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Abstract
The marine environment is facing the threat of increasing plastic pollution, especially from disposable plastics. 
Presently, governments worldwide are promoting policies to restrict or prohibit conventional plastics. As one 
hopeful alternative to conventional disposable/non-durable plastics, biodegradable plastics have attracted much 
attention and controversy in terms of their definition, environmental impact, and environmental significance, as 
they may be widely used. Therefore, it is necessary to clarify the facts about biodegradable plastics, understand the 
current knowledge gaps, and identify promising fields of relevant research. This review briefly introduces some 
common biodegradable plastics, their mechanisms of biodegradation, indicators for the biodegradation process, 
and factors concerning biodegradability and summarizes studies on the biodegradation of biodegradable plastics in 
the marine environment. The lifespan of biodegradable plastics varies greatly due to their compositions/properties 
as well as significant differences in the marine environment. Then, the potential risks of biodegradable plastics, 
including the release of pollutants (micro/nanoplastics, degradation products, and additives), adsorption-
desorption of pollutants (pesticide, etc.), and their impact on biomes and biogeochemical cycles are discussed, fully 
revealing their possible impacts on the marine environment. It is believed that, in addition to the waste of 
resources, a high abundance of microplastics, toxic leachates, and complex effects on habitats and the 
environment may also cause problems for the marine environment as a result of the widespread and inappropriate 
use of biodegradable plastics. Based on the discussion, some constructive suggestions on how to use 
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biodegradable plastics reasonably and prudently in the future are put forward.

Keywords: Biodegradable plastics, marine environment, microplastics, hydrolysis, plastic additives, ecological risks, 
microbial community

INTRODUCTION
Since the last century, human life has been deeply affected by artificial polymers, such as plastic and rubber, 
as well as the pollutants from their products[1] (marine plastic litter, microplastics, plasticizers, etc.). With 
the widespread concerns and appeals of various sectors of society[1], new solutions are emerging to reduce 
artificial polymer pollution[2]. As one of the most promising options, biodegradable plastics (BPs) are widely 
considered an alternative to conventional plastics in Europe, the USA, and China[3]. BPs are artificially 
synthesized or chemically modified polymers that can be completely mineralized[4], i.e., eventually converted 
into carbon dioxide and water, by biological activity[5] or, in a narrow sense, naturally occurring 
microorganisms[6]. Similar and confusing nouns include “bioplastics” and “bio-based plastics”. Different 
from bio-based plastics, which are wholly or partially made from biological materials and not necessarily 
compostable or biodegradable, BPs could be made from fossil fuel-based materials. As a less formal term, 
“bioplastics” is sometimes used as a collective term to cover both bio-based plastics and BPs[7] or specifically 
to refer to bio-based plastics[8] [Table 1].

BPs are primarily used as disposable or non-durable plastic products, such as packaging, mulching film, and 
tableware[16]. These items accounted for 49% of global plastic production in 2019[17]. As early as 2018, before 
the COVID-19 pandemic, 5% of annual municipal solid waste and 40% of plastic waste in the United States 
were containers and packaging plastics, as estimated by USEPA (by weight)[18,19]. It is notable that only 14.5% 
of this waste was recycled in the United States[18]. For these products, the short service time greatly increases 
the frequency of their discovery in the environment. For example, disposable or non-durable plastic 
products are common in marine litter globally[20]. Moreover, the pandemic has led to increased demand for 
single-use plastics, including plastic bags, electronic packaging, food delivery and takeout packaging, and 
personal protective equipment[21]. The International Solid Waste Association shows that consumption of 
single-use plastics has increased by 250%-300% since the pandemic began[17], accompanied by secondary 
pollutants, such as ubiquitous microplastics in the marine environment, from abandoned personal 
protective equipment[22]. Although the pandemic will end one day, its impact on consumption habits (such 
as online shopping and express delivery, in which plastic packaging is widely used) might continue for a 
long time; meanwhile, it reminds us that disposable plastic products cannot be completely replaced[21]. 
Especially in recent years, the successive restrictions or bans on the use of single-use plastics put forward by 
a variety of countries have aroused a huge demand for BPs[2,3]. Considering that BPs accounted for only 0.3% 
and 0.6% of plastic production in 2019[23] and 2020[24], respectively, the consumption of BPs should increase 
greatly in the near future, as predicted. The consumption of “biodegradable and compostable plastic 
products” in Europe was estimated to be beyond 300,000 tons in 2020, three times the consumption in 
2015[25].

This does not mean that there is no controversy in novel polymer materials known as “biodegradable 
plastics”. One of the most common questions is whether BPs can degrade efficiently in the real and complex 
natural environment[9], including the aquatic environment. Firstly, the definition of “biodegradable” is 
vague[23]. Actually, it should be expressed as “biodegradable under certain conditions”[3]. According to the 
retrieval of American Standard for Testing and Materials (ASTM) standards of test methods [Table 2], BPs 
could be divided into several categories, including “industrial compostable”, “marine biodegradable”, and 
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Table 1. Common BPs: their sources, properties, and usage

Composition Abbreviation Source*
Material 
density  
(g/mL)†

Usage§

Poly(lactic acid) PLA Bio-based 1.25 Packaging, paper coatings, mulch films, compost bags, etc.

Polyhydroxyalkanoate PHA Bio-based 1.20-1.25 Disposable drinking cups, cutlery, trays, food plates and food 
containers; soil retention sheathing and other agricultural films; 
garbage bags, shopping bags, etc.

Polyhydroxybutyrate PHB Bio-based 1.18-1.26 Bottles, bags, packaging film and disposable nappies, etc.

Poly(hydroxybutyrate-co-
valerate)

PHBV Bio-based 1.25 Films and paper coatings, biomedical applications, etc.

Starch blends - Bio-based 1.25-1.35 Food packaging, bottles, cutlery, straws, disposable bags, etc.

Polyglycolic acid PGA Bio-based 1.53 Packaging films for oxygen-sensitive products, shale gas mining 
and other industrial processes, and synthetic fast absorbable 
sutures for surgery

Cellulose acetate CA Bio-based 1.20-1.30 Textiles, optical film for LCD technology, antifog goggles, filters, 
etc.

Poly(ε-caprolactone) PCL Fossil-
based

1.12 Mulch and other agricultural films, etc.

Poly(butylene Succinate) PBS Bio-/fossil 
-based

1.23-1.26 Food packaging, mulch film, plant pots, hygiene products, fishing 
nets, fishing lines, etc.

Poly(butylene succinate-co-
butylene adipate)

PBSA Bio-/fossil-
based

1.23 Ditto

Poly(butylene adipate) PBA Fossil-
based

1.02-1.12 Injection molding for automotive, mechanical and electronic 
industries, etc.

Poly(butylene adipate-co-
terephthalate)

PBAT Fossil-
based

1.25 Food packaging, agricultural film, etc.

*It was provided by Kjeldsen et al.[9]. †The data were obtained at 25 ℃ and provided by Ki and Ok Park[10], Van den Oever et al.[11], Rafiqah 
et al.[12], Rivera-Briso et al.[13], or Chemical Retrieval on the Web[14]. §It was provided by Shah et al.[15] or Chemical Retrieval on the Web[14].

