducted to identify six high-
performance candidate SM-HTMs for subsequent synthesis and performance evaluation. Furthermore, the 
molecular structure and property datasets obtained through high-throughput calculations were utilized to 
develop property prediction models for SM-HTMs using three ML approaches: random forest (RF), 
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gradient boosted decision trees (GBDTs), and extreme gradient boosting (XGBoost). The results indicate 
that the model built with the XGBoost algorithm not only requires the least training time but also delivers 
the best prediction accuracy, demonstrating the most comprehensive performance. This work will offer a 
rapid, efficient and cost-effective approach for the development of new SM-HTMs by combining MSA with 
high-throughput computational screening and ML.

MATERIALS AND METHODS
First principle calculation
All DFT calculations were conducted using Gaussian 16 software[42]. Initial optimization was carried out 
using the semi-empirical AM1 method during the molecular splicing stage[43]. Under gas-phase conditions, 
geometry optimization, HOMO energy levels, hole reorganization energy, and absorption spectra were 
calculated at the B3LYP level with the 6-31++G(d,p) basis set[44]. Furthermore, the solvation free energy of 
the solvent molecules in n-octanol and water was calculated using the M062X functional and the 
6-31++G(d,p) basis set to estimate the hydrophobicity (LogP)[45,46].

Based on the optimized structure, the HOMO level, hole reorganization energy, solvation free energy, 
maximum light absorption wavelength, hydrophobicity, and synthetic feasibility score (SAScore) of the 
molecule were calculated. Hole reorganization energy is a key parameter for calculating hole mobility based 
on Marcus theory, which is given as follows[47]:

where ħ is Planck’s constant, v is the transfer integral, λ is the hole reorganization energy, kB is the 
Boltzmann constant, and T is the Kelvin temperature. The smaller the hole reorganization energy, the 
higher the hole mobility. λ is calculated by[48,49]

where λ0 represents the energy difference between different neutral state structures, λ+ is the energy 
difference between different cationic state structures, E0 is the energy obtained after optimizing the neutral 
molecular structure, and E+

* represents the cationic energy under the geometric configuration of the neutral 
molecule. E0

* is the energy of the neutral molecule under the cationic geometry, and E+ represents the energy 
obtained after optimizing the cationic structure. The solvation free energy ΔGsolv refers to the change in the 
free energy of the solute as it transitions from the gaseous state to the solution, which is given by[50]

where ESMD is the single-point energy under the solvation model for density (SMD) model, and the Egas 
represents the single-point energy under the gas phase. The smaller the solvation free energy, the stronger 
the solubility of the solute in the chlorobenzene solvent. HTMs must exhibit good hydrophobicity to protect 
the perovskite layer from water vapor degradation and enhance the stability and lifespan of the device. 
Hydrophobicity can be quantified using the n-octanol-water partition coefficient and LogP, which is 
calculated as follows[51-53]:

(1)

(2)

(3)
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where ΔGoct is the free energy of the molecule in n-octanol, ΔGw is the free energy of the molecule in water, 
and R is the standard molar gas constant. The SAScore is a rapid metric used to assess the synthesis 
difficulty of a molecule. The score ranges from 1 to 10, with values closer to 1 indicating easier synthesis and 
values closer to 10 indicating greater difficulty, which is given as follows[54]:

The FragmentScore is calculated based on 1 million representative molecules selected from the PubChem 
database. The ComplexityPenalty is a composite score that accounts for the presence of non-standard 
structures in the molecule, such as large rings, non-standard ring structures, and three-dimensional 
complex architectures. The SAScore is used as an evaluation metric for HTMs, providing a preliminary 
assessment of the synthesis difficulty of target molecules.

