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Abstract
Federated learning has become a pivotal tool in healthcare, enabling valuable insights to be gleaned from disparate
datasets held by cautious data owners concerned about data privacy. This method involves the analysis of data from
diverse locations, which is subsequently aggregated and trained on a central server. Data distribution can occur ver-
tically or horizontally in this decentralized setup. In our approach, we employ a unique vertical partition learning
process, segmenting data by characteristics or columns for each record across all local sites, known as Vertical Dis-
tributed Learning or features distributed machine learning. Our collaborative learning approach utilizes Stochastic
Gradient Descent to collectively learn from each local site and compute the final result on a central server. Notably,
during the training phase, no raw data or model parameters are exchanged; only local prediction results are shared
and aggregated. Yet, sharing local prediction results raises privacy concerns, which we mitigate by introducing noise
into the local results using a Differential Privacy algorithm. This paper introduces a robust vertical distributed learning
system that emphasizes user privacy for healthcare data. To assess our approach, we conducted experiments using
the sensitive healthcare data in theMedical InformationMart for Intensive Care-III dataset and the publicly available
Adult dataset. Our experimental results demonstrate that our approach achieves an accuracy level similar to that of
a fully centralized model, significantly surpassing training based solely on local features. Consequently, our solution
offers an effective federated learning approach for healthcare, preserving data locality and privacy while efficiently
harnessing vertically partitioned data.
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1. INTRODUCTION
Machine learning (ML) research is gaining increasing prominence in the healthcare sector, offering the poten-
tial to save lives by predicting cases and providing valuable healthcare applications. Real-world healthcare data
can be leveraged to develop medical diagnostic tools, detect disease risk factors, and assess gene sequence in-
formation for therapeutic purposes. For example, Kwekha-Rashid et al. [1] showcased how ML can be utilized
in healthcare to investigate, predict, and differentiate COVID-19 instances for analysis and triaging. Addi-
tionally, Choudhury et al. [2] employed health data and a federated ML algorithm to assess the effectiveness
of the application in anticipating adverse drug reactions (ADR) in patients. Numerous other studies have
also demonstrated the significant contributions of ML in the healthcare field, including disease diagnosis and
other vital healthcare tasks. The potential of ML to transform the healthcare industry is vast, opening doors
to enhanced case prediction, more effective medical diagnostics, and improved patient outcomes.

The primary challenge in healthcare ML research lies in data distribution, as many clinics are hesitant to share
their raw Electronic Health Records (EHR) due to healthcare privacy regulations. As a result, patient data is
not centralized but rather dispersed across multiple sites or clinics. This data distribution can be categorized
into two types: horizontal and vertical. In the case of horizontally partitioned data silos, each client possesses a
unique collection of records, but their data shares common features. Typically, horizontal partitioning involves
distributing rows of a table across several database clusters. However, in certain contexts, such as healthcare,
there is a need to process data acrossmultiple sites for the same set of records but with different sets of attributes,
which does not fit the traditional horizontally partitioned arrangement. Vertical partitioning, on the other
hand, involves distributing data in a way where the same set of records can have distinctly different attributes
on each site. For example, one clinic may possess patient data with attributes such as name, age, and disease
code, while another clinic might have data with attributes such as name, age, and timestamps of ICU stays for
the same group of patients. While most current ML research focuses on training with horizontally partitioned
data, vertically partitioned data has received less attention in this context. This article centers on ML training
using vertically partitioned data distribution within the healthcare industry. Healthcare organizations may
utilize this type of data segregation when they aim to assess a patient’s health using clinical data from various
locations.

The centralized ML architecture is not a feasible solution for handling distributed data silos. To address this
challenge, Federated Learning (FL) [3,4] emerges as a distributedML approach. FL enablesmultiple data owners
to collaboratively develop and utilize a shared prediction model while preserving the privacy of their local
training data. This method iteratively enhances model accuracy by allowing each site to update its local model
and exchange locally computed gradients ormodel parameters with a central server. This entire process aims to
minimize the need to send raw data outside of individual facilities. Instead of sending raw data to a centralized
server, ML is trained using distributed data stored across multiple sites. Local data providers retain their raw
data, sharing it solely with locally constructed ML models. However, the sharing of model data in distributed
learning raises several privacy concerns. There is a risk that an attackermay reconstruct original data or extract
sensitive personal information from the shared model [5,6]. Therefore, the FL method requires an additional
layer of privacy protection to further safeguard the data and mitigate potential privacy risks.

In a horizontal setting, recent approaches typically employ data anonymization or differential privacy (DP)
algorithms to introduce a privacy layer. Choudhury et al. [7,8] demonstrated how customized k-anonymity or
DP can be utilized in FL to maintain privacy while ensuring acceptable utility. They applied this approach to
healthcare data to predict mortality rates based on patients’ ICU stays. Similarly, much of the current research
in this field focuses on integrating suitable privacy algorithms into FL to comply with healthcare regulatory
policies. In our earlier research [9], we proposed a framework that communicates model data only after suf-
ficient data sanitization to protect patients’ privacy while preserving data utility. For vertically partitioned
data, the FL setting differs from the well-researched horizontal FL configuration as it presents its own unique
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characteristics and challenges. Local models in vertical FL (VFL) require data from other sites to jointly train
the ML model and learn about all features. Existing methods [10,11] mostly rely on encrypted multiparty com-
munication to exchange information about each other’s features. However, these cryptographic techniques
reduce privacy concerns at the cost of increased computational overhead. In contrast, our approach reduces
the necessity to learn about other sites’ features for training. It only exchanges local predictions with the server
for score aggregation, eliminating the need to share model or feature sets and thereby enhancing privacy.