“soil biodegradable”, which are also certified in the European certification scheme[3]. There is also another 
relatively sound standard system for BPs, the International Organization for Standardization (ISO) standard 
system [Table 2]. Most certified “biodegradable plastics” could only be efficiently biodegraded in aerobic or 
industrial anaerobic conditions. The relatively high temperature and ideal moisture content in industrial 
composting could accelerate the biodegradation process; it is also suggested that the aquatic environment 
has fewer microbes per unit than compost and soil environments[27]. Consequently, the average 
biodegradation level of BPs in industrial composting is 72.3% over 75 days, based on the data obtained from 
comprehensive data analysis, while that in the marine environment is 47.1% over 155 days[27]. In addition, 
there are unignorable differences between laboratory test conditions and the natural environment[28]. 
Therefore, the degradability of BPs might be overestimated. For example, the material densities of most BPs 
[Table 1] are higher than that of surface water (including seawater); thus, immediately after entering the 
aquatic environment, they could sink to the bottom[29], where the environment may be dark with anoxic or 
anaerobic conditions and maintain a relatively low temperature. There must be deviations and uncertainties 
between the supposed biodegradation rate and the actual rate in the environment.

The longer (than expected) environmental degradation term might greatly reduce the difference between 
BPs and conventional plastics, for example, in some risks[30], while the shorter lifespan might bring different 
environmental impacts than conventional plastics. Hence, the question is: In what way will BPs, which are 
expected to be used widely, affect the marine environment? Could they become potential sources of 
pollutants or carriers of harmful microorganisms in the marine environment? During degradation, will they 
cause secondary ecological risks, via the release of toxics to or other unpredictable impacts on the 
environment or ecological equilibrium, especially in the context of large-scale disposable use? This review 
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Table 2. Active American Standard for Testing and Materials (ASTM) and International Organization for Standardization (ISO) 
standards of test methods concerning “biodegradable plastics”[26]

Classification Environment Degradation 
pattern

Standard 
number Standard name

ASTM standards

Anaerobic D5526-18 Standard test method for determining anaerobic 
biodegradation of plastic materials under accelerated landfill 
conditions

Landfill

Aerobic and/or 
anaerobic

D7475-20 Standard test method for determining the aerobic degradation 
and anaerobic biodegradation of plastic materials under 
accelerated bioreactor landfill conditions

High-solids anaerobic 
digester or biologically 
active landfill

Anaerobic D5511-18 Standard test method for determining anaerobic 
biodegradation of plastic materials under high-solids 
anaerobic-digestion conditions

Aerobic D5338-
15(2021)

Standard test method for determining aerobic biodegradation 
of plastic materials under controlled composting conditions, 
incorporating thermophilic temperatures

Solid waste 
disposal site

Composting

Aerobic D6400-21 Standard specification for labeling of plastics designed to be 
aerobically composted in municipal or industrial facilities

Soil Aerobic D5988-18 Standard test method for determining aerobic biodegradation 
of plastic materials in soil

Aerobic D6691-17 Standard test method for determining aerobic biodegradation 
of plastic materials in the marine environment by a defined 
microbial consortium or natural sea water inoculum

Natural 
environment

Marine environment

Aerobic D7991-15 Standard test method for determining aerobic biodegradation 
of plastics buried in sandy marine sediment under controlled 
laboratory conditions

Either Soil, landfill, compost, 
land cover and 
agricultural use

Abiotic+ 
Aerobic/anaerobic

D6954-18 Standard guide for exposing and testing plastics that degrade 
in the environment by a combination of oxidation and 
biodegradation

ISO standards

High-solids anaerobic 
digester

Anaerobic 15985:2014 Plastics - Determination of the ultimate anaerobic 
biodegradation under high-solids anaerobic-digestion 
conditions - Method by analysis of released biogas

14855-1:2012 Determination of the ultimate aerobic biodegradability of 
plastic materials under controlled composting conditions - 
Method by analysis of evolved carbon dioxide - Part 1: General 
method

14855-2:2018 Determination of the ultimate aerobic biodegradability of 
plastic materials under controlled composting conditions - 
Method by analysis of evolved carbon dioxide - Part 2: 
Gravimetric measurement of carbon dioxide evolved in a 
laboratory-scale test

16929:2021 Plastics - Determination of the degree of disintegration of 
plastic materials under defined composting conditions in a 
pilot-scale test

Solid waste 
disposal site

Composting Aerobic

20200:2015 Plastics - Determination of the degree of disintegration of 
plastic materials under simulated composting conditions in a 
laboratory-scale test

Soil Aerobic 17556:2019 Plastics - Determination of the ultimate aerobic 
biodegradability of plastic materials in soil by measuring the 
oxygen demand in a respirometer or the amount of carbon 
dioxide evolved

Aerobic 14851:2019 Determination of the ultimate aerobic biodegradability of 
plastic materials in an aqueous medium - Method by 
measuring the oxygen demand in a closed respirometer

Aerobic 14852:2021 Determination of the ultimate aerobic biodegradability of 
plastic materials in an aqueous medium - Method by analysis 
of evolved carbon dioxide

Aqueous medium

Anaerobic 14853:2016 Plastics - Determination of the ultimate anaerobic 
biodegradation of plastic materials in an aqueous system - 
Method by measurement of biogas production

Plastics - Determination of the degree of disintegration of 

Natural 
environment

Marine environment Aerobic 22766:2020
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plastic materials in marine habitats under real field conditions

Aerobic 22403:2020 Plastics - Assessment of the intrinsic biodegradability of 
materials exposed to marine inocula under mesophilic aerobic 
laboratory conditions - Test methods and requirements

These test methods can also be applied to non-biodegradable plastic materials, such as those selected for landfill facilities.

provides some information about BPs and collects studies and views on the degradation of BPs in the 
marine environment and their ecological effects to deepen the understanding of the environmental impact 
of BPs. Significantly, some results in other environments (e.g., in soil) are also included to make inferences, 
since some evidence for BPs in the marine environment is still not sufficient.

MAIN TEXT
Biodegradation ability in the marine environment and related factors
Biodegradation process and description indicators
In general, the biodegradation process of BPs can be divided into three steps [Figure 1]: fragmentation, 
hydrolysis, and biodegradation of products (such as oligomers and monomers). (I) In the first step, 
processes dominated by abiotic factors or biotic factors (also named biodeterioration[31]) induce 
fragmentations. Abiotic factors, including mechanical stress (e.g., caused by waving scouring, sand abrasion, 
or animals[32]), light[33], thermal, and chemical factors[34], play their roles in the fragmentation of BPs. (II) 
Hydrolysis, as a depolymerization reaction, is the rate-limiting step in the biodegradation of BPs[35]. The 
hydrolysis rate of the whole BP could be either approximately uniform (bulk erosion mechanism) or 
determined by the process on the surface (surface erosion mechanism)[31]. Most BPs are aliphatic polyesters 
or contain glycosidic bonds [Table 1]: PLA, PBAT, and starch-based materials (e.g., Mater-bi® and Bioflex®) 
are among the most popular BPs[36,37] [Figure 2[7,38-41]]. They are “fast” hydrolyzed by extracellular 
enzymes[42], and some of them could be hydrolyzed in an alkali environment without any enzyme[43]. 
However, it is difficult for most hydrolases to permeate the structure of BPs[44], so bulk hydrolysis rates of 
BPs are determined by the bulk diffusion rate and migration distance of water molecules[45]. (III) The last 
step is the degradation of hydrolysis products. The products could be taken in and then mineralized by 
microbial cells. Therefore, this step can be divided into bioassimilation and mineralization[31]. The entire 
process of this step does not need to take place inside microorganisms. For example, anaerobic 
microorganisms can degrade BPs to CH4 and then finally mineralize them in vitro. It is worth mentioning 
that some believe that deterioration processes where plastics begin to lose their physical/structural 
properties should be the first step of biodegradation[9]. However, deterioration does not significantly change 
the environmental behavior of BPs. Considering this process as a part of biodegradation lacks 
environmental significance.