ML
All ML models were implemented using the scikit-learn[55] and xgboost[56] packages. In this study, the RDkit 
toolkit was used to extract 208 molecular descriptors from the structural data, including 12 basic descriptors 
(e.g., molecular weight, valence electron count), 38 descriptors related to molecular surface area (MolSurf), 
19 topological chemical descriptors (GraphDescriptors), and 85 molecular fragment descriptors. These 
included eight two-dimensional descriptors (BCUT2D), one drug-like descriptor (QED), two Crippen 
descriptors, 18 Lipinski descriptors, and 25 electrotopological state index descriptors (Estate). The training-
to-test set ratio was 9:1, and the model hyperparameters were optimized using grid search with 10-fold 
cross-validation. Data normalization was applied to prevent gradient instability and overfitting, thereby 
improving the model’s accuracy and convergence speed. The performance of the regression models was 
evaluated using mean absolute error (MAE), mean squared error (MSE), root mean squared error (RMSE), 
and R-squared (R2), as given below:

RESULTS AND DISCUSSION
D-π-D molecular splicing design
The target structure for the design of the HTM molecule is the D-π-D type, which features a stable planar
structure, where D represents the dimethoxydiphenylamine group and π is the intermediate. Figure 1
illustrates the complete process of D-π-D molecular splicing design, which is primarily divided into two
stages: the splicing of the intermediate π molecule and the splicing of the end group D with the intermediate
π molecule.

(4)

SAScore = FragmentScore - ComplexityPenalty                                                (5)

(6)

(7)

(8)

where N is the total number of samples, yi is the true value, yi is the predicted value, and yi is the average of 
the true value yi. The larger the RMSE and MAE values, the poorer the model performance, and conversely, 
the smaller these values, the better the model performance. The closer the R2 value is to 1, the better the 
model fit.



Page 6 of Wen et al. J. Mater. Inf. 2025, 5, 30 https://dx.doi.org/10.20517/jmi.2024.10221

Figure 1. Schematic diagram of the molecular splicing workflow for designing D-π-D molecules.

Fragment-based molecular splicing design of the π structures
The rules for designing the intermediate π splicing are as follows: (1) the structure should be as conjugated
as possible, with high molecular planarity; (2) the number of atoms in the molecule should range between
100 and 200. The library of basic molecular fragments includes ethylene, benzene rings, naphthalene,
pyrrole, furan, thiophene, carbazole, and dibenzothiophene, as these molecules exhibit excellent charge
transport properties due to their intermolecular interactions. Using these eight molecular fragments as the
basic backbone for molecular splicing, the intermediate π molecular splicing process is shown in Figure 1.

The fragment splicing algorithm developed for π molecules follows a strategy where the molecular library A
is updated in each iteration, while the basic molecular library B remains fixed. This approach is analogous to
performing molecular fragment growth on the molecules in library A during each iteration. Generally, the
process consists of the following four steps. (i) Identification of Splicing Sites: Identify all potential splicing
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positions on the molecule. The potential splicing sites correspond to the positions of hydrogen atoms on the
molecular fragments. Splicing between molecular fragments involves substituting the hydrogen atoms at
these specific positions. To identify all possible splicing sites on a molecule, it is necessary to scan through
all atoms in the molecular fragments, locate each hydrogen atom, and assign a unique identifier to each,
which will then be used for subsequent fragment splicing. Additionally, the symmetry of the molecular
structure should be taken into account, as symmetric sites need only be considered once, thus reducing the
computational cost in the subsequent splicing process; (ii) Combination and Structural Optimization:
Combine the molecules in library A with the basic fragment library B, and perform batch structural
optimization using the semi-empirical quantum calculation method AM1 in Gaussian16 software. The
optimized molecular structures are then stored in the molecular library A*; (iii) Structural Screening:
Conduct structural screening on the molecules in library A* after each splicing round, retaining those with
good planarity and storing them in the molecular library A**. This step significantly reduces computational
load and storage space while ensuring that the molecules in the initial library A of each round exhibit good
planarity, thereby increasing the likelihood of obtaining molecules with desirable planarity in subsequent
rounds. The molecules from the molecular library A** generated in each iteration are systematically archived
in the final π molecular database; (iv) Atom Count Evaluation: Evaluate the atom count of the molecules in
the A** library. If the atom count is less than 110, the splicing process is repeated. If the count exceeds 110,
the π molecular splicing process concludes. After 19 rounds of splicing, 200,000 π molecular structures were
generated in the π molecular database.