In our vertical architecture, models are independently trained locally based on the available features at each
site. The central server’s role is solely to aggregate the local predictions; it does not partake in the training
process. Training the full model is achieved through mini-batched Stochastic Gradient Descent (SGD) using
distributed computation. The local training progresses asynchronously, allowing different parties to execute
various iterations of parameter updates, which aligns with our design approach. Local feature sets are used for
classification through Logistic Regression (LR) and long short-term memory (LSTM) neural networks (NNs),
producing local predictions. These local predictions are then shared with the central server, where they are
aggregated to obtain the final prediction.

Table 1 andTable 2 illustrate how feature sets can be distributed for the samepatients. Thefirst table, 𝑃1(𝐼𝐷, 𝐼𝑛𝑇𝑖𝑚𝑒, 𝑂𝑢𝑡𝑇𝑖𝑚𝑒),
lists a group of patients’ ICU stays, while the second table, 𝑃2(𝐼𝐷, 𝐴𝑔𝑒, 𝐷𝑖𝑠𝑒𝑎𝑠𝑒𝐶𝑜𝑑𝑒), contains their disease
codes. At each site, local predictions for mortality rates or the probability of a specific acute disease are gener-
ated and shared with the central server. The server aggregates these local predictions without exchanging any
model parameters, as shown in Table 3. To address privacy concerns and prevent potential privacy attacks, we
apply the well-established privacy method, DP [12], to perturb the local predictions before sharing them. By
using this approach, the server only receives the perturbed predictions to determine the final prediction for
each classification task. This ensures a robust vertical distributed learning (VDL) framework with data privacy,
although there may be some loss in accuracy due to the addition of DP noise.

The primary challenge in VDL is to maintain data privacy while achieving an efficient level of accuracy with-
out incurring significant communication overhead. Our approach addresses this challenge by ensuring data
privacy with minimal communication overhead, as we only share prediction results with the central server.
Once each local prediction is sent to the central server, we apply a weighted feature approach to build the
final accuracy. In a similar manner to Hu et al. [13], who proposed a feature distributed collaborative learning
technique using a continuously differentiable function to aggregate local intermediate predictions as a weight
parameter, we shuffle and weight local predictions randomly. This approach effectively influences the ultimate
score. For instance, if a local prediction has a feature set 𝑥1 and 𝑥2 that could contribute to higher accuracy
when trained in a central architecture with all the feature sets, assigning more weight to these features will
result in improved performance. A sample weighted matrix is provided in Table 4.

Contributions: The contributions of our work can be summarized as follows:

• We proposed a VFL method for the healthcare sector to improve performance and ensure robust data pri-
vacy. Our investigation spanned four specific applications in the healthcare domain: In-hospital Mortality,
Forecasting Length of Patient Stay, Phenotype Classification, and Decompensation Detection.

• We introduced a randomized feature distribution technique, which yielded superior results, showcasing
enhanced granularity in feature selection. The combination of LSTM-based modeling and a refined fea-
ture selection process is a key contribution to our work, aiming to optimize performance and relevance in
healthcare applications.

• We conducted experiments using the Adult and Medical Information Mart for Intensive Care (MIMIC)-III
datasets, employing LR and LSTM-based deep NNs. We compared our results with a baseline centralized
model. Our approach achieves accuracy levels almost on par with the baseline model while maintaining
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Table 1. Raw data - site 1 (ICU stays)
Patient ID In time Out time

831 1955-02-25 1955-02-27
832 1957-12-02 1957-12-31
833 1957-12-02 1957-12-31
834 1973-11-30 1973-12-31
835 1973-12-31 1974-01-14
836 1929-03-21 1929-04-06
837 1929-03-21 1929-05-06
838 1929-03-21 1929-06-06

Table 2. Raw data - site 2
Patient ID Age Disease code

831 34 710
832 70 480
833 33 34
834 55 48
835 47 683
836 67 809
837 77 807
898 58 586

Table 3. Data available - central
Classification Site 1 (pre-

diction)
Site 2 (pre-
diction)

Final pre-
diction

Logistic regression 0.67 0.75 0.84
LSTM 0.56 0.70 0.86

Table 4. Weighted feature matrix
Prediction task In time Out time Age Dis.Code
Mortality rate 0.85 0.85 0.25 0.40
Acute disease 0.15 0.15 0.86 0.85

privacy. Specifically, for theMIMIC-III dataset, our solution achieves up to 80% and 82% accuracy for LR
and LSTM methods, respectively. For the Adult dataset, we achieve 90.3% and 90.4% accuracy for LR and
LSTM methods, respectively.

• In summary, our model experiences a maximum accuracy loss of 5% due to the addition of noise in the
distributed learning framework. Despite this minimal loss, we successfully preserve privacy in the process.

2. BACKGROUND
In this part, we will provide a quick explanation of some of the important principles that were used to develop
this suggested framework.

2.1. Vertical federated learning
Vertical federated learning (VFL) is a ML technique that empowers organizations with vertically partitioned
data to develop and train a decentralized ML model while safeguarding data privacy and security. In this
approach, data samples are distributed among different parties, with each party possessing its unique set of
features or attributes. The main objective of VFL is to create a global ML model using these vertically parti-
tioned data samples while ensuring that the raw data remains confidential and secure. To achieve this, each
party independently trains its local model based on its own data and later combines the results at a central
server to construct the global model. This method proves effective in scenarios where organizations have data
silos and desire to harness ML to improve models without sharing raw data with one another. In VFL, data
is partitioned in a manner where two nodes may share the same user profiles but contain different feature
information. These nodes could represent various health institutions or providers of healthcare data applica-
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tions. The aim of VFL in such cases is to create a comprehensive model by aggregating patient features from
multiple institutions without directly exchanging patient data. This way, VFL ensures collaboration and model
improvement while maintaining strict data privacy and security. Each node sharing the same sample of data
𝐼 and contributing its own unique set of patient features 𝑋 and labels 𝑌 information, VFL can be denoted as
the following:

𝐼𝑖 = 𝐼 𝑗 =

{
𝑋𝑖 ≠ 𝑋 𝑗 𝑖 ≠ 𝑗

𝑌𝑖 = 𝑌 𝑗
(1)

In this scenario, we are considering a homogenous label setting where all parties are trying to predict the
same target variable, but each party may have access to different features that are relevant to the prediction.
For example, from each client, the same data sample 𝐼 can be denoted with different features {𝑥𝑖1, 𝑥

𝑖
2, 𝑥

𝑖
3} and

{𝑥 𝑗
3, 𝑥

𝑗
4, 𝑥

𝑗
5} but with the same label 𝑦. Consider a scenario where a hospital and a nearby immunization center

are two distinct healthcare institutions operating in the same area. As they serve local populations, the patients
utilizing these facilities may exhibit significant similarities. However, the data they retain could differ, with
vaccine centers storing users’ immunization histories and hospitals maintaining medical treatment histories.
Due to this disparity in data storage, the user features may not be directly related. In this context, VFL pro-
vides a safe and effective approach to integrating diverse feature sets to enhance model performance while
still preserving the locality of the data. By utilizing VFL, valuable insights can be gleaned from both types
of healthcare institutions without compromising data privacy, enabling improved healthcare decision-making
for the benefit of the community.

2.2. LSTM neural networks
A NN is a network of interconnected processing ”nodes” or units functioning analogously to biological neu-
rons. These nodes, synthetic versions of biological neurons, receive inputs that are multiplied by weights and
then delivered to the cell body, where they are combined through basic arithmetic to produce node activa-
tions. A threshold logic unit (TLU) carries out this calculation, resulting in an output of either zero or one.
Constructing a NN involves defining its model structure, including the number of input features and outputs,
and initializing its parameters before running them in a loop [14,15]. During this process, forward propagation
calculates the current loss, backward propagation computes the current gradient, and gradient descent updates
the parameters. Preparing the dataset and tuning the learning rate can significantly influence the algorithm’s
performance.

Recurrent NNs (RNNs) are a specialized type of NN that allows information to be propagated from one step
of the network to the next. They are particularly suited for tasks involving sequential data, such as language
translation and speech recognition. RNNs process input sequences element by element while maintaining an
internal state that encodes the context of the sequence up to that point. This enables the network to utilize
information from earlier elements in the sequence when processing later ones, facilitating the capture of de-
pendencies between elements in the input sequence. RNNs come in various forms, such as LSTM networks
and gated recurrent units (GRUs).

LSTM is a specific type of RNN well-suited for modeling temporal data with long-range dependencies. RNNs
process sequential data by iterating through the time steps of the input and maintaining a hidden state that
carries information about the past. LSTMs, as a variant of RNNs, incorporate an additional ”memory cell”
capable of storing information for an extended duration. Additionally, they feature three ”gate” mechanisms
(input, output, and forget gates) that control access to and modification of the memory cell, enabling effective
long-term information retention. The equations for the forward pass of an LSTM cell can be denoted below:
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Forget gate’s compact forms:
𝑐<𝑡> = 𝑡𝑎𝑛ℎ(𝑊𝑐 [𝑎<𝑡−1>, 𝑥<𝑡>] + 𝑏𝑐) (2)

Update gate’s activation vector:
Γ𝑢 = 𝜎(𝑊𝑢 [𝑎<𝑡−1>, 𝑥<𝑡>] + 𝑏𝑢) (3)

Forget gate’s activation vector:
Γ 𝑓 = 𝜎(𝑊 𝑓 [𝑎<𝑡−1>, 𝑥<𝑡>] + 𝑏 𝑓 ) (4)

Output gate’s activation vector:
Γ𝑜 = 𝜎(𝑊𝑜 [𝑎<𝑡−1>, 𝑥<𝑡>] + 𝑏𝑜) (5)

Finally, cell state vector 𝑐𝑡 :
𝑐𝑡 = Γ𝑢 ∗ 𝑐<𝑡> + Γ 𝑓 ∗ 𝑐<𝑡−1> (6)

These are the standard equations employed to update the hidden state and memory cell in an LSTM at each
time step. 𝑥<𝑡> represents the input at time step 𝑡, 𝑎<𝑡> denotes the hidden state at time step 𝑡, and 𝑎<𝑡−1>

represents the hidden state at the previous time step. The weight matrices, 𝑊𝑢 , 𝑊 𝑓 , and 𝑊𝑜 , correspond to
the update, forget, and output gates, respectively, while 𝑏 represents the bias term. The function 𝜎(𝑥) denotes
the sigmoid function, which maps a value to the range [0, 1]. Additionally, the function 𝑡𝑎𝑛ℎ(𝑥) denotes the
hyperbolic tangent function, which maps a value to the range [-1, 1]. These mathematical operations play a
crucial role in the LSTM’s ability to update and control its hidden state and memory cell, allowing for effective
memory retention and handling of sequential data. A detailed explanation of the LSTM algorithm can be
found in [16–18].

2.3. Differential privacy
DP is a mathematical framework for protecting the privacy of individuals in a dataset. Its goal is to enable the
release of useful statistical information about a dataset while ensuring that no individual’s data can be inferred
from the released information. The privacy level is controlled by the epsilon variable, which can be changed
in accordance with varied circumstances and security guidelines. The system provides increased security as
epsilon changes.