These three steps do not necessarily need to be performed sequentially; for example, the first step 
(fragmentation) may be the result of the second step (hydrolysis)[46]. Thus, some studies suggest that the 
biodegradation process can be summarized into two steps, namely, depolymerization and utilization of 
byproducts[47]; fragmentation is regarded as a pre- or simultaneous biotic/abiotic process[6]. In any case, the 
results of the previous step can greatly speed up the next step. For example, the fragmentation of BPs could 
greatly accelerate the hydrolysis reaction, especially when surface erosion plays a major role.

Several indicators, such as weight loss, molecular weight reduction, decrease in biochemical oxygen demand 
(BOD), and CO2/CH4 produced, have been used to describe the biodegradation of BPs [Table 3]. It is 
difficult to accurately describe the entire biodegradation process with a single indicator. Among them, 
weight loss is the most widely used [Table 3], even though it cannot track the biodegradation of secondary 



Page 6 of Chen. Water Emerg Contam Nanoplastics 2022;1:16 https://dx.doi.org/10.20517/wecn.2022.1123

Table 3. Test results for biodegradation ability of BPs in the marine environment

Indicators for degradation
BPs Shape and size Condition Period

Weight loss Decrease 
in BOD

Decrease 
in MW*

CO2 
produced

Refs.

Spline, 80 × 4 × 2 mm Coastal seawater 52 weeks 2% - - - [35]

Film, 12 × 12 × 0.32 mm Artificial seawater, 25 °C 1 year 0 - - - [48]

Film, 150 × 150 × 0.05 mm Artificial seawater 6 months < 1% - - - [49]

Film, 30 × 3 × 0.05 mm Static seawater, 25 °C 10 weeks 0 - 4.5% - [50]

Film, 30 × 3 × 0.05 mm Coastal seawater, 19-
26°C

5 weeks 25% - - - [35]

Sheet, 20 × 20 × 0.2 cm ASTM D6691 56 days - - - 7%† [51]

Spline, 25 × 6 × 2 mm Natural seawater; static 
seawater (lab)

1 year < 3% - 13% 
(natural); 
25% (lab)

-
[52]

Film, φ50 × 0.02 mm On natural sediment 82 days 0.2% - - -
[53]

PLA

Film Buried in sand 71 days 0.15% - - -
[54]

PLA 
mixture

Film Seawater; sediment 365 days 5%-29% 
(seawater); 
65%-99% 
(sediment)

- - -
[55]

Film, 12 × 12 × 0.32 mm Artificial seawater, 25 °C 1 year 6% - - -
[48]

Film, 30 × 20 × 0.1 mm Coastal seawater 6 weeks 40%-100% - - -
[35]

Film, 0.005 mm thickness; 
pellet, φ10 × 5 mm

Tropic seawater 160 days 42% (film); 
38% (pellet)

- 26% (film); 
20% 
(pellet)

-
[47]

Film, 30 × 3 × 0.05 mm Static seawater, 25°C 10 weeks 8% - 2.5% -
[50]

Film, 30 × 3 × 0.05 mm Coastal seawater, 19-
26°C

5 weeks 65% - - -
[35]

Film Static seawater, 25°C 2 weeks 80% - -
[56]

Film, 0.1 mm thickness Seawater in lab (bay and 
ocean), 25 °C

28 days 41% (bay); 
23% (ocean)

27% (bay); 
14% 
(ocean)

- -
[57]

Film, 0.16 mm 
thickness

Lab/aquarium 
incubation; ASTM 6691

49 d (lab or 
aquarium)

Lab: 99%; 
86%§. 
Aquarium: 
30%; 72%§

- - 80%-90% 
(100 d)

[58]

Sheet, 20 × 20 × 0.2 cm ASTM D6691 43 days - - - 89%† [51]

Film, 60 × 80 × 0.085 mm Marine sediment 356 days 81%-97% - - -
[59]

PHB

Film Buried in sand 71 days 15% - - -
[54]

Film, 0.005 mm thickness; 
pellet, 10 mm diameter, 5 mm 
height

Tropic seawater 160 days 46% (film); 
13% (pellet)

- 16% (film); 
57% 
(pellet)

-
[47]

Fiber, 0.26 mm diameter Seawater 8 weeks 65% - - -
[35]

Film, 0.1 mm thickness, 
P(3HB-co-14%3HV)

Seawater in lab (bay and 
ocean), 25 °C

28 days 100% 84% (bay); 
78% 
(ocean)

- -
[57]

PHBV

Film, 0.29 mm 
thickness

Lab/aquarium (aqu) 
incubation; ASTM 6691

49 d (lab/ 
aqu)

Lab: 99%; 
87%§. Aqu: 
32%; 48%§

- - 85%-95% 
(100 d)

[58]

PHB-co-
PHV¶

Film, 150 × 150 × 0.05 mm Artificial seawater 6 months < 1% - - -
[49]

PHO¶ Sheet, 20 × 20 × 0.2 cm ASTM D6691 56 days - - - 38%† [51]

Film, 200 × 20 × 0.025 / 60 
× 80 × 0.012 mm

Marine sediment 298 d /356 
days

5%-99% 
/47%-98%

- - -
[59]

Carrier bags Littoral marsh 90 days 1.5%-1.6% - - -
[60]

Mater-
Bi¶

Carrier bags Seawater 90 days 1.7%-4.5% - - -
[60]

TPS¶ Sheet, 20 × 20 × 0.2 cm ASTM D6691 28 days - - - 92%† [51]

Film, 12 × 12 × 0.32 mm Artificial seawater, 25 °C 1 year 1% - - -
[48]

PCL
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Film, 30 × 20 × 0.1 mm Seawater 6 weeks 98% - - -
[35]

Film, 30 × 3 × 0.05 mm Static seawater, 25 °C 10 weeks 24% - 8.5% -
[50]

Film, 30 × 3 × 0.05 mm Coastal seawater, 19-26 
°C

5 weeks 34% - - -
[35]

Film, 0.1 mm thickness Seawater in lab (bay and 
ocean), 25 °C

28 days 100% (bay); 
67% (ocean)

- - -
[57]

Spline, 80 × 4 × 2 mm Coastal seawater 52 weeks 30% - - -
[35]

Sheet, 20 × 20 × 0.2 cm ASTM D6691 56 days - - - 80%† [51]

Spline, 25 × 6 × 2 mm Natural seawater; static 
seawater (lab)

1 year 32% (natural); 
12% (lab)

- 1% 
(natural); 
7% (lab)

-
[52]

Film Buried in sand 71 days 1.8% - - -
[54]

Spline, 80 × 4 × 2 mm Coastal seawater 52 weeks 2% - - -
[35]

Film, 30 × 20 × 0.1 mm Seawater 6 weeks 2% - - -
[35]