Molecular splicing design of the D-π-D structures
Upon obtaining the π molecular structure database, the subsequent step is to attach D fragments to both
ends of the intermediate π molecules, thereby forming the target D-π-D structures. The D fragments are
spliced at the most distant positions on the π molecules. The process is carried out in three main steps. (1)
Planarity Screening: A planarity screening is conducted on the 200,000 structures in the π molecular
database, resulting in the selection of 7,399 molecules with excellent planarity; (2) Molecular Splicing: D
fragments are attached to both ends of the selected π molecules to form the complete D-π-D target
molecular structures. Given that multiple potential splicing sites exist on the π molecule, the two most
distant sites are selected as the connection points for the D fragment. The RDkit toolkit is used to convert
the molecular structure into a graph-based representation, from which a distance matrix is computed. By
examining the elements of this matrix, the two nodes with the largest separation are identified as the
splicing sites for the D fragment; (3) Structural Optimization: The resulting D-π-D molecules undergo
structural optimization, and the optimized structures of the 7,399 molecules are stored in the D-π-D
molecular structure database for subsequent high-throughput property calculations. Four representative
D-π-D spliced molecules with varying atom counts are presented in Supplementary Figure 1.

High-throughput computational screening
High-throughput calculations were performed on 7,399 selected molecules in the D-π-D molecular database
to determine their HOMO energy levels, hole reorganization energies, solvation free energies, maximum
absorption peaks, and hydrophobicity (LogP) values. Among these, 7,222 molecules yielded normal results
from DFT calculations, while 177 computational tasks failed to converge. Finally, the SAScore was
computed for the 7,222 successfully converged molecules using the RDKit toolkit. Specific information on
these molecules, including molecular structures and calculated properties, is summarized in Supplementary
Files 1 and 2, respectively.

Figure 2 illustrates the high-throughput computational results for various performance parameters of 7,222
D-π-D HTM molecules. The x-axis represents the ID number of the molecule, with larger numbers
corresponding to molecules with a greater number of atoms. As shown in Figure 2A and B, no significant
correlation is observed between the HOMO energy levels or the hole reorganization energies and the

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202504/jmi40102-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202504/jmi40102-SupplementaryFiles.zip
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202504/jmi40102-SupplementaryFiles.zip


Page 8 of Wen et al. J. Mater. Inf. 2025, 5, 30 https://dx.doi.org/10.20517/jmi.2024.10221

Figure 2. High-throughput computational results for various performance parameters of 7,222 D-π-D HTM molecules: (A) HOMO, (B) 
Hole reorganization energy, (C) Solvation free energy, (D) Maximum absorption, (E) LogP, and (F) SAScore, respectively. The x-axis of 
the images (A) to (F) represents the ID number of the 7,222 D-π-D HTM molecules, with larger numbers corresponding to molecules 
with a greater number of atoms. The dashed lines in the figure represent the calculated performance parameters of spiro-OMeTAD, 
serving as reference values. HTM: Hole transport material; HOMO: highest occupied molecular orbital.
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number of atoms. However, the solvation free energy exhibits an inverse relationship with the number of 
atoms, meaning that larger molecules tend to have lower solvation free energies, which enhances their 
solubility in chlorobenzene solvent, as depicted in Figure 2C. Chlorobenzene was selected as the solvent for 
solvation free energy calculations due to its widespread use in PSC fabrication, particularly for dissolving 
SM-HTMs such as spiro-OMeTAD[57-60]. This choice ensures that the solvation free energy calculations align 
with experimental conditions, providing a reliable basis for predicting HTM performance and facilitating 
comparisons with spiro-OMeTAD. As a weakly polar solvent, chlorobenzene effectively dissolves non-polar 
or weakly polar HTMs, preventing excessively strong solvent-molecule interactions. This ensures uniform 
HTL film formation and minimizes over-solvation or interference with the crystallization of the perovskite 
layer, ultimately improving the device’s optoelectronic efficiency and stability. The choice of solvent is 
crucial in determining the solvation free energy and solubility of HTM molecules. Strong polar solvents 
[such as N,N-dimethylformamide (DMF) or ethanol] may reduce solvation free energy and increase 
solubility, but they can also leave solvent residues or damage the perovskite layer. Non-polar solvents (such 
as toluene or n-hexane) may increase solvation free energy and decrease solubility. Chlorobenzene, as a 
weakly polar solvent, strikes an optimal balance between solubility and film formation, making it suitable 
for processing most HTMs. Figure 2D reveals that the maximum absorption peak increases with the 
number of atoms, indicating a redshift in the absorption spectrum as molecular size grows. Additionally, as 
illustrated in Figure 2E, the hydrophobicity (LogP value) is directly proportional to the number of atoms, 
implying that larger molecules exhibit stronger hydrophobic characteristics. Finally, the SAScore of a 
molecule also increases with the number of atoms, as shown in Figure 2F, indicating that larger molecules 
are more challenging to synthesize.

