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Abstract
Over the last two decades, substantial progress has been made in the scope of molecular targeted therapy, leading 
to transformative advancements in the treatment of various malignancies, including biliary tract cancer (BTC). BTC 
represents a heterogeneous group of aggressive tumors with historically poor prognoses. However, recent 
discoveries of novel molecular alterations in BTC have provided new avenues for targeted therapeutic 
interventions, exemplified by the approval of pemigatinib, specifically designed for FGFR2 gene fusions or 
rearrangements in advanced BTC. Furthermore, subsequent regulatory approvals and ongoing clinical trials 
focusing on specific gene mutations have considerably expanded the array of treatment options available, 
augmenting the potential for personalized treatment strategies. In light of these developments, this review aims to 
furnish a comprehensive and up-to-date account of the molecular characteristics and potential targeted therapies 
in BTC. By presenting insights into novel therapeutic approaches and outlining prospective directions for 
translational and clinical investigations, this review seeks to contribute to the ongoing progress and optimization of 
therapeutic approaches in managing BTC.
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INTRODUCTION
Biliary tract cancer (BTC) is a heterogeneous group of biliary cancers that occur at various locations along 
the biliary tree, representing approximately 3% of gastrointestinal malignancies. BTC is divided into several 
main subtypes based on its location: intrahepatic cholangiocarcinoma (iCCA), perihilar 
cholangiocarcinoma (pCCA), and distal cholangiocarcinoma (dCCA). These subtypes represent different 
locations along the biliary tree and contribute to the heterogeneity of BTC [Figure 1]. The incidence of BTC 
is steadily increasing worldwide[1]. Unfortunately, the prognosis for BTC remains grim due to delayed 
detection and the limited number of patients (approximately 30% or less) who qualify for curative 
surgery[2]. Furthermore, while several study results support the use of neoadjuvant therapy to potentially 
enhance survival and achieve a higher R0 resection rate, there is no unanimous consensus on its necessity[3]. 
Additionally, most patients are diagnosed at advanced stages with distant metastasis and extensive liver 
involvement. The rarity of the disease and the lack of effective treatments intensify the urgency to explore 
novel strategies for managing this devastating condition. The treatment of advanced BTC poses a significant 
challenge because the condition remains incurable and alternative treatment options are limited. As a result, 
the current approach focuses primarily on supportive care and systemic therapy to improve overall survival 
(OS) and enhance quality of life. Despite efforts, the prognosis for advanced BTC patients varies 
considerably, with reported median OS ranging from 4 to 12 months in different studies[4-6]. Therefore, the 
ongoing challenges in treating advanced or recurrent BTC underscore the necessity for further 
advancements in therapeutic interventions.

The gemcitabine and cisplatin combination regimen has long been the standard systemic therapy for 
advanced BTC, based on the findings of the ABC-02 study[6]. This phase 3 trial compared the efficacy of 
gemcitabine alone versus gemcitabine plus cisplatin and showed better OS and progression-free survival 
(PFS) with the combined therapy. Patients received gemcitabine plus cisplatin for approximately 8 cycles, 
followed by close surveillance. It also showed a better response rate (RR) in the combination regimen group 
than in the gemcitabine monotherapy group (26.1 % and 15.5 %, respectively). Subgroup analysis revealed 
the benefits of the combination therapy across different tumor locations, including intrahepatic, 
extrahepatic, and gallbladder. These findings established the gemcitabine and cisplatin therapy as the 
standard systemic treatment for advanced BTC.

In the pursuit of enhancing treatment outcomes, the TOPAZ-1 study investigated the addition of 
immunotherapy to chemotherapy for advanced BTC[7]. The study included patients who received up to 8 
cycles of gemcitabine/cisplatin plus durvalumab, followed by durvalumab maintenance, compared to those 
who received gemcitabine/cisplatin followed by placebo. The results demonstrated a positive outcome with 
durvalumab, showing a median OS of 12.8 months compared to 11.5 months with placebo (hazard ratio 
[HR] of 0.80; 95% confidence interval [CI]: 0.66-0.97 months; P = 0.021). The study also showed a higher RR 
in the durvalumab group compared to the placebo group [26.7% and 18.7%, respectively, odds ratio of 1.60, 
(95%CI: 1.11-2.31)]. Subgroup analyses based on sex, PD-L1 expression, tumor location (intrahepatic vs. 
extrahepatic or gallbladder), and Asian vs. non-Asian populations all showed benefits from the combination 
therapy. Additionally, the PFS was improved in durvalumab group. Consequently, the combination of 
gemcitabine/cisplatin plus durvalumab has emerged as a new frontline standard of treatment for advanced 
BTC, presenting a promising advancement in treatment options.

Despite the advancements made in systemic treatment over time, the prognosis of the disease remains 
unfavorable as it continues to worsen despite undergoing initial treatment. Unfortunately, only a limited 
number of patients with BTC who experience disease progression following their first-line therapy are 
eligible to undergo second-line chemotherapy, further limiting their treatment opportunities. According to 
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Figure 1. Illustration of the anatomical sites of BTC includes intrahepatic cholangiocarcinoma (iCCA), perihilar cholangiocarcinoma 
(pCCA), and distal cholangiocarcinoma (dCCA). iCCA refers to malignancies located in the periphery of the second-order bile ducts, 
while pCCA originates in the right or left hepatic duct and/or at their junction. On the other hand, dCCA involves the common bile duct. 
Each subtype of BTC occupies a distinct anatomical position within the biliary tract. The collective term extrahepatic 
cholangiocarcinoma (eCCA) is used to encompass both pCCA and dCCA.

the TOPAZ-1 trial, 42.5% of patients received subsequent anticancer therapy following immune-
chemotherapy[7]. There are several factors that contribute to the limitation of advancing beyond the first line 
of treatment. One such factor is the insufficient remaining healthy liver parenchyma, which significantly 
restricts the feasibility of receiving cytotoxic systemic treatments, often resulting in poor outcomes. 
Additionally, the overall performance status of patients with advanced or metastatic BTC tends to be 
generally poor, further complicating treatment decisions and options. Infection poses another significant 
barrier to overcome, as advanced BTC is often complicated by cholangitis, sepsis, and other issues 
associated with the biliary tree.

When patients with BTC experience disease progression on the first line of therapy and are able to proceed 
to second-line systemic treatment, the decision regarding the subsequent line of therapy becomes complex. 
This complexity arises from the absence of a well-defined global treatment standard for this stage. The 
ABC-06 trial has shown improved survival in patients who received second-line therapy with folinic acid, 
fluorouracil, and oxaliplatin (FOLFOX) in combination with active symptom control (ASC) compared to 
ASC alone[4]. However, despite these advancements, the efficacy and prognosis remain discouraging, with 
median OS at 6.2 months with FOLFOX.