Film, 0.1 mm thickness Seawater in lab (bay and 
ocean), 25 °C

28 days 2% 1% (bay); 
2% (ocean)

- -
[57]

Sheet, 20 × 20 × 0.2 cm ASTM D6691 56 days - - - 21%† [51]

PBS

Spline, 25 × 6 × 2 mm Natural seawater; static 
seawater (lab)

1 year < 3% - 28% 
(natural); 
46% (lab)

-
[52]

PBSA Film Buried in sand 71 days 6% - - - [54]

PBA Film, 0.1 mm thickness Seawater in lab (bay and 
ocean), 25 °C

28 days 34% (bay); 
11% (ocean)

20% (bay); 
10% 
(ocean)

- - [57]

Spline, 80 × 4 × 2 mm Coastal seawater 52 weeks 56% - - - [35]

Film, 30 × 20 × 0.1 mm Seawater 6 weeks 7% - - - [35]

Spline, 25 × 6 × 2 mm Natural seawater; static 
seawater (lab)

1 year < 3% - 56% 
(natural); 
61% (lab)

- [52]

PBAT

Film, φ50 × 0.02 mm Seawater; on natural 
sediment

82 days 1.2%-1.5% - - - [53]

*M W, molar mass. †It is expressed as a percentage of biodegradation of reference cellulose. §The results are for sediment. ¶PHB-co-PHV: 
poly(hydroxybutyrate-co-hydroxyvalerate); PHO: polyhydroxyoctanoate; TPS: thermoplastic starch; Mater-Bi: a commercial product that is a 
blend of thermoplastic starch and biodegradable polyesters.

microplastics formed in the BP fragmentation, which rapidly disappear in the natural environment[48]. 
Sometimes, the photogrammetric method is used to determine the approximate weight loss[59]. Weight loss 
could occur throughout the biodegradation process[35] and is affected by several interference factors, such as 
the release of soluble additives and the loss of fragments. Molecular weight reduction, mainly caused by the 
chain shortening, is a representative indicator for the hydrolysis of BPs, since only in hydrolysis can there be 
a measurable and significant molecular weight reduction. Due to this, a greater weight loss ratio than 
molecular weight reduction indicates that surface erosion predominates, such as that for PCL[50,52] and 
PHA[47]. A contrary situation indicates that bulk erosion is more important than surface erosion at this stage, 
as happens to PBS, PBAT[52], and PLA[50].

Indicators associated with specific compositions or products, including mechanical properties and highly 
ordered structures[50], are rarely used in the assessment of the natural biodegradation of BPs. On the one 
hand, they are not suitable for comparison between different compositions. On the other hand, some of 
them are too sensitive to the environment[35] and vary significantly in the deterioration process before 
fragmentation[9] and during the whole biodegradation process[35].
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Figure 1. Diagrammatic sketch of biodegradation process of biodegradable plastics.

Figure 2. The global production capacities (million tons) of different biodegradable plastic (BP) materials during 2017-2021. Data 
source: European Bioplastics and nova-Institute, 2017-2021[7,38-41]. Only the data from the corresponding annual report are presented.

Factors affecting biodegradability
Properties of BPs 
Similar to other organic substances, the biodegradability of BPs first depends on their chemical 
compositions. Firstly, the properties of BPs affect the adhesion of microorganisms. Properties of polymers, 
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including surface charge, hydrophilicity/hydrophobicity, roughness, and bioavailability (biodegradability), 
were supposed to affect surface biofilm formation[24]. The positive surface charges on BPs (e.g., PLA) are 
prone to adhere to microorganisms, since zero charge points of most bacterial cells are between pH of 2 and 
4[24,61]. The hydrophobicity of plastic surfaces might provide plastics with different microbial compositions 
from those on glass[24], ceramics[62], or the natural environment[24]. Generally, there is stronger adhesion 
between bacteria and a hydrophobic surface (than a hydrophilic one)[63]. The specific surface area of plastics 
could be affected by their size, shape, and roughness. It takes longer for marine microorganisms to come 
into contact with and adapt to plastics with small surface areas[47]. The specific surface area of BPs increases 
in the biodegradation process, with the decrease of size and the change of roughness[24].

Secondly, one of the impacts of BPs’ properties on their biodegradability, which may be the most important, 
is that they determine the hydrolysis rate. Some properties that proved important include the following. 
(i) Hydrolysable bonds and neighboring groups: Typically, hydrolysable bonds and neighboring groups 
determine the kinetics of bond cleavage[64]. For example, it is generally believed that polymers based on 
cellulose, starch, and proteins (with glycosidic and amide bonds hydrolysable) show better marine 
biodegradability rates than polyesters (with ester bonds hydrolysable) and could reinforce the 
biodegradability when combined with polyesters[44,65]. On the contrary, the biodegradability of cellulose 
acetate formed by cellulose acetylation decreases with the increased degree of substitution[16]; it might be due 
to the hindrance of carboxyl bonds during the hydrolysis. Another typical example of the impact of 
neighboring groups is PET (polyethylene terephthalate), which is persistent in the marine environment due 
to aromatic rings adjacent to ester bonds. (ii) Chain length: The chain length is related to the number of 
bonds to be hydrolyzed, the abundance of hydrolysates, and the hindrance of intermolecular contact during 
the reaction. Lower initial molecular weight (low average chain length) makes the mineralization process 
progress faster[58]. (iii) Structure of BPs: Crystallinity and surface hydrophilicity[10] affect the diffusion of 
water molecules in BPs, hence the hydrolysis. The closely packed crystalline regions are supposed to slow 
down water molecular diffusion[64] and more or less hinder the attack by hydrolase[66] (the highly ordered 
structure of crystalline regions prevents ester bonds within the chains from entering the active site of the 
hydrolase[30]) during biodegradation. Some believe it could be more important for the resistance to 
nucleophilic attack than the introduction of hydrophobic groups to some extent[10]. Several studies suggest 
that the degree of crystallinity was the dominant factor in the biodegradation rate of a BP product[66]. 
Nevertheless, a study based on the biodegradation of PHA in seawater showed that the amorphous phase 
and the crystalline phase seemed to degrade synchronously[47]. (iv) Specific composition in the blend: Some 
specific compositions increase the water permeability of the blend, thus accelerating the hydrolysis of 
BPs[43]. (v) Shape of BPs: Specific surface area affects the surface hydrolysis rate, e.g., biodegradation seems 
slower for PHB pellets than for PHB films [Table 3[47]]. Meanwhile, the shape is related to the diffusivity of 
water in BPs[45]. The thickness of BPs dropping down below a so-called critical sample thickness might alter 
the dominant hydrolysis process from surface erosion to bulk erosion[31].

Finally, some materials (PBAT, PHBV, etc.) could act as the sole carbon source for bacteria, while others 
(PLA and PBS) could not[67], which might be caused by the difference in the uptake ability of 
microorganisms to hydrolysates.