In addition, performance data for seven previously reported HTMs, including spiro-OMeTAD[61], DTPC8-
ThDTPA[61], DTPC13-ThTPA[62], DTP-C6Th[63], YZ18[64], YZ22[64], and TPA-TVT-TPA[65], were  a l so  
calculated, with detailed values provided in Supplementary Table 1. It is important to note that the B3LYP 
functional tends to underestimate the HOMO-LUMO gap and overestimate the HOMO level. As a result, 
the calculated HOMO values are generally higher than experimental values, consistent with prior 
literature[61-63,66,67]. This alignment validates the accuracy of our structural model and computational 
methodology. It is noteworthy that this study is designed to address the critical limitations of spiro-
OMeTAD, including its low hole mobility, demanding synthesis requirements, and high production costs, 
through the development of novel SM-HTMs. The performance data of spiro-OMeTAD were used as a 
reference for screening high-throughput calculation results.

The screening process was primarily based on six criteria: HOMO level, hole reorganization energy, 
solvation free energy, maximum absorption peak, LogP, and SAScore. First, 7,222 molecules were pre-
screened based on the HOMO energy level and maximum absorption peak. These two parameters are 
critical for identifying candidate materials capable of effectively replacing spiro-OMeTAD in photovoltaic 
devices. Specifically, the HOMO energy level ensures proper energy alignment between the HTL and the 
perovskite absorber, which is essential for efficient charge extraction. Simultaneously, the absorption 
maximum mitigates spectral overlap with the perovskite layer, thereby minimizing parasitic light absorption 
by the HTL and maximizing light utilization by the perovskite active layer. These combined properties 
guarantee that the newly designed SM-HTMs can be seamlessly integrated into device architectures 
analogous to those employing spiro-OMeTAD. The calculated HOMO value of spiro-OMeTAD ± 0.1 eV 
(i.e., -4.117 to -4.317 eV) was used as the criterion for HOMO screening. Furthermore, referencing spiro-
OMeTAD, we also set a screening criterion for the maximum absorption peak. To prevent excessive light 
absorption by the HTL, which could compromise device efficiency, the maximum absorption peak of the 
7,222 molecules was required to be less than 400 nm, ensuring optimal photoelectric conversion efficiency. 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202504/jmi40102-SupplementaryMaterials.pdf
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Next, the remaining molecules were ranked according to their comprehensive properties based on four 
metrics: hole reorganization energy, solvation free energy, LogP, and SAScore. Given the significant 
variations in value ranges for these metrics, Min-Max normalization was applied to scale all indicators to a 
range of [0, 1]. For metrics where lower values indicate better properties (hole reorganization energy, 
solvation free energy, and SAScore), reverse normalization was applied. Furthermore, to address the 
limitations of spiro-OMeTAD, such as low hole mobility and high synthesis difficulty, higher weights were 
assigned to these properties. Specifically, weights of 0.3 were assigned to hole reorganization energy and 
SAScore, while solvation free energy and LogP were assigned weights of 0.2. The preliminarily screened 
molecules were scored and ranked based on these weighted criteria. A flowchart of the process is shown in 
Figure 3A, and the scores of the top 20 molecules are shown in Supplementary Table 2. The 6 highest-
scoring candidate molecules are screened out, denoted as M1-M6, which are presented in Figure 3B. To 
assess the robustness of the weighting scheme, we systematically varied the weights of the four properties 
(hole reorganization energy, solvation free energy, LogP, and SAScore) within a range of 0.1 to 0.4 using a 
step size of 0.01 (maintaining the total sum of weights equal to 1), generating a total of 124 unique weighting 
combinations. For each combination, the weighted scores of all candidate molecules were calculated, and 
the distribution of the top 10 molecules with the highest scores is shown in Supplementary Figure 2A. The 
molecular IDs and their occurrence frequencies are presented in Supplementary Table 3 and Supplementary 
Figure 2B. Remarkably, 50% of the most frequently occurring top ten molecules across all weighting 
scenarios (highlighted as red bars in Supplementary Figure 2B) overlap with our final selection, 
demonstrating the stability of our weighted screening strategy.