Definition 1 (𝜀-Differential Privacy) An algorithm 𝑋 is differentially private [12] if, for any datasets 𝐷 and 𝐷′

differing by at most a single record, and for all sets 𝑆 ∈ 𝑅, where 𝑅 is the range of 𝑋 , the following condition holds

𝑃𝑟 [𝑋 (𝐷) ∈ 𝑆] ≤ 𝑒𝜀 × 𝑃𝑟 [𝑋 (𝐷′) ∈ 𝑆] (7)

Two datasets, in this instance, are said to be neighbors if their sole difference is one record. Here, the privacy
budget of the method can be represented by the non-negative parameter 𝜀. The privacy budget determines
the trade-off between the accuracy of the query and the privacy of the individuals in the dataset. A smaller
privacy budget corresponds to a larger amount of noise added and, therefore, a lower accuracy but stronger
privacy guarantees.

One common algorithm for achieving DP is the Laplace mechanism. This mechanism adds noise to the output
of a statistical query in a way that preserves DP. The amount of noise added is determined by the ”sensitivity”
of the query, whichmeasures howmuch the output of the query can change when data from a single individual
is removed from the dataset.

http://dx.doi.org/10.20517/jsss.2023.28


Islam et al. J Surveill Secur Saf 2024;5:1-18 I http://dx.doi.org/10.20517/jsss.2023.28 Page 7

3. RELATED WORK
Over the last few years, significant attention in distributedML research has been directed towards data privacy
and security within the healthcare industry. In this section, we provide a brief overview of several related works
in this area.

3.1. Distributed learning and privacy attacks
FL is a distributed learning method that avoids sharing sensitive raw data to preserve data privacy. Recent
studies have demonstrated the advantages of using FL over traditional centralized ML models, especially for
sensitive data applications. However, in this distributed framework, there are potential privacy attacks, such as
inference [6], reconstruction [19,20], or backdoor [21,22] attacks, which could lead to the retrieval of data through
exposed information. To address these concerns, Rajkumar et al. [23] proposed the use of DP algorithms to
effectively minimize privacy attacks while maintaining reasonable utility. Choudhury et al. [7] applied this DP
approach in the FL architecture for healthcare data. However, they also found that the DP noise introduced
could adversely affect data utility. In their subsequent work [8], Choudhury et al. aimed to strike a balance
between privacy and utility by implementing tailored k-anonymity to reduce DP noise as much as possible. An
empirical assessment of the health records of one million patients demonstrated robust model performance
that outperformed standard DP approaches. Similarly, in our recent work [9], we were motivated by the idea of
”data sensitization first, noise applied last” to minimize DP noise in model data and enhance the overall data
utility of the framework. Our approach seeks to achieve a more optimal balance between privacy protection
and maintaining meaningful utility in the context of distributed healthcare data analysis.

Privacy-preserving ML can be achieved through encryption [24–26] or secret sharing [27–29] via secure multi-
party communication. In these frameworks, models are communicated using encrypted data or shared secrets.
However, encryption requires more computational resources and may not be suitable for all scenarios. Ad-
ditionally, secure multiparty communication necessitates frequent data transfers between clients, leading to
communication overhead.

In recent years, distributed ML techniques focusing on horizontal data have received increasing attention. In
contrast, our work enables feature-parallel ML among nodes with vertically partitioned data, which is equally
significant but has not yet been extensively investigated. This approach addresses the challenges unique to
vertically distributed data, opening up new avenues for privacy-preserving ML in a different context.

3.2. Privacy-preserving distributed learning on vertical data
Numerous research efforts have been dedicated to developing privacy-preserving techniques for VDL. The
primary goal of these techniques is to safeguard the privacy of training data while ensuring effective model
training. One common approach involves the application of DP [12,30], where noise is added to the data in
a manner that preserves individual privacy while enabling the model to capture meaningful patterns. Other
methods include leveraging secure multiparty computation (SMC) [31] to facilitate joint computation of the
model by multiple parties without revealing their respective data to each other. Additionally, homomorphic
encryption is utilized to encrypt the data, allowing the model to be trained on the encrypted data without
exposing the underlying data itself. These privacy-preserving techniques contribute to a more secure and
efficient VDL process.

Liu et al. [10] introduced the Federated Stochastic Block Coordinate Descent (FedBCD) algorithm, which uti-
lizes an SMC approach. In their work, each party performsmultiple local updates tominimize communication
overhead. The focus is on vertically partitioned data, where only a single value is shared instead of the entire
model or raw data, ensuring data privacy is maintained. Similarly, Hu et al. [32] explored a similar approach
for VFL using the Alternating Direction Method of Multipliers (ADMM), commonly employed in distributed
ML. In their method, they shared a single value for model training and incorporated the 𝜀, 𝛿- DP algorithm
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Figure 1. Multiple Data Owners are training a model collaboratively using distributed feature learning.

to perturb the shared value using Gaussian noise. The perturbed approach ensures that the probability dis-
tribution of communicated values remains largely unaffected by modifications to any individual feature in
a party’s local dataset. With theoretical privacy guarantees, their method converges with significantly fewer
epochs compared to the state-of-the-art SGD approach. Chen et al. [11] also proposed a VFL approach in an
asynchronous manner, utilizing SMC for communication between parties. They incorporated ”perturbed lo-
cal embedding” with Gaussian DP noise to enhance data privacy. Their experiments covered both LR and
deep learning for healthcare data, demonstrating the efficacy of their approach in maintaining privacy while
training ML models on distributed features.