Additives 
Additives are chemical substances providing plastic desired qualities[68]. Plastic additives are complex and 
diverse; the specific ingredients of plastic additives are often undisclosed as trade secrets. The main essential 
additives of BPs include crystalline nucleating agents, chain extenders, anti-hydrolysis stabilizers, melt 
enhancers, plasticizers, etc. Inorganic additives such as inorganic nucleating agents might cause the 
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degradation of plastic products due to their poor compatibility. As the name implies, chain extenders could 
extend the chain, increase the molecular weight, and increase crosslinking during production, which 
prolongs the biodegradation time[44]. Anti-fouling agents[69] and chain extenders[70] could inhibit extracellular 
enzyme activity or prevent the microorganism from producing enzymes. Anti-hydrolysis stabilizers for 
condensed BPs can significantly improve their aging stability. Therefore, the leaching of plasticizers is 
supposed to make the plastics brittle and stimulate fragmentation[71]. Some other additives, such as 
colorants[72] and photostabilizers[73], could influence the final thermal and UV stability of plastics, which 
might affect the fragmentation and hydrolysis of BPs.

Natural environmental condition 
Natural environmental conditions, including habitats and climate zones, could lead to some differences in 
the degradation of BPs[74]. The main environmental factors in the marine environment consist of light, 
temperature, salinity, pH, nutrients, electron acceptors, grain size of sediments, and microbial population. 
These factors can not only affect microbial composition, abundance, and activity[30] but also cause some 
abiotic effects on degradation.

UV light accelerates the fragmentation of BPs[71] and slowly produces some low molecule weight oxidation 
products for bioassimilation[30], but the effect of UV light is rapidly attenuated with water depth[74]. Light 
might also decelerate biodegradation, e.g., crosslinks formed during photoirradiation-induced reactions 
could slow down biodegradation[30]. In addition, light can moderate the proportion of photosynthetic 
autotrophs. Although no significant mineralization effect of plastics is expected due to their metabolic 
pathways[75], algae are important participants of the “plasticsphere” in the marine environment and affect 
BPs’ degradation indirectly.

In the marine environment, temperature, pH, and salinity change in a certain range, and ultra-high 
temperatures could accelerate the oxidative degradation[76] and abiotic hydrolysis[30] of plastics, while ultra-
low temperatures might cause frozen-accelerated degradation[77]. However, for biodegradation, a 
temperature within a suitable range is needed for both the microbial growth on the surface of BPs and the 
reaction rate of enzymes[78]. Different microorganisms (psychrophilic, psychrotrophic, and mesophilic) 
thrive and are active at various water temperatures[30]. Similarly, the effects of pH and salinity on 
biodegradation indirectly affect the microbial communities, and different microorganisms/enzymes prefer 
different pH and salinity[30]. Specifically, relatively warm and alkali environments are suitable for the enzyme 
hydrolysis of BPs[44]. Additionally, high salinity makes abiotic hydrolysis in seawater slower than in fresh 
water, possibly due to the slower diffusion of seawater in polyester[35].

The availability of nutrients and electron acceptors is a key factor in the biodegradation of BPs. Essential 
nutrients and electron acceptors are necessary for the survival and metabolism of microorganisms. Oxygen 
is an important electron acceptor in the biodegradation (oxidation reaction) of BPs, but it is certainly not 
sufficient in the marine environment. Given the specific density of BPs, they are more likely to appear under 
anaerobic or anoxic conditions when offshore. Sunken ships that have not been decayed for hundreds of 
years can laterally illustrate the impact of the hypoxic environment on biodegradation[30]. However, even in 
this case, biodegradation (hydrolysis and assimilation by anoxic microorganisms) is still proceeding slowly 
and continuously.

BPs on the surface of sediments were estimated to be biodegraded more quickly than those in the water 
column, without forceful experimental evidence under similar conditions[30]. The properties of sediments, 
such as grain size and nutrient-related parameters, could affect the biodegradation of BPs placed on or 
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buried in the sediments[28]. Grain size fractions of sediments affect the bacterial abundance, so it also 
indirectly affects the biodegradation rate of BPs[59], but their effect might be more or less hampered by other 
factors influencing the microbial community and bioactivity in natural sediments[59].

Enzymatic hydrolysis of BPs needs specific microorganisms which secrete specific extracellular enzymes 
(hydrolases), as well as oxidation reactions. In contrast, the microorganisms that could be involved in 
bioassimilation are extensive[30], so the demand for microorganisms in this step is more likely to be satisfied 
in the natural environment. Furthermore, inhibiting other microorganisms that are not involved in 
biodegradation may accelerate the biodegradation of BPs, since a broad-spectrum fungicide was found to 
accelerate the biodegraded rate[79]. Classically, hydrolases effective in the hydrolysis of biodegradable 
polyesters (PLA, PCL, and PBS) belong to cutinases (can hydrolyze ester bonds in cutin), lipases (can 
hydrolyze ester bonds in lipids), and polyhydroxyalkanoates (can hydrolyze ester bonds in 
carboxyloxoesters of bacterial polyesters); they have common features, such as extensive substrate-binding 
grooves for macromolecular polyesters, catalytic amino acid triad in active sites for binding subtract, and 
not substrate-specific[30]. Some other hydrolases that can be used for biodegradation include amidases and 
acetyl esterases[30].

In addition, physical shearing caused by currents/waves, wind, fauna, or sediment (especially sands) 
improves the fragmentation of BPs[30].

Sources of potential pollutants
Microplastics
Generation and degradation 
The fragmentation of plastics in natural environments could produce secondary microplastics (MPs). BPs 
are supposed to produce even more MPs than conventional plastics in the short term after reaching the 
natural environment[80]. Then, biodegradable microplastics (BMPs) could be degraded. From another 
perspective, the generation of BMPs can be regarded as one of the stages of BPs’ biodegradation. However, 
in the natural environment, it is difficult to monitor the generation or fate of BMPs. They are even rarely 
detected in the open environment. As far as we know, the limited data show that PLA and PCL MPs were 
detected in sediments close to the wastewater outlet[81], seawater[82], and leachate[83]. On the one hand, it is 
related to the low consumption of BP products. On the other hand, it may be due to BPs’ high specific 
densities (which lead to short residence time in water, especially surface water) and shorter lifespan. Abiotic 
factors (UV radiation and mechanical forces) could produce BMPs from PBAT, PBS, PLA pellets, and 
PBAT/PLA bags, where the leading factor of BMPs’ generation rate is the original shape of BPs[84]. Lambert 
and Wagner also proved the release of BMPs and nanoplastics during weathering of PLA in water[85] as well 
as PBAT in seawater (with/without sediment)[33], PCL during enzymatic hydrolysis[46], and PHB in water 
under stimulated solar visible light[86], tap water, and drinking water[87]. In all the above-mentioned studies, 
most of the BMPs found were smaller than 50 μm.

The factors affecting the biodegradation rate of BPs also determine the period of stable existence of BMPs; 
due to higher specific surface areas, BMPs are supposed to be hydrolyzed more rapidly than BPs in the same 
environment[30]. A study supported the faster disappearance of BMPs based on the test results in the soil 
(ASTM D 5988-12)[88]. However, it does not mean that BMPs pose less risk than conventional MPs in the 
marine environment. On the one hand, a smaller size than BPs could also mean that BMPs are prone to 
migration on/in marine sediments[89,90] and even to depths[91] with low microbial activity. It might affect the 
rate of enzymatic hydrolysis and the existence time of BMPs in the marine environment. Similarly, BMPs 
formed in other environments could enter the marine environment [Figure 3]. Due to the promotion of UV 
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Figure 3. The generation and migration of marine biodegradable microplastics (BMPs).

light on the fragmentation of BPs[80], the period of BP fragmentation in soil or fresh water might be shorter 
than that in the marine environment. Therefore, a large proportion of secondary BMPs in the marine 
environment are supposed to come from other adjacent environments. For BMPs (or nanoplastics) in the 
marine environment, the exposure time and average abundance during exposure might be key factors for 
assessing their potential risk. There is no such experimental data at present, but BMPs took tens 
(polybutylene sebacate)[92] to hundreds (Mater-Bi)[93] of days to be mineralized in soil, and the 
biodegradation in the marine environment might take longer. On the other hand, the rapid degradation 
might pose even higher risks: the toxicity of degradation products is supposed to be stronger than the BMPs 
that produce them[94].