The molecular properties of the six screened SM-HTM molecules M1-M6 are listed in Supplementary Table 
4. Figure 4 compares the performance index data of the filtered M1-M6 molecules with that of several 
common SM-HTMs, such as spiro-OMeTAD, DTPC8-ThDTPA, DTPC13-ThTPA, DTP-C6Th, YZ18, 
YZ22, and TPA-TVT-TPA. The performance of the M1-M6 molecules remains promising when compared 
to spiro-OMeTAD and several other HTMs. The HOMO levels of the six screened molecules are very close 
to that of spiro-OMeTAD and are all higher than the common valence band energy level of perovskite 
materials. This theoretically ensures that the perovskite material absorbs incident photons to form electron-
hole pairs, with the holes being able to enter the HTL more readily. The maximum light absorption peaks of 
these molecules are all below 400 nm, avoiding overlap with the visible light absorption range of perovskite 
materials. This ensures that M1-M6 molecules will not compete for light with the perovskite layer, allowing 
perovskite materials to absorb and utilize sunlight more efficiently. In terms of hole reorganization energy, 
as depicted in Figure 4A, the 6 molecules are similar to spiro-OMeTAD overall and show significant 
improvement over YZ18 and YZ22, indicating that their hole mobility remains substantially excellent. 
Figure 4B reveals that the solvation free energies of the 6 molecules are comparable to those of commonly 
used HTMs, indicating their favorable solubility in chlorobenzene solution. As illustrated in Figure 4C, the 
LogP values of the screened molecules are maintained around 10, significantly higher than that of YZ22, 
indicating their superior hydrophobic properties. Furthermore, the SAScores of these molecules 
demonstrate a significant improvement over YZ18, YZ22, and TPA-TVT-TPA, suggesting their promising 
synthetic prospects, as shown in Figure 4D.

Although the screened SM-HTMs have not yet been experimentally synthesized and validated, their 
synthetic accessibility is strongly supported by the design principles of previously reported and successfully 
synthesized SM-HTMs[20-22,38], combined with the use of the SAScore parameter in our screening process, a 
metric specifically designed to evaluate synthetic feasibility. Furthermore, the stringent screening based on 
critical performance parameters, including HOMO energy levels, hole reorganization energy, solvation free 
energy, maximum absorption wavelength, and hydrophobicity, ensures their practical applicability. This 
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Figure 3. (A) Schematic diagram of the screening process for SM-HTMs; (B) The structures of 6 highest-scoring candidate SM-HTM 
molecules screened by high-throughput. SM-HTMs: Small-molecule hole transport materials.

comprehensive evaluation framework enhances the likelihood that the selected molecules are not only 
synthesizable but also functionally viable for real-world applications. The computational predictions 
presented here provide a robust foundation to streamline subsequent synthetic efforts, thereby guiding and 
accelerating experimental validation.

The synthesis complexity, economic feasibility, and environmental impact of HTMs are significantly 
influenced by their molecular structures. Linear SM-HTMs designed and screened in this study generally 
exhibit lower synthetic complexity due to well-established coupling or condensation reactions, higher yields, 
and simpler purification processes, making them more suitable for high-throughput screening and large-
scale production. Their relatively straightforward synthesis also translates to lower production costs and 
reduced solvent and catalyst consumption, thereby minimizing their environmental footprint. Therefore, 
the linear SM-HTMs identified in this study hold significant potential for future applications in the 
photovoltaic field and are expected to serve as viable alternatives to traditional HTMs, enhancing device 
efficiency and processability while maintaining cost advantages and promoting sustainability.