In a VFL scenario, effective communication of each partner’s unique feature information is crucial for joint
learning and training of any classification algorithm. Currently, many technologies rely on SMC techniques to
exchange feature information with clients. Some strategies employ homomorphic encryption or DP for data
perturbation or sanitization to preserve privacy while sharing feature information. Hu et al. [13] proposed a
feature-distributed collaborative learning strategy where each client undergoes independent training, and the
final prediction output is shared with a central server for computing the final score. This approach maintains
data locality in an asynchronous SGDmethod bymaking predictions solely based on local features in a parallel
computing fashion. They also employed LaplacianDP noise to safeguard the shared prediction sent to themain
server. However, their technique did not specifically target healthcare data and utilized the NN deep learning
technique, with LSTM-based approaches showing better performance. Our approach is quite similar to theirs,
except that we adopted the latest LSTMmethods specifically designed for healthcare data. By leveraging these
advanced techniques, our approach demonstrates improved performance and effectiveness in the context of
healthcare data analysis within the VFL framework.
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4. METHODS
In this section, we introduce our proposed approach for training a model using vertically partitioned data
while simultaneously safeguarding the data privacy.

4.1. Problem overview
In the proposed architecture of VFL, depicted in Figure 1, models are trained locally based on the available
features at each site. The central server acts as an aggregator for the overall predictions but does not engage
in any training. The complete model is trained using mini-batched SGD [2,30,33] at each local party. Once
local training is completed, the final results are shared with the central server. To classify the local feature
set and produce a local prediction, LR and LSTM NNs are employed. The central server aggregates these
local predictions to generate the final prediction. To determine the appropriate feature weight for each feature,
random value assignment is used. This weight matrix, together with the local prediction results, is aggregated
by the central server. This design eliminates the need for communication between parties, thereby reducing
the risk of data exposure. In addition to the weight-based aggregation, the local predictions are perturbed with
DP noise, creating a more robust privacy-preserving model, albeit resulting in a slight decrease in accuracy in
the final outcome.

Themodel performance will be evaluated using an appropriate evaluationmetric, aiming tominimize the error
between the predicted outputs and the true labels. The objective is to build a model that generalizes well to
unseen data and can be effectively deployed in a real-world healthcare setting to address the problem at hand.

4.2. Local prediction calculation
In our model, each data source or site contains a unique feature set. As a result, we train our model based
solely on the available local features in this step. In a similar setting, Hu et al. [13] utilized LR and convolutional
NN (CNN) approaches in mobile app datasets. In contrast, we leverage both LR and LSTM models for local
feature-based training specifically tailored for healthcare data. LR is a straightforward yet effective linearmodel
commonly employed for classification tasks. It operates by using a linear combination of input features to
predict the probability of a given example belonging to a particular class. On the other hand, LSTM is a type
of RNN well-suited for modeling sequential data, such as time series or natural language. LSTMs excel at
capturing long-term dependencies within data by employing gating mechanisms to control information flow
throughout the network.

For local feature-based training using LR, we first define a set of local features, compute the local feature
representation for each feature vector, and subsequently use these local features as input to train an LR model.

Suppose we have a set of training data, (𝑥1, 𝑦1), (𝑥2, 𝑦2), . . . , (𝑥𝑛, 𝑦𝑛), where each 𝑥𝑖 is a feature vector and 𝑦𝑖 is
the corresponding label. To train a model based on local features, we first need to define a set of local features
𝑓1, 𝑓2, . . . , 𝑓𝑚 that we will use to represent each feature vector 𝑥𝑖 .

Then, for each feature vector 𝑥𝑖 , we can compute its local feature representation 𝑧𝑖 as:

𝑧𝑖 = [ 𝑓1(𝑥𝑖), 𝑓2(𝑥𝑖), . . . , 𝑓𝑚 (𝑥𝑖)]

Once we have computed the local feature representation for each feature vector in the training data, we can
train the LR model using these local features as input and the corresponding labels 𝑦𝑖 as output.

Before selecting local features, it is important to perform feature engineering and data preprocessing as nec-
essary. Let 𝑥𝑖 represent the original feature vector, which consists of a set of local features 𝑓1, 𝑓2, . . . , 𝑓𝑚 that
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are selected based on domain knowledge and relevance to the problem. In healthcare data analysis, these lo-
cal features can represent different aspects of patient data or medical measurements. Once the local features
are chosen, the local feature representation 𝑧𝑖 for each feature vector 𝑥𝑖 is computed by applying each local
feature function to the original feature vector 𝑥𝑖 . Here, 𝑓 𝑗 (𝑥𝑖) represents the result of applying the 𝑗-th local
feature function to the 𝑖-th feature vector to train a ML model using these local feature representations 𝑧𝑖 . The
choice of ML algorithms depends on the problem and data characteristics. In our case, we choose both LR and
LSTM. To evaluate the model performance using appropriate metrics, we compute accuracy, precision, recall,
F1-score, and other relevant metrics based on the model’s predictions and the true labels. The relationship be-
tween the original feature vector 𝑥𝑖 and the local feature functions is one of transformation and extraction. The
local feature functions transform the raw, high-dimensional data in 𝑥𝑖 into a set of lower-dimensional features
represented by 𝑓1(𝑥𝑖), 𝑓2(𝑥𝑖), . . . , 𝑓𝑚 (𝑥𝑖). These local features are chosen based on domain knowledge and
relevance to the problem, and they effectively ”highlight” certain characteristics of the data while potentially
discarding less relevant information. In summary, the local feature functions are used to derive informative
features from the original data 𝑥𝑖 , and these features are employed for training ML models in healthcare data
analysis. The choice of local features and their calculation methods significantly mold the model’s ability to
capture relevant patterns in the data.

On the contrary, when employing LSTM for local feature-based training, we adopt a similar process. However,
we need to reformat the local feature representation into a sequence suitable for LSTM processing. For the
given set of local features 𝑓1, 𝑓2, . . . , 𝑓𝑚 and each feature vector 𝑥𝑖 , we create a sequence by concatenating
these local features. Subsequently, we use this sequence as input to an LSTM model, following the equations
described in the Background section.