Due to the discouraging prognosis and limited treatment options in BTC, advancements in molecular 
techniques like next-generation sequencing (NGS) have paved the way for alternative approaches. 
Moreover, patients with BTC display significant variations in their molecular characteristics and genetic 
abnormalities, which can vary depending on their specific anatomic locations [Table 1]. This diversity in 
molecular features makes BTC a potential candidate for targeted therapy. As a result, molecular analysis has 
now become a routine part of diagnostic testing for advanced BTC cases, providing valuable insights for 
treatment decisions and enhancing treatment efficacy. In the upcoming section, we will delve into diverse 
targeted therapies for BTC, exploring their effectiveness and research findings in the context of this 
challenging cancer.



Page 4 of Gim et al. Hepatoma Res 2023;9:51 https://dx.doi.org/10.20517/2394-5079.2023.9020

Table 1. The prevalence of genetic alterations in BTC based on the anatomic sites

Anatomic Site
Genetic Alteration

iCCA eCCA GBC

IDH1,2 Mutation 13%-30%[8,9] 4.7%[10] -

FGFR2 Fusion 10%-15%[11] - -

BRAF V600E Mutation 1.5%[12] - 0.5%[12]

HER2 Alteration 2.2%[13] 7.5%[13] 12.6%[13]

KRAS G12C Mutation 1.2% across all sites[14]

NTRK Fusion 0.75% across all sites[15]

RET Fusion 0.15%[16] 0.11%[16] -

MSI-H/dMMR 2.06%[17] 4%[10] 5%[18]

TMB-H 4% across all sites[19]

BTC: biliary tract cancer; dMMR: mismatch repair deficient; eCCA: extrahepatic cholangiocarcinoma; FGFR: fibroblast growth factor receptor; 
GBC: gallbladder cancer; HER2: human epidermal growth factor receptor 2; iCCA: intrahepatic cholangiocarcinoma; IDH: isocitrate 
dehydrogenase; KRAS: Kirsten rat sarcoma viral oncogene homolog; MSI-H: microsatellite instability-high; NTRK: neurotrophic tyrosine receptor 
kinase; RET: rearranged during transfection; TMB-H: high tumor mutational burden.

TARGETED THERAPIES FOR BILIARY TRACT CANCER
Isocitrate dehydrogenase inhibitors
IDH gene mutations are frequently observed in approximately 13%-30% of iCCA cases, establishing them as 
the most prevalent targetable mutations in BTC[8,9]. Extensive research has focused on the IDH gene in 
various cancers, particularly acute myeloid leukemia and other myeloid malignancies. Although the exact 
mechanisms underlying the oncogenic effects of IDH mutations remain unclear, it is believed that these 
mutations contribute to the excessive accumulation of metabolites associated with cancer development[20]. 
Specifically, IDH1 mutations have been shown to enhance the conversion of α-ketoglutarate to 2-
hydroxyglutarate (2-HG), leading to the accumulation of 2-HG and potentially impairing cell 
differentiation, as well as promoting the proliferation of tumor cells.

Ivosidenib, an oral IDH1 inhibitor, is currently recommended by the National Comprehensive Cancer 
Network (NCCN) as a second-line therapy for advanced, unresectable, and metastatic BTC harboring IDH1 
mutations[21]. The approval of ivosidenib by the Food and Drug Administration (FDA) was based on the 
compelling results of the phase III CLARIDHY study[22]. This trial showed a statistically significant 
improvement in PFS for patients randomized to ivosidenib, with a HR of 0.37 (95%CI: 0.25-0.54; 
P < 0.000)[9]. The most common treatment-related adverse events (TRAE) observed was ascites, which were 
observed in 9% of treated patients compared to 7% in the placebo arm, while the patients' quality of life did 
not appear to be significantly affected. The most common grade 3 or worse adverse event observed in both 
the ivosidenib and placebo groups was ascites, occurring in 7% of patients in each group. Furthermore, 
serious adverse events were reported in 30% of patients who received ivosidenib and in 22% of patients in 
the placebo group. A summary of targeted therapies for CCA is provided in [Table 2].

Several ongoing early-phase trials are assessing other IDH inhibitors in IDH mutant tumors including BTC 
such as LY3410738 (NCT04521686)[23], HMPL-306 (NCT04762602)[24], and IDH305 (NCT02381886)[25]. 
Additionally, there is an ongoing study (NCT04088188) evaluating the addition of ivosidenib with 
gemcitabine and cisplatin as a treatment for advanced BTC patients[26]. Although it is a phase I study, it 
holds the potential to provide valuable insights into the efficacy of combining targeted therapy and 
chemotherapy in the management of advanced BTC. A summary of ongoing targeted therapy trials with 
data is provided in [Table 3].
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Table 2. Approved targeted therapies for BTC

Target Drug Trial name Patient number (n) ORR mPFS 
(months)

mOS 
(months)

Grade ≥ 3 
TRAE

IDH Ivosidenib ClarIDHy 187 - 2.7 10.3 53%

Pemigatinib FIGHT-202 146 (107 FGFR R/F + 20 FGFR-O 
+ 18 FGFR-N + 1 unassigned)

35.5% (in 
FGFR R/F) 

6.9 (in FGFR 
R/F)

21.1 (in FGFR 
R/F)

64%FGFR

Futibatinib FOENIX-CCA2 103 41.7% 8.9 20.0 73.1%

BRAF/MEK Dabrafenib/ 
Trametinib

ROAR 43 51% 9 14 53%

HER2 Trastuzumab/ 
Pertuzumab*

MyPathway 39 23 (0% in 
iCCA)

4 (2.6 in 
iCCA)

10.9 (3.9 in 
iCCA)

46%

Larotrectinib LOXO-TRK-14001, 
SCOUT, NAVIGATE

244 69% 29.4 NR 20%TRK

Entrectinib ALKA, STARTRK-1, 
STARTRK-2

150 61.3% 13.8 37.1 -

Pralsetinib* ARROW 23 including 3 BTC 57% 7.4 13.6 69%RET

Selpercatinib LIBRETTO-001 41 including 2 BTC 43.9% 13.2 18.0 38%

*Not FDA-approved for BTC but recommended by NCCN. BTC: biliary tract cancer; FGFR-N: no FGF/FGFR alterations; FGFR-O: other FGF/FGFR 
alteration; FGFR R/F: FGFR2 fusions or rearrangements; iCCA: intrahepatic cholangiocarcinoma; mOS: median overall survival; mPFS: median 
progression-free survival; NR: not reached; ORR: objective response rate; TRAE: treatment-related adverse event.