Establishment and validation of ML predictive models
A database of 7,222 molecular structure-performance data was constructed through the aforementioned 
high-throughput calculations. Subsequently, RF, GBDT, and XGBoost methods were used to build 
molecular structure-property models for four properties in the database: hole reorganization energy, 
maximum light absorption peak, hydrophobicity, and solvation free energy. The performance and 
predictive effectiveness of the models were then evaluated and analyzed.

Establishment of ML predictive models
Figures 5-7 present the true values and ML predictions for hole reorganization energy, solvation free energy, 
maximum absorption, and LogP, based on the RF, GBDT, and XGBoost models, respectively. The specific 
performance indicators R2, MAE, and RMSE are listed in Supplementary Table 5. Additionally, the 15 most 
important descriptors for each property (hole reorganization energy, solvation free energy, maximum 
absorption, and LogP) identified through the RF, GBDT, and XGBoost models are shown in Supplementary 
Figures 3-5, with detailed explanations of the relevant features provided in Supplementary Tables 6-17. As 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202504/jmi40102-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202504/jmi40102-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202504/jmi40102-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202504/jmi40102-SupplementaryMaterials.pdf


Page 12 of Wen et al. J. Mater. Inf. 2025, 5, 30 https://dx.doi.org/10.20517/jmi.2024.10221

Figure 4. Comparison of (A) Hole reorganization energy, (B) Solvation free energy, (C) LogP, and (D) SAScore of the six selected 
molecules and several common SM-HTMs, respectively. SM-HTMs: Small-molecule hole transport materials.

shown in Figure 5, the RF model demonstrates excellent prediction capabilities for solvation free energy, 
maximum light absorption peak, and hydrophobicity, but performs moderately for hole reorganization 
energy, with the R2 value for the test set reaching only 0.739. In contrast, the GBDT model excels in 
predicting maximum light absorption and hydrophobicity, as well as solvation free energy, and shows a 
notable improvement in predicting hole reorganization energy, with an R2 value of 0.865, compared to the 
RF model’s performance. Notably, the XGBoost model delivers superior performance across all four 
properties. Specifically, for hole reorganization energy, the R2 value reaches 0.901, a significant 
improvement over the RF (0.739) and GBDT (0.865) models. Furthermore, the prediction performance (R2 
values) of the RF, GBDT, and XGBoost models across the four datasets (hole reorganization energy, 
solvation free energy, maximum light absorption, and hydrophobicity) are ranked as follows: XGBoost 
(0.901) > GBDT (0.865) > RF(0.739); solvation free energy: XGBoost (0.998) > GBDT (0.997) > RF (0.996); 
maximum absorption peak: XGBoost (0.969) > GBDT (0.946) > RF (0.923); hydrophobicity: XGBoost 



Page 13 of Wen et al. J. Mater. Inf. 2025, 5, 30 https://dx.doi.org/10.20517/jmi.2024.102 21

Figure 5. The true values and ML predicted values for (A) Hole reorganization energy, (B) Solvation free energy, (C) Maximum 
absorption, and (D) LogP based on the RF model, respectively. ML: Machine learning; RF: random forest.

(0.996) > GBDT (0.992) > RF (0.991). It is evident that the XGBoost model outperforms all others in 
predicting all four datasets. In terms of computational efficiency, the average training time for the three 
models is as follows: XGBoost (8.2 s) < GBDT (206.3 s) < RF (611.3 s), highlighting the significantly higher 
computational efficiency of the XGBoost model compared to GBDT and RF. Overall, the XGBoost model 
demonstrates the best performance across the current dataset, with excellent generalization and 
computational efficiency. The superior predictive accuracy and computational efficiency of XGBoost can be 
attributed to its advanced algorithmic design. First, it employs an optimized gradient-boosted framework 
integrated with L1/L2 regularization techniques to mitigate overfitting and enhance generalization 
capabilities. Unlike RF, which relies on averaging multiple decision trees and may inadequately capture 
complex feature interactions, XGBoost effectively models intricate relationships through its sequential tree-
building process. Second, it leverages a weighted quantile sketch for sparse data optimization and 
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Figure 6. The true values and ML predicted values for (A) Hole reorganization energy, (B) Solvation free energy, (C) Maximum 
absorption, and (D) LogP based on the GBDT model, respectively. ML: Machine learning; GBDT: gradient boosted decision tree.