To replicate ourmethodology within the healthcare industry, we train themodel using the sensitiveMIMIC-III
dataset. Prior to commencing training, we partition the entire dataset into two distinct sets, each containing
the same records but with different attributes, as illustrated in Figure 1. During a single training session, we
adopt a homogenous label setting, wherein all parties aim to predict the same target variable. However, each
party may have access to different features that are relevant to the prediction. To mimic the VFL scenario, we
segregate the full dataset into two separate sets with identical records but varying features. The model training
is then conducted independently on two different clients to compute the local prediction results for both LR
and LSTM. In this simulated scenario, we can consider one party as a Hospital and the other party as a local
health insurance provider. After suitable data preprocessing, for the same set of records, the two parties may
possess different features. For example, as depicted in Figure 1, the Hospital may have features 𝑥1, 𝑥2, 𝑥3, while
the health insurance provider may have features 𝑥1, 𝑥4, 𝑥5. Hence, 𝑥1 is the common feature shared by both
parties, while the other two features differ. For benchmarking, we use the tasks defined by Harutyunyan et
al. [34] as below:

4.2.1. In-hospital mortality (IHM)
This task involves binary classification to predict in-hospital mortality based on data from the first 48 hours
of an ICU stay. Our LSTM model takes a sequence of vital signs and other patient data collected over time as
input and predicts the probability of death during the hospital stay.

4.2.2. Forecasting length of stay (LOS)
The benchmark addresses a multiclass classification problem that predicts the remaining ICU stay duration,
which is divided into ten classes/buckets: < 1, 1−2, 2−3, 3−4, 4−5, 5−6, 6−7, 7−13, > 14. This classification
is performed only for individuals who did not die in the intensive care unit.
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4.2.3. Phenotype classification (PH)
Phenotyping involves 25 discrete binary classification tasks aimed at determining the presence of 25 acute care
conditions in a specific patient’s ICU stay record.

4.2.4. Decompensation (DC)
Theobjective is to identify patientswho are physically deteriorating. Decompensation is a sequential prediction
task where the model forecasts after each hour in the ICU. The goal at each hour is to anticipate the patient’s
mortality within a 24-hour time frame.

To prepare the model with the local feature set and time series observations, we capture the patient’s length of
ICU stay over T hours, with 𝑥𝑡 at each time step 𝑡 (one-hour interval). To model the time series observations,
we define the feature as [𝑥𝑡]𝑇𝑡=1, taking into account the previous hidden state 𝑎<𝑡−1> and the current hidden
state 𝑎<𝑡> in the LSTM model. According to the LSTM equation mentioned in the Background section, the
model equation for all the above four tasks will be as follows:

ˆ𝐼𝐻𝑀 = 𝜎(𝑊𝑜 [𝑎<48>, 𝑥<48>] + 𝑏𝑜) (8)

ˆ𝐿𝑂𝑆 = 𝜎(𝑊𝑜 [𝑎<𝑡−1>, 𝑥<𝑡>] + 𝑏𝑜) (9)

𝐷𝐶 = 𝜎(𝑊𝑜 [𝑎<𝑡−1>, 𝑥<𝑡>] + 𝑏𝑜) (10)

ˆ𝑃𝐻 = 𝜎(𝑊𝑜 [𝑎<𝑡−1>, 𝑥<𝑡>] + 𝑏𝑜) (11)

For the in-hospital mortality task, the binary label 𝑜 is determined at 𝑡 = 48 hours, whereas for the other
three tasks (decompensation, phenotyping, and LOS), it is predicted at each time step 𝑡 = 5...𝑇 . Notably,
in-hospital death prediction is made at the end of 48 hours, while decompensation, phenotyping, and LOS
tasks are anticipated at each time step after the first four hours of ICU stay, following the benchmark set by
Harutyunyan et al. [34]

The LSTM model is trained using the Adam optimizer with a learning rate of 𝐷 and a batch size of 𝐸 . A
categorical cross-entropy loss function is employed, and the model performance is evaluated on the validation
set at the end of each epoch. The training is conducted for a maximum of 20 epochs, and the best model is
selected based on the validation loss.

Similarly, alongside theMIMIC-III dataset, we also perform training on the Adult dataset to benchmark and
compare themodel performance. In theAdult dataset, the dependent variable for theML classification training
is the Income attribute, which can take values either > 50k or <= 50k. We divide the full dataset into two
separate sets with the same records but different features to simulate the VFL scenario. Subsequently, we
apply the same model training as described above for the MIMIC-III dataset. Additionally, we compare the
performance of our LSTM model to a baseline LR model and observe that the LSTM model outperforms the
LR model for both datasets, as detailed in the Experiment section.
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4.3. Feature weight mechanism
InML, feature weights are values learned during themodel training process to predict the target variable. These
weights indicate the relative importance of each input feature in making predictions. For example, in a model
predicting the mortality rate of ICU patients based on features such as length of stay (LOS), drug history, and
age, the feature weights reveal which features have the most significant impact on the prediction. For instance,
the LOS might be assigned the highest weight, followed by age and drug history. In VFL, a weighted feature
algorithm is employed to determine the importance of each feature in the final prediction. Each party trains
an LR model locally using its own set of features and labels. This process involves iterative optimization of
the weights to minimize the difference between predicted probabilities and actual target values. The learned
coefficients of the LR model represent the feature weights. Positive weights indicate a positive relationship
with the target variable, while negative weights indicate a negative relationship. The magnitude of the weight
reflects the strength of the impact. To protect privacy, only the locally calculated coefficients are shared with
the central server, along with a local prediction. As the central server does not perform any training, it solely
aggregates the coefficients received from each party and uses them for weighted multiplication to obtain the
final score. This approach avoids the need to share raw feature data among parties, preserving privacy. The
coefficients obtained from the locally trained LR models are used as the feature weights. By leveraging these
feature weights, the central server can aggregate the local predictions effectively without compromising data
privacy. This process ensures that the importance of each feature is considered in the final prediction without
sharing the raw feature data itself.