Ecological risks 
Among the studies involving BMPs, those concerning ecological risks are the most common [Table 4]. In 
view of the fact that there are only studies on PLA MPs in the marine environment, the effects of various 
BMPs on organisms in different environments are also listed in Table 4. It should be noted that most of 
these results were not obtained when exposed to the environmental abundance of BMPs.

In the marine environment, Green et al. suggested that PLA MPs posed weaker effects than a conventional 
type of plastic (PVC) on the biological activity of a sand-dwelling lugworm[95]. A high abundance of PLA 
MPs (colonized by microalgae) could also elevate the respiration rates of oysters and alter assemblages 
(decrease species richness, total number, and body size) of benthic fauna[96]. Khalid et al. suggested that no 
significant effect could be found on blue mussels exposed to PLA MPs, except for the reduction in 
glycerophospholipids, which are important structural lipids of biological membranes[97]. Green et al. 
adopted a sensitive method (proteomic analysis), which found PLA MPs increased expression of a putative 
heavy metal binding protein and a putative detoxification enzyme of blue mussels[98]. PLA MPs could reduce 
the fertilization rate of solitary ascidians[99]. The response of bivalves and related habitats to the exposure of 
PLA MPs depend on bivalve species: oysters accelerated filtration, whereas blue mussels chose to slow down 
filtration; the structure of benthic community changed only in oyster-dominated habits, where the biomass 
of benthic cyanobacteria and numbers of polychaetes decreased, while oligochaetes increased[100].

In the freshwater environment, PHB MPs led to a weight loss of amphipods, while the biomass increased 
after being treated with natural or particle-free silica[101]. Nanoplastics produced from PHB MPs, instead of 
their leachate, induce the growth inhibition of cyanobacteria and algae and the immobilization of 
crustaceans[86]. Similar results (negative effects of BMPs instead of leachates) could also be found by PLA 
MPs on the reproductive output, body length, and mortality of crustaceans[102]. PLA MPs could inhabit 
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Table 4. Ecotoxicological studies related to BPs in the marine environment, freshwater, and soil

Environment BMPs Abundance Organism 
involved

Period 
(d) Adverse effect

Effect level 
compared 
with 
conventional 
plastics

Refs.

PLA (~235.7 μm) 2% of sediment 
weight

Arenicola marina 31 Respiration rate, cast 
production

Weaker than 
PVC (but PVC 
MPs are 
smaller)

[95]

Ostrea edulis Respiration rates Similar to HDPE

Scrobicularia 
plana

Biomasses Similar to HDPE

Juvenile Littorina 
sp.

Abundance Similar to HDPE

PLA (~65.5 μm) 80 μg/L

Juvenile Idotea 
balthica

60

Abundance Similar to HDPE

[96]

PLA (1-10 μm 
mostly)

10 and 100 μg/L Mytilus edulis 8 Glycerophospholipids -
[97]

PLA (~65.6 μm) 25 μg/L Mytilus edulis 52 Attachment strength, protein 
expression

Weaker than 
HDPE

[98]

PLA (200-500 μm) 100, 200, 400 mg/L Microcosmus 
exasperatus

1 Fertilization rates Similar to PET
[99]

Mytilus edulis Filtration rates Similar to HDPE

Filtration rates Similar to HDPE

Biomass of cyanobacteria Similar to HDPE

Abundance of Eteone picta 
polychaetes

Similar to HDPE

Marine

PLA (~65.6 μm) 25 μg/L (Biomass of 
cyanobacteria, and 
abundance of 
polychaetes/ 
oligochaetes 
changed at 2.5 μg/L 
and 25 μg/L)

Ostrea 
edulis

48

Abundance of Tubificoides 
benedii oligochaetes

Similar to HDPE

[100]

Assimilation efficiency Weaker than 
PMMA

PHB (32-63 μm) 100,000 
items/individual

Gammarus 
fossarum

28

Wet weight change Similar

[101]

Anabaena sp. 
PCC7120, 
Chlamydomonas 
reinhardtii

Growth -PHB (~200 nm) ~90 mg/L

Daphnia magna

2

Immobilization -

[86]

Reproductive output Weaker than 
PVC, stronger 
than PUR

PLA (≤ 59 mm) 500 mg/L (2.08 × 
108 items/L)

Daphnia magna 21

Survival Strongest

[102]

PLA (~2.34 μm) 760 and 15,020 μg/L Physalaemus 
cuvieri tadpoles

14 Body condition indices, caudal 
development, triglyceride 
levels

-
[103]

Virgin and UV 
irradiated PLA (5-
50 μm)

25 mg/L Danio rerio 11 Skeletal development, 
mitochondrial dysfunction, 
RNA-seq of larvae

-
[104]

Mater-Bi® (~41 μm) 1 mg/L Dreissena 
polymorpha

14 Glutathione-S-transferase 
activity

Weaker than 
PVC

[105]

PLA (~2.34 μm) 6 mg/L Aphylla 
williamsoni larvae

2 Oxidative stress (nitrite 
levels, thiobarbituric acid 
reactive species), antioxidant 
activity (superoxide 
dismutase activity, total 
thiol), acetylcholinesterase 
activity

Stronger than PE
[106]

Freshwater

PLA (~2.34 μm) 3 and 9 mg/L Danio rerio larvae 5 Swimming distance and 
speed, acetylcholinesterase 
activity

-
[107]

Blend of PLA and 
PBAT (40 μm)

1, 10 and 100 mg/L Caenorhabditis 
elegans

6 Offspring number Similar to LDPE
[108]

Soil
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125, 250 and 500 
g/kg

2 Avoidance test Similar to PE

500 g/kg Mortality Weaker than PE

125, 250 and 500 
g/kg

Biomass Biomass is 
higher when that 
lower treated 
with PE

PLA (~120 μm)

125, 250 and 500 
g/kg

Eisenia fetida.

28

Offspring number Stronger than PE

[109]

49 Rosette leaf area, plant shoot 
dry weight, number of fruit 
per plant

PBAT (56.7 μm) 20 g/kg Arabidopsis 
thaliana

28 Total leaf area, 
malondialdehyde, reactive 
oxygen species

Stronger than 
LDPE

[94]

tadpoles’ growth and development and reduce their lipid reserves[103]. After UV photodegradation, the efflux 
and detoxification rate of PLA MPs from zebrafish larvae decreased, and, accordingly, the oxidative stress 
effect induced mitochondrial structural damage, dysfunction, and apoptosis[104]. Mater-Bi® MPs could 
induce the glutathione-S-transferase activity of mussels[105], and PLA MPs increased oxidative stress, 
weakened antioxidant defenses, and showed anticholinergic activity in dragonfly larvae[106] and altered 
moving behavior and inhibited acetylcholinesterase’s activity of zebrafish larvae[107]; however, these 
indicators might be too sensitive as a basis for assessing toxicity.