parallelized tree learning, significantly accelerating computational speed while maintaining precision. In 
contrast, conventional GBDT lacks such systematic optimizations, resulting in suboptimal efficiency-
accuracy trade-offs. These innovations collectively enable XGBoost to achieve a balanced and robust 
performance in both accuracy and scalability.

Validation of ML predictive models
To further assess the performance of the model on a new dataset, seven reported HTMs, including spiro-
OMeTAD, DTPC8-ThDTPA, DTPC13-ThTPA, DTP-C6Th, TPA-TVT-TPA, YZ18, and YZ22, were 
selected as test samples. The RF, GBDT, and XGBoost ML models were then employed to predict the hole 
reorganization energy, solvation free energy, maximum light absorption peak, and hydrophobicity of these 
molecules. The generalization ability of the models was evaluated by comparing the predicted values from 
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Figure 7. The true values and ML predicted values for (A) Hole reorganization energy, (B) Solvation free energy, (C) Maximum 
absorption, and (D) LogP based on the XGBoost model, respectively. ML: Machine learning; XGBoost: extreme gradient boosting.

the ML models with the DFT-calculated values. Figure 8 and Supplementary Table 18 provide a comparison 
of the predicted values from the RF, GBDT, and XGBoost models with the DFT-calculated values.

As shown in Figure 8, the ML models trained using the existing database demonstrate the ability to predict 
properties for unknown molecular datasets. Notably, the three ML models performed well in predicting the 
properties of the linear organic molecules TPA-TVT-TPA, YZ18, and YZ22. However, the predictions for 
spiro-OMeTAD, DTPC8-ThDTPA, DTPC13-ThTPA, and DTP-C6Th were less accurate, primarily due to 
the significant differences in the molecular structures of these molecules compared to those in the training 
set. The existing training dataset comprises only linear molecular structures, leading to a lack of diversity in 
the data. This limitation restricts the model’s generalizability and its ability to understand and predict the 
properties of nonlinear molecular structures. Future efforts could focus on enhancing the diversity of the 
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Figure 8. Comparison of the calculated DFT values for (A) Hole reorganization energy, (B) Solvation free energy, (C) Maximum 
absorption, and (D) LogP of common HTMs with the predicted values from RF, GBDT and XGBoost ML models, respectively. DFT: 
Density functional theory; HTMs: hole transport materials; RF: random forest; GBDT: gradient boosted decision tree; XGBoost: extreme 
gradient boosting; ML: machine learning.

training dataset by incorporating samples with distinct geometric structures (e.g., helical, star-shaped) to 
improve the model’s capacity for learning across a wide range of molecular configurations. Additionally, 
applying structural transformation simulations to the existing data could generate diverse molecular 
datasets, further enriching the distribution of the training dataset. Alternatively, employing universal 
molecular descriptors or advanced feature extraction methods (such as neural networks or ensemble 
methods) could enable the model to better capture the fundamental characteristics of various molecular 
structures. Neural networks offer significant advantages in handling nonlinear molecular structures and 
complex features, enabling better capture of intricate relationships between molecules and thereby 
improving prediction accuracy. Ensemble methods, on the other hand, enhance prediction robustness by 
combining the outputs of multiple models, effectively reducing model bias and increasing the stability and 
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reliability of property predictions for SM-HTMs. These strategies aim to improve the model’s generalization 
capabilities across different molecular architectures and enhance the accuracy of its performance 
predictions. On the other hand, as shown in Supplementary Table 18, the RF model and XGBoost model 
exhibited the best performance in predicting hydrophobicity and hole reorganization energy, respectively. 
On the other hand, the GBDT model performed better in predicting solvation free energy and maximum 
light absorption peak. Overall, the RF, GBDT, and XGBoost models, trained on the database obtained from 
high-throughput calculations, demonstrate good generalizability in predicting the material properties of 
linear organic SM-HTMs.