Finally, the weight matrix is constructed, as exemplified in Table 4. The weight values in this matrix represent
the relative importance of each feature in the classification tasks. For instance, when predicting the mortality
of hospital patients, the duration of their stay (In Time and Out Time) has a significantly greater effect on the
classification compared toAge orDisease Code. Therefore, In Time andOut Time are assigned higher weights of
85%, whileAge andDisease Code are given weights of 25% and 40%, respectively. In contrast, when performing
phenotyping for acute diseases, the duration of hospital stay (In Time and Out Time) has a minimal impact,
whereas theDisease Code plays a more critical role. Hence, in this scenario, In Time andOut Time are assigned
lower weights of 15%, while Age and Disease Code receive higher weights of more than 85%. These weight
values reflect the varying degrees of influence each feature has on the different classification tasks.

4.4. Aggregator server execution
The local predictions using both LR and LSTMmodels are computed at each individual client and subsequently
sent to the aggregator server for the final aggregation. Once all clients have shared their results, the aggregator
server utilizes the weight matrix to calculate the ultimate output. The aggregated score is then optimized by
minimizing the loss function through the application of the differential function, as illustrated in Table 3.

For a number of parties 𝑃 = {1, 2, ...𝑝}, we can simplify the calculation of the final score as below:

Y = 𝛿
©«

𝑃∑
𝑝=1

𝑤𝑝𝑦(𝑥𝑝)ª®¬ (12)

In this framework, we only consider the scenarios of two parties where only the local predictions 𝑦(𝑥𝑝) and
the corresponding weight matrix 𝑤𝑝 are shared to calculate the final prediction. The aggregation of local
predictions is carried out using a continuously differentiable function 𝛿 : R → R, which takes into account
the provided weight matrix. In future work, we plan to extend the parties to ≥ 2 to showcase the experiment.

It is important to note that the server’s role is solely to perform the aggregation based on the local predictions
and weight matrix without engaging in any ML classifications. As a result, this framework resembles a parallel
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or distributed learning algorithm.

For instance, in the case of LR training, the local scores from site 1 and site 2 are 0.67 and 0.75, respectively, as
shown in Table 3. Subsequently, after obtaining the average weight coefficients from Table 4 as 0.85 and 0.35,
the aggregation is performed, resulting in a calculated score of 0.84 (0.67 ∗ 0.85 + 0.75 ∗ 0.35). This value lies
between the scores of each local party due to the inclusion of noise addition and weight multiplication during
the calculation process.

4.5. Privacy mechanism
A central focus in our design is the preservation of local data privacy. To achieve this objective, we implement
a privacy-preserving strategy that involves solely transferring local prediction results derived from the local
data and features. The decision to refrain from exchanging raw data is driven by the potential risk of exposing
sensitive information to unauthorized entities or servers. To mitigate this privacy concern, we employ the
widely accepted DP algorithm [12,30,35], which establishes a standard for safeguarding the privacy of algorithms
working with aggregated data. Ensuring the anonymity of feature characteristics is pivotal, and to achieve
this, each party introduces Laplacian noise to their local prediction result, denoted as 𝑦(𝑥𝑝) at party 𝑝. This
noise addition guarantees a heightened level of privacy protection against potential malicious servers or parties.
Consequently, the shared prediction, with added DP noise, is represented as 𝑦(𝑥𝑝) + 𝜀, where 𝜀 is a variable
representing the Laplacian noise introduced to control the level of privacy. The calibration of noise is based
on the function’s sensitivity, detailed in [12]. The noise exhibits an inverse relationship with performance but a
direct correlation with data privacy. Introducing more noise increases data obfuscation but enhances privacy.
However, this comes at the cost of lower originality in the data, resulting in reduced ML scores. Therefore, our
framework seeks to strike a balance, maintaining a middle ground to simultaneously preserve data privacy and
optimize performance. We would like to emphasize that DP stands as a well-established method for ensuring
privacy, backed by provable privacy boundaries [36]. Extensive theoretical and experimental explorations have
already been conducted in this area (e.g., [37–40]). Consequently, much research has focused on examining how
the adoption of DP affects model accuracy (e.g., [41–44]) without delving into its defense against specific privacy
attacks. Our work aligns with this methodology.

5. RESULTS
In this section, we present the experimental results obtained from testing our approach with both theMIMIC-
III and Adult datasets under various settings. To benchmark and compare the outcomes, we set a fixed privacy
range for the DP algorithm, ranging from 𝜀 = 1 to 𝜀 = 5, for each experiment instance. For the study, we
simulated a multi-client environment by utilizing multiple computers in our lab.

5.1. Experimental setup
In our experiments, we used the MIMIC-III dataset and followed the benchmark configuration proposed by
Harutyunyan et al. [34] for processing time series signals from ICU devices. The test set used in the benchmark
was also utilized, and we allocated 15% of the remaining data for the validation set. We conducted all four
benchmarking tasks described in the methodology section. For the in-hospital mortality task, we considered
only patients who were hospitalized in the ICU for at least 48 hours. We removed clinical notes without a
linked chart time and any patients without any notes. In the LSTMmodel, we used 64 hidden units for decom-
pensation and LOS prediction. The phenotyping classification task involved 25 distinct binary classification
tasks based on ICU phenotypic data.