The promising data on IDH inhibitors in BTC hold potential, but challenges, especially regarding acquired 
resistance, must be addressed. Studies are investigating the mechanisms of secondary resistance to IDH 
inhibitors. However, the molecular underpinnings of this resistance are not yet fully elucidated. Several 
studies have found mutant IDH isoform switching as a potential mechanism of acquired resistance to IDH-
targeted therapy[31,32]. Nonetheless, additional research is necessary to gain a comprehensive grasp of these 
molecular processes.

Fibroblast growth factor receptor inhibitors
FGFR is a cell surface receptor that transmits signals from fibroblast growth factors, playing an essential role 
in regulating cell proliferation, tissue maturation, and cellular differentiation[33]. Continuous activation of 
FGFRs can lead to the proliferation of cancer cells. Activation of FGFRs can occur via different mechanisms, 
including gene amplification, which results in the overexpression of receptors, activating mutations, or 
translocations that create activating gene fusions[34]. Among all FGFR alterations, FGFR2 fusions exhibit the 
highest frequency in BTC, being detected in approximately 10%-15% of patients with iCCA, while being 
comparatively rare in other subtypes[35,36]. Several pan-FGFR inhibitors and selective FGFR inhibitors have 
been undergoing investigation. The data obtained from registrational studies provide compelling evidence 
that FGFR2 fusions, as the most prevalent alterations in BTC, significantly contribute to the therapeutic 
efficacy observed in this disease[37,38].

Pemigatinib and futibatinib are two FGFR inhibitors currently available for patients with pretreated BTC 
who have FGFR2 fusions or rearrangements[39]. In April 2020, the FDA granted accelerated approval to an 
oral inhibitor of FGFR1-3, pemigatinib, as a therapy option for previously treated advanced BTC patients 
who tested positive for FGFR2 fusion or FGFR2 rearrangement, based on the findings of the phase II 
FLIGHT-202 study[40,41]. The final analysis of the study, with a median follow-up duration of 45.4 months, 
showed a disease control rate (DCR) of 82.4% (95%CI: 73.9%-89.1%) and a median OS of 17.5 months 
(95%CI: 14.4-22.9 months)[42]. Based on the promising data mentioned earlier, a phase III randomized study, 
FIGHT-302 (NCT03656536), is currently underway to evaluate pemigatinib as a frontline treatment for 
advanced BTC patients, comparing it with the combination of gemcitabine and cisplatin[43].
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Table 3. Ongoing targeted therapy trials in BTC

Target Drug/Name of trial Phase Trial ID Outcome Note

LY3410738 I NCT04521686 LY3410738 is a dual IDH1/2 inhibitor

HMPL-306 I NCT04762602 HMPL-306 is a dual IDH1/2 inhibitor

IDH305 I NCT02381886 IDH1R132-mutant tumors are eligible

IDH

ivosidenib + gemcitabine + 
cisplatin

I NCT04088188

Futibatinib/ 
FOENIX-CCA3

III NCT04093362 Futibatinib versus Gemcitabine + 
Cisplatin as a first-line in advanced BTC 
with FGFR2 gene rearrangement

Derazabtinib/ FIDES-01 II NCT03230318 In FGFR2 fusion group: ORR 
21.4%, mPFS 8.0 months, 
mOS 17.2 months[27]

Derazabtinib is a pan-selective FGFR 
inhibitor 

RLY-4008/ ReFocus I/II NCT04526106 ORR 88.2%[28] RLY-4008 is a highly selective FGFR2 
inhibitor

Pemigatinib/ 
FIGHT-302

III NCT03656536 Pemigatinib versus 
Gemcitabine/Cisplatin as a frontline in 
advanced BTC with FGFR2 
rearrangement 

KIN-3248 I/Ib NCT05242822 KIN-3248 is a selective small molecule 
pan-FGFR inhibitor

FGFR

Bemarituzumab Ib/II NCT05325866 Bemarituzumab is a humanized IgG1 
monoclonal antibody against FGFR2b

NCT05501912ABM-1310 I

NCT04190628

ABM-1310 is a small molecule BRAF 
inhibitor

BRAF

BGB-3245 Ia/Ib NCT04249843 BGB-3245 is a small molecule inhibitor 
of RAF monomer and dimer

Trastuzumab deruxtecan/ HERB II JMA-IIA00423 ORR 36.4%, DCR 81.8%, 
mPFS 4.4 months, mOS 7.1 
months. Grade ≥ 3 TRAEs in 
81.3% of patients[29]

Zanidatamab/ HERIZON-BTC-01 IIb NCT04466891 ORR 41.3%, DCR 68.8%, 
mPFS 5.5 months, OS at 9 
months of 69.9%[30]

Zanidatamab is a HER2-targeted 
bispecific antibody

DB-1303 I/IIa NCT05150691 DB-1303 is an ADC consisting of a 
humanized anti-HER2 IgG1 monoclonal 
antibody

Tucatinib + trastuzumab and 
oxaliplatin-based therapy or 
pembrolizumab-containing 
combinations

Ib/II NCT04430738

HER2

CT-0508 I NCT04660929 CT-0508 is a CAR-macrophage

ADC: antibody-drug conjugate; BTC: biliary tract cancer; CAR: chimeric antigen receptor; mOS: median overall survival; mPFS: median 
progression-free survival; ORR: objective response rate; TRAE: treatment-related adverse event.

Futibatinib, an oral agent that inhibits FGFR 1-4, has received accelerated approval from the FDA in 
September 2022[44]. This decision was based on the demonstrated efficacy in patients with previously treated 
advanced or metastatic iCCA with FGFR fusions or rearrangements, as shown in the data from the phase II 
FOENIX-CCA2 trial[45]. An updated analysis data, with a median follow-up of 25 months, revealed an 
objective response rate (ORR) of 41.7% with a DCR of 82.5%[46]. The median duration of response (DOR) 
was 9.5 months, while the median PFS was 8.9 months. Furthermore, the mature median OS was recorded 
as 20.0 months. Similarly to pemigatinib, a phase III clinical trial (FOENIX-CCA3, NCT04093362) is 
currently underway. This trial is evaluating futibatinib as a frontline option for locally advanced, metastatic, 
or recurrent unresectable iCCA with FGFR2 rearrangements. The trial aims to compare the efficacy of 
futibatinib with the doublet of gemcitabine and cisplatin.
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Both studies evaluating pemigatinib and futibatinib showed a similar side effect profile. 
Hyperphosphatemia, alopecia, and diarrhea were the most frequent TRAEs noted with both drugs. In the 
case of pemigatinib, these side effects were mostly in grade 1 or 2. Among grade 3 or more severe adverse 
events, hypophosphatemia was the most frequently reported, occurring in 14.3% of cases[42]. Similarly, for 
futibatinib, the most common grade 3 TRAE was hyperphosphatemia, seen in 30% of participants[45]. 
Additionally, other notable grade 3 adverse events included increased aspartate aminotransferase levels 
(7%), stomatitis (6%), and fatigue (6%).