Methods for the design and development of new SM-HTMs
The discussion above, exemplified by linear SM-HTMs, presents a novel strategy for the design and 
development of SM-HTMs. The corresponding workflow is schematically illustrated in Figure 9. This 
methodology outlines a systematic and iterative approach designed to expedite the discovery of high-
performance SM-HTMs. The process begins with the construction of a diverse library of candidate organic 
small molecules using a MSA. High-throughput computational methods are then applied to 
comprehensively evaluate the performance parameters of these molecules. At this stage, high-performing 
candidates can be screened and selected for further study. Additionally, the computational data generated 
can be used to train ML models, enabling the development of robust structure-property relationship 
models. This facilitates the direct prediction of performance parameters based on molecular structures 
generated by the splicing algorithm, significantly reducing dependence on resource-intensive simulations. If 
the model encounters new molecular structures that lead to inaccuracies in prediction, high-throughput 
computational methods can be reintroduced to optimize and refine the ML model. Moreover, the ML 
model can be employed for inverse design, allowing the identification of molecular structures predicted to 
exhibit superior performance. This integrated strategy effectively combines the computational efficiency of 
ML with the precision of high-throughput calculations, fostering iterative improvement in both predictive 
accuracy and material discovery. This seamless and adaptive workflow significantly accelerates the 
identification, screening, and optimization of next-generation SM-HTMs. While this study primarily 
focuses on the application of the proposed methodology to the design and screening of SM-HTMs for PSCs, 
the approach can be extended to other photovoltaic materials and device architectures. The MSA, combined 
with high-throughput computational screening and ML, provides a versatile framework that can be adapted 
for the discovery of new functional materials in various optoelectronic applications. For instance, in organic 
photovoltaics (OPVs), donor-acceptor molecular systems play a crucial role in determining device 
performance. By applying the MSA, high-throughput computational screening and ML strategies, a diverse 
library of donor-acceptor molecules can be systematically generated and screened based on key parameters 
such as frontier molecular orbital energies, exciton binding energy, and charge transport properties. 
Similarly, in dye-sensitized solar cells (DSSCs), this methodology can facilitate the identification of novel 
organic dyes with enhanced light absorption, redox stability, and efficient charge transfer properties. It 
offers a powerful framework for advancing material innovation in applications such as PSCs and other 
cutting-edge photovoltaic technologies.

CONCLUSIONS
In summary, this work presents a novel design strategy for key HTMs in PSCs, utilizing the combination of 
molecular splicing, high-throughput computational screening, and ML techniques to identify candidate 
molecular materials with outstanding structures, comprehensive properties, and synthetic feasibility. 
Approximately 200,000 π-type molecular structures were generated using a MSA, from which 7,399 
molecules were selected for D-π-D-type molecular construction, followed by high-precision DFT 
calculations. Ultimately, a database of 7,222 D-π-D HTMs was compiled, containing property data for 
molecular structure models, HOMO levels, hole reorganization energy, solvation free energy, maximum 
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Figure 9. The toolkit for the design and development of novel SM-HTMs developed in this study. SM-HTMs: Small-molecule hole 
transport materials.

light absorption peak, hydrophobicity, and synthetic feasibility. Based on these property parameters, 6 
molecules with excellent overall properties were selected for further synthesis and investigation. 
Additionally, RF, GBDT, and XGBoost ML models were developed using the molecular datasets created in 
this study. Among these, the XGBoost model demonstrated superior generalization ability and efficiency, 
achieving R2 values of 0.901 for hole reorganization energy, 0.998 for solvation free energy, 0.969 for 
maximum light absorption peak, and 0.996 for hydrophobicity. Furthermore, the ML models trained in this 
work exhibited strong predictive performance for linear organic SM-HTMs similar to those in the dataset. 
This study provides a universal methodology for designing and developing SM-HTMs, which will fulfill the 
urgent demand for accelerating the progress of PSCs.
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