In soil, the reproduction of nematodes could be affected by BMPs[108]. The effect of PLA MPs on the 
avoidance behavior, biomass, and reproduction responses of earthworms is similar to that caused by PE[109]. 
PBAT MPs could more severely inhibit plant growth than HDPE by disrupting the photosynthetic system 
and increasing the gene expression levels for drug transport[94].

In summary, most test results support the view that a high abundance of BMPs (mainly PLA MPs) could 
affect organisms, including biomarker contents, oxidative stress, feeding, respiration, behavior, growth, 
reproduction, abundance, and even mortality. It is not an inconceivable scenario in the context of the 
widespread use of BPs with improper solid waste management systems. However, the mode and level of 
these effects are highly dependent on the size and exposure abundance/period/environment of BMPs. Based 
on limited studies, it is not easy to draw further conclusions.

As vectors 
It might still be too early to assess the physical/chemical risk of a specific type of BMP on marine organisms 
with few available data[87]. However, another fact to note is that BMPs could sorb toxic pollutants, including 
PAHs, PFASs, pesticides, pharmaceuticals, and heavy metals, and act as vectors[110]. Regarding nonpolar 
organic chemicals, the sorption capacity of a PAH (phenanthrene) on PBAT MPs is proven to be higher 
than PE and PS due to a higher proportion of rubbery subfraction, and even higher than some 
carbonaceous geosorbents (black carbon)[111]. The higher (than PS pellets with the larger specific surface 
area) sorption affinity between BMPs (PBS and PCL) and PAHs (phenanthrene/pyrene) confirmed the 
effect of rubbery domains; hydrogen bonding between BMPs and the polar derivatives of the above two 
PAHs also resulted in strong affinity[112]. The experiment concerning four chlorophenols (4-chlorophenol, 
2,4-dichlorophenol, 2,4,6-trichlorophenol, and pentachlorophenol) and PLA found no significant 
differences between PLA and conventional MPs[113]. Regarding polar organic chemicals, the studies on 
fipronil, tetracycline, and ciprofloxacin supported a higher affinity with BMPs than conventional MPs due 
to the presence of oxygen-containing functional groups[110]. PLA MPs and conventional MPs showed no 
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significant difference in the sorption of amphiphobic PFAFs[110]. BMPs are believed to have weaker 
adsorption for heavy metals (than conventional MPs), but after degradation for a period of time, their 
adsorption capacity for heavy metals increases[110].

In addition, the presence of MPs in the marine environment is supposed to improve horizontal gene 
transfer between bacterial taxa[114]. The abundance of antibiotic resistance genes and virulence factors[115] in 
soil treated with PBS films was larger than that of conventional plastics. It seems that conventional MPs and 
BMPs “choose” different bacterial hosts to spread antibiotic resistance genes and virulence factors[115].

Plastic degradation products or additives
Additives 
Additives could release during biodegradation, which is influenced by the biodegradability of BPs[30]. One 
example is the release of carbon black[116], which maintains the mechanical properties of mulching films[30] or 
is used as a pigment or UV absorber[117]. Sometimes, the toxicity of plastics depends on the composition and 
abundance of additives, which causes the different toxicities of different products (with different additives) 
produced with similar plastic material (such as LDPE, PS, and PP)[118]. Moreover, PVC and PUR (which are 
known to contain a large amount of additives) are considered to be the most toxic with respect to 
bioluminescence inhibition; meanwhile, all PLA products induced similar bioluminescence inhibition with 
PVC and PUR in both efficiency and effect level[118], which might also be due to additives. A further study 
showed that the detected chemical features (possibly related to the numbers of compounds) in the extracts 
of BPs ranged from 614 (a PHA product) to 20,965 (a starch-based product), and it is suggested that extracts 
from cellulose- and starch-based BPs posed a strong in vitro toxicity[119]. It might indicate that BPs contain 
compounds (including additives) of the same order of magnitude with chemical features, and BPs with the 
highest chemical features (numbers of compounds) are the most toxic. Another study suggested that 
additives providing antimicrobial activity could be potentially hazardous[13]. Meanwhile, some unclear 
compositions of additives for proprietary reasons[30] might also pose potential risks. For example, the 
toxicity of MP extracts (from a PLA product) to worms was attributed to undeclared ingredients coumarin 
and iodocarb (presumably adsorbed) of PLA[120].

Degradation products 
The degradation products of BPs could also be harmful. Some polyesters (sometimes blended with starch-
based BPs), such as PBA[121], PBAT[94], and PLA[122], could release degradation products (e.g., 1,6-
dioxacyclododecane-7,12-dione) and related monomers (adipic acid, lactic acid, terephthalic acid, 1,4-
butanediol, etc.) to the aquatic environment; these leachates might increase proline (a plant stress marker), 
reduce plant development, inhibit plant growth[123], and lead to plant developmental abnormalities[121] in soil. 
Similar effects could occur in marine plants, such as coastal dune vegetation[124]. Moreover, adipic acid is 
also reported to be slightly to moderately toxic to aquatic organisms[122]. In addition to terephthalic acid and 
butanediol, these products were supposed to be more toxic than parent polymers such as PBAT[94].

Pesticides and other exogenous pollutants
Beriot et al. found that the average sorption percentage of 17 insecticides, 15 fungicides, and 6 herbicides on 
LDPE and LDPE containing pro-oxidant films was ~23%, whereas that on BP films was ~50%; at the same 
time, the adsorption of plastic film makes these pollutants difficult to decay in the environment[125].

Some other hazardous substances might be introduced during the production of BPs, such as endotoxins 
introduced in PHBV produced by Gram-negative bacteria[13].



Page 16 of Chen. Water Emerg Contam Nanoplastics 2022;1:16 https://dx.doi.org/10.20517/wecn.2022.1123

Other impacts on the environment
Similar effects to conventional plastics
In a period after entering the natural environment, BPs may pose similar effects on habitats as conventional 
plastics. It is proven that corn starch-based BP films in the intertidal zone could create anoxic conditions 
beneath them, reduce primary productivity and organic matter in sediments, and decrease infaunal 
invertebrate populations, similar to those effects caused by conventional plastics[126].

The risk of entanglement of animals might be influenced by the physical and mechanical properties of 
BPs[30], where their degradability affects the exposure time and exposure probability indirectly.