Several ongoing trials hold the potential to provide promising data in the near future. One of these is the 
phase II FIDES-01 study, investigating derazantinib, a pan-selective FGFR inhibitor, in patients with 
pretreated iCCA harboring FGFR2 fusion (FGFR2F) or FGFR mutation/amplification (FGFR2M/A). Data 
from the 2022 ESMO Congress showed a higher ORR of 21.4% (95%CI: 13.9%-30.5%) in FGFR2F compared 
to 6.5% in FGFR2M/A cohort (95%CI: 0.8%-21.4%)[29]. The median OS was documented as 17.2 months 
(95%CI: 12.5%-22.4%) and the median PFS reached 8.0 months (95% CI: 5.5%-8.3%) in FGFR2F patients.

In the ongoing ReFocus trial (NCT04526106), RLY-4008, a highly selective FGFR2 inhibitor, is being 
evaluated in advanced solid tumors, including FGFR inhibitor-naïve BTC. Preliminary data from the 2022 
ESMO Congress showed a promising ORR of 88.2% (95%CI: 63.6%-98.5%) in 17 patients who received the 
recommended phase 2 doses[30]. Notably, one patient achieved a near-complete response and underwent 
curative tumor resection. The encouraging findings underscore the significance of further monitoring the 
ongoing development of RLY-4008 as a potential treatment option for advanced stages and potentially in 
the neoadjuvant setting.

The encouraging data on FGFR inhibitors in BTC holds promise, but there are significant challenges to 
overcome, particularly concerning acquired resistance to these inhibitors. Numerous preclinical 
investigations have been conducted to identify the underlying mechanisms of resistance, including bypass 
signaling, epithelial-mesenchymal transition (EMT), and the development of secondary FGFR mutations, 
commonly referred to as gatekeeper mutations[47]. However, it is vital to acknowledge that the majority of 
research in this area has primarily centered on urothelial, lung, and gastric cancer cell lines, potentially not 
encompassing the complete range of resistance mechanisms observed in BTC. Moreover, in vitro cell 
models may not entirely capture the heterogeneity and complexity of human disease, adding another layer 
of consideration in interpreting the findings and applying them to BTC treatment strategies.

BRAF inhibitors
The mitogen-activated protein kinase (MAPK) signaling pathway, which includes the RAS/RAF/MEK/ERK 
pathway, plays an essential role in cellular proliferation and survival[48]. BRAF, an oncogene, activates the 
RAS/RAF/MEK pathway. BRAF mutations, particularly the V600E mutation, are commonly observed in 
various solid tumors, including colorectal malignancy, non-small cell lung cancer (NSCLC), and 
melanoma[49,50]. The BRAF V600E mutation activates BRAF, resulting in tumor growth and metastasis[51]. 
BRAF activating mutations are rare in BTC, comprising approximately 5.5% of cases, with 1.5% of BRAF 
V600E mutation in iCCA and 0.5% of BRAF V600E in GBC[12].

Combining the RAF inhibitor, dabrafenib, with the MEK inhibitor, trametinib, has shown encouraging 
results in the treatment of BRAF-mutated BTC. The phase II ROAR trial investigated the effectiveness of 
combining dabrafenib and trametinib in patients with advanced solid tumors harboring the BRAFV600E 
mutation who had experienced the progression of disease after prior treatment[52]. The trial showed a 
significant ORR of 51%, with a mean OS of 14 months and a mean PFS of 9 months. The dabrafenib and 
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trametinib combination regimen demonstrated manageable side effects. In light of these results, the FDA 
approved dabrafenib plus trametinib as a subsequent line of therapy for BTC with BRAFV600E 
mutations[53].

Ongoing phase 1 trials are exploring the response to selective BRAF inhibitors, such as ABM-1310 
(NCT05501912, NCT04190628) and BGB-3245 (NCT04249843), in patients with BRAFV600-mutated solid 
tumors, including BTCs. Additionally, more studies are needed to evaluate the effectiveness of targeted 
therapies in patients with concurrent TP53 and BRAFV600E mutations, as initial findings suggest a more 
aggressive disease and reduced clinical benefits[54].

Similar to other targeted therapies, the challenge of overcoming resistance to BRAF inhibitors persists. As 
evidenced by PFS data, a significant proportion of patients initially responsive to BRAF inhibitors eventually 
face resistance, necessitating adjustments in treatment strategies. While several potential mechanisms have 
been proposed, the majority of investigations have revolved around melanoma and a limited range of lung 
cancer cohorts. Nevertheless, a comprehensive analysis of these findings offers relevant insights that can be 
extrapolated to BTC patient populations. Notably, one of the potential mechanisms involves the reactivation 
of the MAPK pathway[55-57], often occurring due to alterations affecting the drug target itself, such as BRAF 
copy number gains and MEK2 mutations[58-60].

As discussed earlier, combination treatment involving BRAF inhibitors and MEK inhibitors has shown 
promising results. However, despite this encouraging observation, the development of acquired resistance 
to combination therapy remains an inevitable challenge. A study conducted within a melanoma cohort has 
highlighted that the mammalian target of rapamycin (mTOR) activation could potentially contribute to the 
acquired resistance seen with combined BRAF and MEK inhibition[61]. The mTOR kinase plays an 
important role in cellular proliferation, and aberrant mTOR activation has been noted across various cancer 
types[62,63]. Given that both the MAPK/ERK and PI3K/AKT signaling pathways converge into the mTOR 
complex 1, this pathway could hold significance for the effectiveness of targeted therapy in patients with 
BRAF-mutant melanoma[61]. This potentially implies that the inclusion of an mTOR inhibitor might 
effectively restore sensitivity to BRAF or MEK inhibitors, prompting further exploration for potential 
therapeutic interventions.