Additionally, we tested our approach on another public dataset called Adult, a traditional census dataset with
48,842 samples, each having 124 characteristics.
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Figure 2. AUC for Adult Dataset with Privacy Budget 𝜀 : 1 to 5 [RED: Central], [PINK: VDL], [BLUE:
Local1], [YELLOW: Local2]

The experiments were conducted using both LR and LSTMmodels in four different scenarios for both datasets.
Our test setup consisted of a central server and two clients. In the benchmarking phase, we first examined the
prediction in a central architecture where all the datasets with all attributes were available in a single location.
Next, we calculated the prediction independently for each local client. Finally, to simulate theVDL architecture,
we performed the experiments with two clients and a central server. To create the VDL scenario, we used the
Linux Cut command to split the data columns-wise for the identical set of records, effectively separating the
entire dataset by feature.

5.2. Evaluation
We used the Area Under Precision-Recall (AUC) measure to evaluate the performance of the LR and LSTM
models for the in-hospital mortality, phenotyping, and decompensation tasks in the MIMIC dataset. For the
LOS task, we used Cohen’s linear weighted kappa, as proposed by Harutyunyan et al. [34], which assesses the
correlation between predicted and actual multi-class buckets. We presented the results in box plots, with red,
pink, blue, and yellow boxes representing non-private central, VDL, and local predictions for parties 1 and 2,
respectively.

Figure 3(a), Figure 3(b), and Figure 3(c) show the AUC values for the three tasks in the MIMIC dataset. The
central architecture consistently performs best since it serves as the benchmark reference with access to the
full dataset and all features without privacy constraints. However, the local predictions for parties 1 and 2 have
relatively lower scores compared to the central architecture, which is expected as they are trained only on the
available local features. On the other hand, the VDL approach outperforms the local parties and comes close
to the central architecture’s performance. The slight drop in scores for VDL is due to the addition of noise and
the weighted feature application during the final score computation on the central server. Figure 3(d) shows
the kappa values for the LOS forecasting task. Similar relationships are observed, where the VDL approach
performs better than the local predictions but lower than the central architecture. We employed the AUC
metric in the same way for the Adult Dataset, and Figure 2 illustrates that the VDL approach achieves higher
scores compared to the local parties, approaching the performance of the central architecture.

Furthermore, we noticed that the LSTM consistently outperforms the LR technique in all figures. This is
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Figure 3. AUC for the MIMIC-III Dataset [RED: Central], [PINK: VDL], [BLUE: Local1],
[YELLOW: Local2]

expected as LSTM benefits from multiple epochs and continuous improvement in deep NN training. When
LSTM approaches the LR score, we conclude the epoch rounds to demonstrate LSTM’s dominance over LR.

To ensure the confidentiality of the shared score, we implement the epsilon (𝜀) DP algorithm [12]. Epsilon, a
pivotal parameter in DP, significantly influences theML score ormodel performance. It acts as a decisive factor
in determining the degree of privacy protection applied to the data, thereby introducing a trade-off between
privacy and utility. As epsilon decreases, the level of privacy protection intensifies, albeit at the expense of
utility or the accuracy of the ML model. Lower epsilon values permit the introduction of more noise into the
data, enhancing privacy but potentially diminishing the accuracy of the model’s predictions—a phenomenon
evident in our experiment. Meanwhile, the increase of epsilon values just performs the opposite. In our study,
we specifically utilized the epsilon range of 1 to 5. Each box in Figure 3 represents the lower, upper, and
median scores of an ML model. The upper value signifies 𝜀 = 5, while the lower part of the box denotes 𝜀 =
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1. Consequently, each box encapsulates a privacy-utility spectrum, with the upper portion exhibiting higher
utility at the cost of lower privacy and the lower portion featuring lower utility with increased privacy noise.
Our experimental results consistently demonstrate that the median converges to a point where an optimal
balance between privacy and utility is achieved, effectively avoiding the inherent trade-off. In the realm of DP,
Laplacian noise is commonly introduced to the data to fulfill privacy guarantees. The degree of noise injected
is modulated by epsilon. Lower epsilon values correspond to increased noise, serving to safeguard privacy
but potentially distorting the original data and compromising the model’s accuracy. Striking the right balance
is pivotal, with the choice of epsilon contingent on specific privacy requirements and the acceptable level of
impact on the model’s accuracy.

In conclusion, our proposed technique maintains an acceptable level of accuracy for both datasets, even with
a minimal privacy budget of 1 to 5. The score disparities observed in comparison to the central server can
be attributed to noise addition during local result sharing and the weighted feature computation with loss
minimization on the central server. This highlights the trade-off between privacy and utility in this context.
However, given that our approachmaintains data locality and sensitive patient information remains local, it can
be a viable solution in the healthcare sector where privacy preservation is crucial. Our architecture provides a
robust privacy-preserving distributed ML framework in this regard.

6. DISCUSSION
We have presented a privacy-preserving distributed ML framework specifically designed for vertically parti-
tioned data. In our approach, each client employs both LR and LSTMNNs to generate local predictions based
solely on their respective local feature sets. To ensure an additional layer of privacy, we introduce noise into the
prediction results using the DP algorithm. Furthermore, we apply a weighted feature function computed from
the local feature sets to the final prediction process. Throughout the entire training procedure, no raw data,
features, or model parameters are shared among the parties. This effectively mitigates the risk of sensitive data
exposure, ensuring strong privacy protection while maintaining a high level of utility through data localization.
To showcase the practical application of our system, we conduct experiments using the MIMIC-III and Adult
datasets in the healthcare domain. The results demonstrate that our solution, which combines local features
with a fully centralized architecture, achieves accuracy levels that are almost comparable to the centralized
model. This validates the effectiveness of our FL approach, which preserves data locality and privacy while
effectively utilizing vertically partitioned data.
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