Additional effects
The degradation time scale of BPs in the aquatic environment is designed to be shorter than that of 
conventional plastics. Nevertheless, it also makes the presence of BPs in nature easier to affect the ecological 
equilibrium and material cycle. At first, microbial communities on the surface of BPs were reported to be 
different from those on conventional plastics and those in the surrounding environment[24], possibly due to 
the surface attachment capabilities of microorganisms[127] at the beginning of attachment and the ability to 
utilize BPs as carbon and energy source[24] thereafter. For example, during the early stage of plastic surface 
biofilm formation in the marine environment, the microbial composition of biofilms on conventional 
plastics and aliphatic polyesters is nearly independent of plastic type[127], but a significant difference in 
diatom community on the surface of starch-based BP and PE was found[128]. Generally speaking, there is 
more biomass on the surface of BPs than on conventional plastics[24]. In the marine environment, higher cell 
counts and activity of bacteria could be found on PHBV than on PE, with a unique microbial community 
structure (hydrocarbonoclastic bacteria enriched on the plastic surface)[129]. There are differences in specific 
microbial communities. Pinnell and Turner compared the microbial community composition in benthic 
seawater of a coastal lagoon and on the surface of ceramic, PET, and PHA: the microorganism compositions 
on the surface of the latter three are different from that in seawater, and significantly different compositions 
on PHA surface were found with those of ceramic and PET, dominated by sulfate reducers[62]. Kirstein et al. 
suggested that marine biofilm core prokaryotic communities on the plastic substrate (including PLA) were 
significantly different from that on the glass substrate, but the difference in eukaryotic communities was not 
significant[130]. Although it is believed that the biodiversity on BP surface is lower than that on conventional 
plastic surfaces[24], whether this conclusion is valid in the marine environment remains to be verified. The 
different microbial compositions on plastic surfaces could be a hotbed of opportunistic bacteria (pathogen). 
For example, Vibrionaceae and Pseudoalteromonadaceae, which are rarely found in seawater and marine 
sediment, were detected on the surfaces of plastic debris in the seabed[131]. However, considering the 
difference in microbial compositions on the surface of BPs and conventional plastics, a similar conclusion 
cannot be extended to BPs directly. The enrichment of biomass on plastic surfaces increases the transfer rate 
of antibiotic resistance genes, which makes plastics hotspots for acquiring and spreading antibiotic 
resistance[132]. BPs and conventional plastics have different capabilities in the enrichment of antibiotic 
resistance genes, and this difference varies with environmental conditions; the differences in the marine 
environment remain to be explored[24].

Secondly, the degradation of BPs could change the surrounding environment. BPs could consume more 
oxygen than PE in the seabed[30]. The release of PLA MPs into sediment increases bacterial diversity (alpha 
diversity) and promotes nitrification and denitrification[133]; PLA MPs in lake water could alter the 
phytoplankton composition (eliminated cryptophytes and increased chrysophytes)[134]. A vegetable oil- and 
starch-based BP bag could even promote root expansion and increase the vegetative recruitment of seagrass 
(C. nodosa)[135]. All of the above results support the idea that a large amount of BP deposited on the seafloor 
can change benthic biogeochemical activities. Considering the high material density of BPs and the current 
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production of disposable plastic products, it would not be an unimaginable scenario in the seabed of some 
estuaries or nearshore in the near future.

At the macro level, the widespread use of BPs could indirectly affect the environment. In the marine 
environment, BPs being mineralized is equivalent to being “burned”, releasing CO2 or CH4 slowly; although 
the whole biodegradation process may take a year or more rather than a few minutes, it does not differ 
much in carbon emissions calculated by year or decade. Therefore, the substitution of BPs for conventional 
plastics, in a sense, is to accelerate the carbon emissions from the carbon pool to the atmosphere. Note that 
BPs are not necessarily bio-based, and the generation of fossil minerals from carbon dioxide is much longer 
than the mineralization of fossil-based BPs. It is a waste of fossil minerals and accelerates the carbon cycle to 
use fossil-based BPs. Switching from conventional plastics to bio-based BPs is estimated to cut greenhouse 
gas emissions[136], but the fate of carbon fixed in plastics and its role in the greenhouse effect are still hard to 
assess[11]. BPs also have a greater impact than conventional plastics on issues including eutrophication and 
acidification[11]. From another perspective, the mass production of bio-based raw materials requires a lot of 
fertilizers, pesticides, cultivated land, and water resources[137]. It may not only cause additional 
environmental pollution but also occupy the resources required for food production. Some may argue that 
non-edible parts of crops, such as straw, can still be used as raw materials for BPs. However, the fact is that, 
by now, most straws will continue to circulate in the agricultural material flow as fertilizer and feed after 
harvest. Transferring them out of the agricultural sector will greatly increase the opportunity cost of 
agriculture. Will this demand for food and energy be transferred to marine fishing, mariculture, or offshore 
oil and combustible ice mining, thereby affecting the marine environment? In the context of the global food 
and energy shortages caused by conflict this year, it remains a possible scenario.

Limitations of the current research
At present, most studies on BPs are carried out in soil or freshwater environment. However, there are still 
many questions about studying BPs in the marine environment: What is the fate of BPs and BMPs in the 
marine environment, especially in the deep-sea environment? How different is the degradation of various 
BP materials in the marine environment? Will BPs and BMPs accumulate in the marine environment, and 
how do they migrate? How do we trace and evaluate the risk of BPs/BMPs in the marine environment?

CONCLUSION
The previous sections summarize various potential adverse impacts and hazards of BPs on the marine 
environment and human society, including the release of microplastics, degradation products, additives, 
and other pollutants, which could entangle animals or alter the material cycles of conventional plastics 
before decomposition, alter microbial communities on them, and affect biogeochemical activities in the 
adjacent environment due to their biodegradability. However, one premise of these adverse effects, namely, 
the large-scale use and improper abandonment of BPs, is not an established fact. Increasing the recycling 
rate of some plastic products and using durable materials such as metal and ceramic can reduce the 
proportion of disposable plastics, thus reducing the potential demand for BPs. Additionally, it should be 
noted that some supposed adverse effects have not been fully confirmed, since studies focusing on 
ecological risks of BPs in the marine environment are still limited[30]. Furthermore, some of BPs’ 
shortcomings can actually be overcome. For example, the application of bio-based BPs could accelerate the 
regeneration of BPs, making the related carbon cycle more “cost-effective”. Strengthening waste 
management can directly reduce the impact of BPs on the marine environment. In addition, BPs have 
unique advantages, such as their superiority in medical applications[138] and the ideal material for fishing 
gear which is often lost in the marine environment[11].
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Reducing plastic pollution in the marine environment is an arduous task for human society, so no “weapon” 
can be given up rashly. Based on the above facts, BPs can and should be used properly: (i) BPs should not be 
the only option to stop plastic pollution. Comprehensive measures should be taken. In most cases, a lifestyle 
that reduces material and energy waste should be promoted. For those essential disposable products, proper 
waste management is a prerequisite for the promotion of BP products. (ii) The widespread use of non-
durable organic products such as those produced by BPs should be considered when planning for carbon 
neutrality and ecological equilibrium. The life cycle of this kind of product may change the carbon cycle and 
have a long-term impact on the ecosystem in which they end up (such as landfill or marine waste 
accumulation points). (iii) The use of BP products should be positioned accurately. The provision of 
“material properties required in the application” or “biodegradability after use”[30] is fraught with 
contradictions. Therefore, it is very important to match the appropriate application for each BP material 
based on specific properties, including the persistence/exposure time in the marine environment.

To provide practical information for the application of BPs, further studies are necessary. In various marine 
environments with significant differences, the lifespan and environmental behavior of different 
biodegradable plastic products need to be correctly evaluated, which is the premise of assessing the 
contribution of BPs as a carbon source in the ocean. The role of additives and the risks of BMPs/leachates 
also need more attention. Taking BMPs as an example, the differences in the marine ecotoxicological effects 
caused by various materials need to be tested and confirmed, especially under the environmental abundance 
of BMPs. Finally, their impact on the ecosystem and material cycle (including carbon emissions) needs 
appropriate means or models for a comprehensive assessment.
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