Human epidermal growth factor receptor 2 inhibitors
HER2, encoded by the ERBB2 gene, is a receptor tyrosine kinase involved in crucial oncogenesis signaling 
pathways. Its dysregulation is well-documented in cancer development[64]. Besides its well-known 
significance in breast cancer, emerging evidence suggests its involvement in BTC[65]. HER2 expression shows 
ethnic variations, with a higher prevalence in Asian patients (28.4%) compared to Western patients 
(19.7%)[66]. Additionally, HER2 positivity rates in BTC vary based on tumor location, with reported 
alteration rates of 2.2% in iCCA, 7.5% in eCCA, and 12.6% in GBC[13]. Detection of HER2 amplification in 
BTC can be achieved through various testing modalities, including immunohistochemistry (IHC), 
fluorescence in situ hybridization (FISH), and NGS techniques, with NGS providing the advantage of 
simultaneously evaluating multiple molecular alterations, including HER2 activating mutations, particularly 
when diagnostic tissue is limited. However, IHC and FISH remain the more commonly employed 
methods[67].

Pertuzumab and trastuzumab, two monoclonal antibodies targeting HER2, have shown promise in treating 
HER2-positive malignancies[68]. In a phase II MyPathway study (NCT02091141) involving previously treated 
HER2-amplified and overexpressed metastatic BTC patients, the pertuzumab and trastuzumab combination 
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demonstrated an ORR of 23% (95%CI: 11%-39%), a median PFS of 4.0 months (95%CI: 1.8-5.7 months), and 
a median DOR of 10.8 months (95%CI: 0.7-25.4 months)[69]. Adverse events of grade 3 or higher were 
documented in 46% of patients, with alanine aminotransferase (ALT) and aspartate aminotransferase (AST) 
increases being the most common. Although the dual anti-HER2 therapy for HER2-positive BTC has not 
received FDA approval, it is included as an option in the NCCN guidelines for patients who have 
undergone prior treatment[21]. To further confirm and establish the efficacy of the HER2-targeted treatment 
in subsequent lines of therapy for BTC, future randomized controlled trials are essential.

Trastuzumab deruxtecan (T-DXd) has demonstrated encouraging anti-cancer efficacy in advanced solid 
tumors that are HER2-positive, including BTC[70]. A phase I study involving advanced HER2 mutant solid 
tumors, excluding breast and gastric cancers, showed an ORR of 28.3%, and the median PFS reached 7.2 
months (95%CI: 4.8-11.1 months). The HERB phase II study, which focused on BTCs, revealed an ORR of 
36.4% (95%CI: 19.6%-56.1%) in patients with HER2-positive BTCs, along with a DCR of 81.8% 
(95%CI: 59.7%-94.8%). The study also revealed a median OS of 7.1 months (95%CI: 4.7-14.6 months) and a 
median PFS of 4.4 months (95%CI: 2.8-8.3 months)[31]. However, the safety analysis revealed that 81.3% of 
patients had grade 3 or higher TRAEs, with cytopenia being common. Of particular concern, approximately 
25% of patients developed interstitial lung disease (ILD), along with significant gastrointestinal and 
myelosuppression toxicities. This highlights the need for further investigation and follow-up.

Zanidatamab, a HER2-targeted bispecific antibody, underwent evaluation in the phase IIb HERIZON-BTC-
01 study (NCT04466891) in patients with HER2-amplified, locally advanced, unresectable, or metastatic 
BTC. Among the 87 patients, 41.3% of participants had an objective response, with a DCR of 68.8% 
(95%CI: 57.4%-78.7%). The median PFS reached 5.5 months (95%CI: 3.7-7.2 months), and data for median 
OS were not yet mature at the time of data cutoff. However, the OS at 9 months reached 69.9% (95%CI: 
57.8%-79.1%)[32].

Despite remarkable advances in HER2-targeted therapy, resistance continues to pose challenges in HER2-
positive BTCs. While resistance studies are primarily focused on breast and gastrointestinal cancers, they 
provide valuable insights into potential resistance mechanisms in BTC. Notably, the intrapatient and 
intertumor heterogeneity of HER2 expression is considered a critical factor contributing to primary 
resistance[71,72]. Furthermore, HER2 positivity in BTC often coincides with other oncogenic drivers such as 
FGFR, MET, and KRAS alterations, known to impart resistance to anti-HER2 therapy in in vitro studies[73].

Encouragingly, a small case series demonstrated the successful reversal of trastuzumab resistance by 
combining HER2 blockade with inhibition of the secondary driver mutation[74]. Additionally, in studies 
involving gastric cancer patients, loss of HER2 has been linked to potential acquired resistance to anti-HER2 
therapy[75,76]. Notably, the SUMMIT study evaluated an irreversible pan-HER tyrosine kinase inhibitor, 
neratinib, in HER2-mutant advanced BTC, showing antitumor activity but not meeting the primary 
endpoint; in one GBC patient, loss of HER2 amplification and reduction in VAF of the original HER2 
mutation were demonstrated through biopsy and NGS[77]. Combinatorial approaches, continuous 
monitoring of HER2 alterations, and adaptive treatment regimens may offer potential solutions to improve 
clinical outcomes and enhance the efficacy of HER2-targeted therapy in the management of BTCs.

Tropomyosin receptor kinase inhibitors
The neurotrophic tropomyosin kinase receptors (NTRK or TRK) family is a group of transmembrane 
tyrosine kinases that hold significance in the development of neurons. These receptors are encoded by the 
genes NTRK1, NTRK2, and NTRK3. In 1986, the first identification of somatic fusions involving the NTRK 
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genes was reported in a colorectal cancer patient. Subsequently, it was uncovered that mutations in NTRK 
genes, most commonly NTRK fusions, are associated with oncogenesis in various tumor types. The NTRK 
mutations are more common in patients with lung cancers and soft tissue tumors[78]. The estimated 
prevalence of NTRK fusions in BTC is 0.75%[15].

To date, the FDA has approved two first-generation NTRK inhibitors as first-line and subsequent line of 
therapy in patients with NTRK fusion-positive BTC: larotrectinib[79] and entrectinib[80]. In November 2018, 
the FDA granted accelerated approval to Larotrectinib based on results from three multicenter clinical trials: 
LOXO-TRK-14001, SCOUT, and NAVIGATE. A pooled analysis of the three studies showed an ORR of 
69% (95%CI: 63-75), with more than one-fourth of the cases (26%) achieving a complete response (CR)[81]. 
The response has shown considerable durability, with a median DOR of 32.9 months (95%CI: 27.3-41.7). 
The median PFS reached 29.4 months (95%CI: 19.3-34.3). The median was not reached at a median follow-
up of 32.2 months. The TRAEs were primarily in grade 1 or 2, and 20% of patients had grade 3 or 4 adverse 
events, leading to treatment discontinuation in five cases.

Entrectinib was approved by the FDA in the subsequent year for adults and pediatric patients who have 
solid tumors with NTRK gene fusion based on favoring data from three multicenter, single-arm clinical 
trials: ALKA, STARTRK-1 (NCT02097810) and STARTRK-2 (NCT02568267)[82]. An updated pooled 
analysis data of the three phase 1-2 trials from the 2022 ASCO annual meeting has demonstrated 
meaningful clinical response and good tolerability[83]. The ORR was 61.3% (95%CI: 53.1%-69.2%), with more 
than one-fourth of those who had responses achieving a CR. The median DOR reached 20.0 months 
(95%CI: 13.2-31.1 months) and the PFS reached 13.8 months (95%CI: 10.1-20.0 months). At a median 
survival follow-up of 30.6 months, the median OS reached 37.1 months (95%CI: 27.2-NE). Moreover, the 
TRAEs were mainly grade 1-2: dysgeusia (36.6%), diarrhea (29.8%), and weight gain (28.5%). A total of 7.2% 
of patients needed to discontinue the treatment due to adverse events.

While a significant portion of patients with NTRK fusion-positive cancers achieve enduring disease control, 
the emergence of resistance to TRK inhibition remains a substantial challenge[84]. This emphasizes the 
critical need to develop second-generation TRK inhibitors and/or explore strategies to counter this 
resistance mechanism. A recent study examining post-progression tumor tissue through NGS from patients 
treated with first-generation TRK inhibitors found that the majority displayed on-target resistance (83%) as 
opposed to off-target resistance (11%) or an unidentifiable mechanism (6%)[85]. Among patients exhibiting 
on-target resistance, mutations primarily affected the solvent front (87%) and, to a lesser extent, the 
gatekeeper region (13%). The sequential use of next-generation therapy appears to impact the pattern of 
mutation occurrence and development. At present, several next-generation TRK inhibitors, such as 
selitrectinib, repotrectinib, and taletrectinib, are undergoing evaluation in clinical trials due to their 
promising preclinical activity[86]. These innovative agents hold considerable potential in addressing the 
resistance challenge that may arise with the use of first-generation TRK inhibitors.

RET inhibitors
For over three decades following the identification of the RET gene that encodes the receptor tyrosine 
kinase, mutations in the RET gene have been identified as actionable drivers of oncogenesis[87]. Specific RET 
fusion proteins can initiate tumorigenesis and progression of cancer by stimulating subsequent signaling 
cascades, ultimately resulting in unregulated cell growth. While RET gene fusions are relatively rare in BTC, 
they are identified in around 1% to 2% of other types of cancer, such as NSCLC and thyroid cancers, 
indicating the promise of targeting RET kinase in therapeutic interventions[88]. Activating aberrations in 
RET, including mutations, fusions/rearrangements, or amplifications, are found in about 1.8% of all tumors, 
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with a favorable response observed in many cases to RET-directed therapy[89]. Despite the overall rarity of 
RET aberrations, their significance in driving oncogenesis highlights the need for further research and 
understanding in order to explore potential therapeutic interventions.

Pralsetinib, a selective RET receptor tyrosine kinase inhibitor, has shown encouraging results in the phase 1/
2 ARROW trial, where it was evaluated in patients with solid tumors carrying RET fusions, including 
BTC[90]. The study showed an ORR of 57% (95%CI: 35%-77%), with a DOR of 11.7 months (95%CI: 5.5-19.0 
months). The median PFS reached 7.4 months (95%CI: 5.1-13.6 months) and the median OS reached 13.6 
months (95%CI: 7.5-NE) with a median follow-up of 23.5 months. Among the three BTC patients, two 
participants had objective responses. In the safety analysis of 29 eligible patients, 20 patients (69%) 
experienced grade ≥ 3 TRAEs, with the most frequent any-grade TRAEs being abnormal liver function tests. 
Based on these findings, pralsetinib was approved by the FDA for advanced or metastatic RET-fusion-
positive lung and thyroid cancers[91,92]. While pralsetinib has not received FDA approval as a tumor-agnostic 
drug, it is listed as a recommended option in the NCCN guidelines for both first-line and subsequent-line 
treatment of RET-positive BTC[21].

Selpercatinib, a highly selective RET kinase inhibitor, was approved by the FDA for the treatment of any 
RET-mutated solid tumors following promising data from the LIBRETTO-001 trial, a phase 1/2 basket trial 
assessing its efficacy in solid tumors with RET fusion, regardless of their primary location[93,94]. Among 41 
efficacy-evaluable patients, the ORR reached 43.9% (95%CI: 28.5-60.36), with a DOR of 24.5 months 
(95%CI: 9.2-NE), including two BTC patients, one of whom had a response. The PFS was 13.2 months 
(95%CI: 7.4-26.6) and the OS reached 18.0 months (95%CI: 10.7-NE). 38% of patients had grade ≥ 3 TRAEs, 
with hypertension and abnormal liver function tests being frequently observed as grade 3 TRAEs. 
Selpercatinib is currently recommended in the NCCN guidelines for both progressive and first-line 
treatment of RET-positive BTC[21]. Furthermore, its CNS activity highlights its potential in treating locally 
advanced or metastatic solid tumors harboring RET fusions.

RET fusions exhibit diverse patterns, and the impact of fusion partners and breakpoints on drug response is 
not fully understood[95]. Despite an initial positive response, acquired resistance to RET inhibition treatment 
inevitably emerges[96]. While data on acquired resistance to RET inhibitors is growing, a comprehensive 
understanding is not yet matured. Recent data in lung and thyroid cancer patients suggest that primary and 
acquired resistance mechanisms converge on MAPK pathway activation[97]. Therefore, employing a 
sequential approach to RET-targeted therapy could require a combination of treatments involving 
inhibitors that target distinct MAPK pathways. Furthermore, it appears necessary to reevaluate the 
characterization of tumors treated with RET inhibitors when they show progression under RET inhibitor 
therapy.

IMMUNOTHERAPIES FOR BILIARY TRACT CANCER
High tumor mutational burden
Programmed cell death ligand-1(PD-L1) is an immune checkpoint ligand that allows cancer cells to evade 
immune recognition[98]. Immunotherapy targeting PD-L1 or its receptor, programmed cell death 1 (PD-1), 
has shown promising results in various cancers. Hypermutated tumors with a high tumor mutational 
burden (TMB) are particularly responsive to immune checkpoint inhibitors[99,100]. TMB is the number of 
somatic gene mutations present in a tumor and it serves as a biomarker for predicting the response to 
immunotherapy[101]. TMB-H, with a threshold of ≥ 10 mutations per megabase, indicates a high probability 
of neoantigen formation and has been associated with improved outcomes in several cancer types. 
Approximately 4% of all subtypes of BTCs are estimated to have TMB-H[19].
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Pembrolizumab, an immune checkpoint inhibitor targeting PD-1 receptors, was approved by the FDA for 
the treatment of TMB-H tumors[102]. The KEYNOTE-158 trial assessed pembrolizumab in TMB-H tumors 
across various sites[103]. The study revealed a 29% ORR (95%CI: 21%-39%). Additionally, 57% of participants 
achieved a DOR lasting 12 months or longer, and 50% attained a DOR of 24 months or longer. Although 
there were 63 BTC patients in the KEYNOTE-158 trial, none of them had high TMB. However, two out of 
the 63 patients had objective responses.

Recent data from the phase II CheckMate-848 study (NCT03668119) demonstrated promising results using 
nivolumab and ipilimumab in patients with previously treated advanced or metastatic TMB-H solid 
tumors[104]. The ORR was 35.5% (95%CI: 24.1%-47.8%) in the group with tissue TMB-H and 22.5% (95%CI: 
13.9%-33.2%) in the group with blood TMB-H. Based on the above findings, the current NCCN guidelines 
list nivolumab and ipilimumab combination therapy as frontline and subsequent-line treatment for TMB-H 
BTCs, and pembrolizumab is listed as a subsequent-line treatment for TMB-H BTCs[21].

High microsatellite instability and mismatch repair deficient
Tumors with mismatch repair deficiency (dMMR) or high microsatellite instability (MSI-H) levels show 
increased neoantigen production and CD8+ T cell infiltration[105]. MSI-H/dMMR leads to difficulties in 
repairing DNA replication errors, causing mutations. The MSI-H/dMMR is identified in about 2.06% of 
iCCA patients[17].

Pembrolizumab has received full FDA approval for the treatment of adult and pediatric patients with 
unresectable or metastatic MSI-H or dMMR solid tumors, who have progressed after prior treatment and 
have limited alternative options[106]. The approval is based on data from multiple trials, including 
KEYNOTE-158 (NCT02628067), KEYNOTE-164 (NCT02460198), and KEYNOTE-051 (NCT02332668), 
involving 504 patients with over 30 types of tumors. An integrated analysis of these studies revealed that, at 
a median follow-up of 20.1 months, pembrolizumab achieved an ORR of 33.3% (95%CI: 29.2%-37.6%), 
comprising a CR rate of 10.3% and a partial response rate of 23.0%. According to the NCCN guidelines, 
pembrolizumab is currently listed as both a first-line and subsequent-line treatment option for MSI-H/
dMMR tumors[21].

Dostarlimab, another anti-PD-1 monoclonal antibody, was assessed in the phase I GARNET trial. This 
study included 106 patients who had advanced solid tumors, and two of them had MSI-H/dMMR BTCs[107]. 
The trial showed that an ORR at 38.7% (95%CI: 29.4%-48.6%) in patients with dMMR and CR was around 
7.5%. A median DOR was not reached with a median follow-up of 12.4 months. About 8.3% of patients 
experienced at least one grade 3 or higher adverse event, with the most common being an elevated lipase 
level. Based on this, the FDA approved dostarlimab for recurrent or advanced solid tumors with MSI-H/
dMMR, which have progressed after previous lines of therapy and do not qualify for suitable alternative 
treatment options[108].

Adoptive immunotherapy
While immune checkpoint inhibitors have made notable progress, their effectiveness in treating BTC 
remains unsatisfactory. Another promising approach in the field of BTC immunotherapy is Chimeric 
Antigen Receptor (CAR) T-cell therapy, which is currently being evaluated. CAR T-cell therapy has 
demonstrated exceptional efficacy in the treatment of hematologic cancers, having received regulatory 
approval for conditions such as B-cell lymphoma. However, expanding the use of CAR T-cell treatment to 
solid tumors, such as BTC, presents unique challenges due to these tumors' ability to exclude T cells from 
the tumor microenvironment and avoid immune system recognition.
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Researchers have been actively exploring the potential of introducing highly potent cancer-specific T cells 
into solid tumors as an innovative strategy. Encouraging findings have been observed, particularly with 
fourth-generation anti-CD133 CAR T-cells, which have demonstrated significant effectiveness against BTC 
cells expressing CD133[109]. Additionally, the combination of CAR T therapies targeting both EGFR and 
CD133 in a cocktail immunotherapy approach has produced promising outcomes in advanced BTC 
patients[110]. Furthermore, a phase I study (NCT01869166) involving EGFR-specific CAR T cells for EGFR-
mutated advanced BTC has shown favorable results, including a 5.8% CR rate and stable disease in 58.8% of 
patients[111].

Moreover, at the 2023 ASCO meeting, results from a phase I trial using gavocabtagene autoleucel, an 
autologous genetically engineered anti-mesothelin T cell receptor fusion construct cell therapy, were 
presented[112]. This trial focused on patients with refractory mesothelioma and other mesothelin-expressing 
solid tumors, including BTC. The results were promising, with an ORR of 21% and a DCR of 77% among 
the 32 patients who participated in the study, including one patient with BTC. Furthermore, the 6-month 
OS rate reached 70.2%. These findings suggest a potential avenue for effective treatment in patients with 
mesothelioma patients and other mesothelin-expressing solid tumors, offering hope in the fight against 
these challenging malignancies. Nevertheless, concerns about the toxicity of CAR T-cell therapy in BTC 
persist, mainly due to potential toxicity and endothelial damage, emphasizing the imperative for further 
investigation and the conduct of clinical trials.

In conclusion, while CAR T-cell therapy has significantly advanced the treatment of hematologic 
malignancies, its application for solid tumors, including BTC, brings forth a landscape filled with both 
promise and hurdles. Research involving CAR T cells targeting specific antigens such as CD133 and EGFR 
has demonstrated effectiveness in both preclinical and clinical contexts, instilling hope for patients with 
conditions like BTC. Nonetheless, persisting safety concerns and the imperative for more extensive research 
underscore the continuous endeavors to enhance the potential of CAR T-cell therapies for solid tumors, 
with the ultimate goal of improving their efficacy while mitigating potential adverse effects.

CHALLENGES AND POTENTIALS OF TARGETED THERAPIES
Sequencing of cancer genomics
The evolution of targeted therapy is closely intertwined with the advancements in DNA sequencing 
technology used in cancer cells. Cancer, being a genomic disease, is often influenced by both somatic and 
germline mutations, highlighting the crucial need to comprehend cancer's genomic sequencing in order to 
uncover its origins and develop personalized treatment approaches. Recent progress and cost reductions in 
NGS have greatly accelerated the transformation of cancer genomic data into practical clinical applications. 
It allows simultaneous analysis of hundreds or thousands of genes, empowering the implementation of 
molecularly targeted therapy based on the insights gained from the results.

NGS technology has enabled the identification of genomic profiles for individual cancer cells, paving the 
way for personalized treatment approaches. However, the diversity of tumor genomic sub-categories 
identified by NGS makes it exceedingly difficult to conduct randomized controlled trials with an adequate 
number of patients for each specific sub-category[113]. Furthermore, the intratumoral environment consists 
of diverse and heterogeneous cells, resulting in variations in genomic profiles and mutation data among 
these cells. As a consequence, there are concerns about the feasibility of relying solely on sequencing results 
to determine the most suitable targeted therapy[114].
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Resistance and potential overcome strategies
The iCCA develops resistance to treatments, which is closely associated with cancer-related mortality, 
although the precise mechanisms underlying this resistance are not fully understood. During cancer 
treatment, adaptive changes lead to acquired resistance, involving mechanisms such as genetic alterations, 
changes in the tumor's microenvironment, metabolic reprogramming, and loss of the treatment target[115,116].

One of the investigational methods to elucidate the development of acquired resistance in cancer, as 
observed in targeted therapy, involves analyzing the molecular differences between tumor samples before 
and after acquiring resistance[117]. By comparing the resistant tumor sample with the pre-treatment tumor 
sample at the molecular level, we can identify whether the resistance is due to changes in previously 
actionable mutations or the emergence of new mutations. This comprehensive analysis can potentially 
provide insights into the underlying causes of resistance and guide the modification of treatment strategies 
accordingly.

Furthermore, to overcome acquired resistance driven by tumor genetic alterations, exploring the next 
generation of inhibitors and researching strategies for combination treatments appears to be essential. By 
focusing on these areas of investigation, we can aim to develop more effective approaches to combat 
acquired resistance and enhance the overall efficacy of cancer therapies.

Determining the sequence of treatment
We have thoroughly reviewed various systemic treatment options for advanced iCCA, along with the 
foundational research data. While we are aware of the several options available, the next consideration and 
decision-making process involve the prioritization and sequence of these treatment modalities. As 
previously mentioned, any systemic treatment may initially demonstrate a favorable response but ultimately 
develop acquired resistance due to various factors, necessitating a change in treatment.

Given the relatively recent use of targeted therapies and the rarity of actionable mutations among the iCCA 
patient population, conducting head-to-head comparing trials between targeted therapy and chemotherapy 
and/or immunotherapy is challenging. Consequently, selecting treatment strategies tailored to individual 
patient situations is essential. Elements shaping these individualized decisions encompass factors such as the 
extent of tumor burden, the urgency of treatment initiation takes into account the time required for 
sequencing the tumor genome, the patient's medical history, drug accessibility, financial aspects, anticipated 
toxicity, patient performance status, and anticipated treatment response.

In many cases, combining chemotherapy with immunotherapy would be a preferable first-line treatment 
while awaiting tumor genomic information. However, as the tumor progresses, established guidelines for 
selecting second-line therapy remain absent due to limited supportive data. Tailored to the unique context 
of individual patients, second-line treatment might encompass targeted therapy, immunotherapy, or 
FOLFOX, with reference to the ABC-06 trial findings, alongside the consideration of other cytotoxic 
chemotherapy treatments. Although direct comparative prospective study data could be lacking, using 
targeted therapy upfront and reserving FOLFOX could be a reasonable approach if the patient has any 
indication for targeted therapy. Targeted therapies are generally perceived as more tolerable and can exhibit 
considerable effectiveness, particularly when administered early, potentially yielding enhanced patient 
outcomes. The investigation into the sequencing of treatment strategies demands further exploration.

Potential role as neoadjuvant and adjuvant therapy
In patients with iCCA, complete resection is regarded as the sole definitive curative option, although its 
feasibility is limited for many due to the advanced disease at diagnosis. While not conclusively established, 
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based on current data, hepatic resection with negative margins is considered the preferred surgical goal[118]. 
The available research data on neoadjuvant and adjuvant chemotherapy in resectable iCCA presents 
challenges in drawing definitive conclusions. A study result by Buettner et al. showed similar OS and PFS 
between patients with perioperative chemotherapy and those without, although this needs to be cautiously 
interpreted due to low neoadjuvant treatment patient numbers and possible selection bias effect[119]. 
Conversely, more recent research indicates that neoadjuvant therapy, particularly in stage II-III disease, may 
lead to enhanced OS[120-122]. Moreover, the optimal adjuvant treatment strategy for resected iCCA remains 
uncertain due to limited clinical trial data supporting a standard regimen.

The efficacy of targeted therapy as neoadjuvant or adjuvant treatment for resectable disease remains an 
unexplored area of research. The challenges of limited early-stage detections and infrequent actionable 
mutations hinder the conduct of studies in this domain. Moreover, the effects of targeted therapy on tumor 
downstaging, survival benefits, recurrence-free survival, and potential adverse events leading to unfavorable 
outcomes require further elucidation.

In an attempt to address this, a clinical trial (NCT05514912) is underway to evaluate chemo-targeted 
therapy for resectable intrahepatic cholangiocarcinoma using infigratinib in combination with 
chemotherapy in FGFR2 fusion-positive iCCA[123]. The study aims to provide valuable insights into the 
treatment efficacy for this specific patient subset. To our knowledge, there are currently no ongoing clinical 
trials investigating the efficacy of targeted therapy or combination treatments with targeted therapy in an 
adjuvant setting. Additional research is needed to address these uncertainties and shed light on potential 
treatment strategies.

CONCLUSION
In summary, iCCA remains a formidable challenge with historically poor outcomes. However, recent 
advancements in targeted therapies and immunotherapy offer hope for improved treatment strategies and 
better patient outcomes.

Targeted therapies, such as FGFR inhibitors, IDH inhibitors, and HER2 inhibitors, are demonstrating 
promising results in iCCA treatment by specifically targeting genetic alterations. These therapies provide 
personalized treatments, offering the potential for more effective responses and increased survival rates 
among iCCA patients.

Immunotherapies, including PD-L1 inhibitors and CAR T-cell therapy, have garnered significant attention 
as emerging treatment modalities in the context of BTC. Numerous ongoing research endeavors are focused 
on these approaches. Immune checkpoint inhibitors have gained FDA approvals for iCCA with TMB-H 
and MSI-H/dMMR, expanding the therapeutic options available for advanced or metastatic disease.

Despite these breakthroughs, challenges such as conducting large trials, overcoming acquired resistance, 
and optimizing treatment sequencing remain. Addressing these areas requires ongoing research and 
investigation. In conclusion, while iCCA treatment remains challenging, recent progress in targeted 
therapies and immunotherapy brings optimism. By advancing scientific understanding and clinical practice, 
we can pave the way for better outcomes for iCCA patients.
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