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Abstract
In the current global economic downturn and energy transition period, how to better coordinate the differences in 
carbon emission footprints among sub-regions has become an emerging issue. With the Gini decomposition 
method, social network analysis, and difference-in-differences estimation, this study explores the spatial 
differentiation of China’s province-level carbon emission footprint from 2000 to 2021. The findings of this study 
indicate that: (1) The Gini-based carbon emission footprint index shows an overall upward trend, revealing the 
constantly expanding differences among provinces. By comparison, the crude oil difference between the low-
carbon pilot and non-pilot provinces is evident, reaching more than 0.15; (2) The carbon emission footprint spatial 
correlation network structure shows strong spillover characteristics. Provinces with higher network centrality have 
better structural holes, maintaining closer relationships with surrounding provinces. Those pilot provinces have a 
comparative advantage regarding social network position, as they have more effective mutual node connections; 
and (3) China’s low-carbon pilot policy can effectively reduce carbon emissions, with a certain reduction effect of 
-17.433 in comparison. Industrial rational transformation and green innovation performance are essential in this 
emission reduction process. At the crossroads of sustainable development, it will be incredibly beneficial to speed 
up the green transformation by enhancing the coordinated development of regional characteristics.
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INTRODUCTION
Since the 21st century, the increasing growth of carbon emissions has aroused severe global climate changes, 
affecting all kinds of social production and human life[1-3]. To effectively stem this devastating trend, 
countries worldwide have taken action together by making carbon neutrality commitments[4-6]. As of 2023, 
at least 137 countries have committed to the target vision through all-round net-zero emissions by the 
middle of this century, of which 124 countries are scheduled by 2050[7,8]. China, the largest developing 
country and the major carbon-emitting country, also made its own commitment at the United Nations 
General Assembly in 2020, with a carbon peak by 2030 and carbon neutrality by 2060[9]. In this sense, 
figuring out the practical pathway to achieving carbon neutrality during the critical period of combating 
climate change will be important.

Carbon emission footprint, an effective approach to dealing with climate change in a socio-economic 
manner, can deeply explore the sources, processes, and mechanisms of carbon emissions to some 
extent[10,11]. Evolved from the ecological footprint representing the necessary area required to sustain human 
existence, the carbon emission footprint focuses more on the benefits or consequences per unit of carbon 
emissions[12,13]. Therefore, no unified definition remains, as the “per unit” can be adjusted according to the 
research field[14]. Considering its unique measurement and meaning, a considerable number of documents 
have analyzed the carbon emission footprint in detail[15-17]. As for its calculation method, studies normally 
use the Intergovernmental Panel on Climate Change method, the input-output method, and the life cycle 
assessment[18,19]. As for its dynamic changes, research has assessed the carbon emission flow at the national, 
province, city, and product levels[1,20]. As for its influencing factor, numerous works have explored the 
economic, sectoral, industrial, and social causes of carbon emissions[21,22].

Nevertheless, some important issues still remain to be discussed in depth, especially in the current global 
economic downturn and energy transition[23-25]. One essential puzzle is how to balance the regional 
coordinated development. Although the overall development trend of carbon emissions can be controlled at 
the national aggregate level, the sub-regional differences are also growing continuously[26,27]. In this urgent 
issue, studies mainly focus on how carbon emissions are associated with sub-regional income, normally 
regarded as carbon inequality, carbon emission inequality, or carbon footprint inequality[28-30]. Ogede et al. 
pointed out the inequality-carbon emission nexus among most sub-Saharan African countries[31]. Owen and 
Barrett[32] discussed the low-carbon policy costs for normal household expenditure in the UK. Both 
Cheng et al.[33], Wang et al.[34], and Zhang et al.[35] illustrated the multi-sectoral carbon emission inequality 
from different Chinese sub-regional levels. Without loss of generality, the trade-off between economic 
development and climate changes, especially carbon emissions, still lies in sub-regional resource 
coordination to some extent[36,37].

In China, the apparent carbon emissions grew from 3,152 mt in 2000 to 13,255 mt in 2021, with the Gini-
based gap increasing from 0.14 to 0.25. This Gini difference will be more evident if averaging it into 30 
provinces[38,39]. Therefore, while ensuring low-carbon development, how to better coordinate the differences 
among different sub-regions, especially the carbon emission footprint, becomes an emerging bottleneck 
problem that China needs to focus on to achieve carbon neutrality in the near future. In this tough 
background, China implemented the corresponding low-carbon pilot policy in three different batches from 
2010 to 2017, mainly aiming to reduce carbon emissions through regional coordinated development. In 
2010, the National Development and Reform Commission (NDRC) directly designated the first pilot 
province-level batch, covering Chongqing, Guangdong, Hubei, Liaoning, Shanxi, Tianjin, and Yunnan. If 
those pilot provincial administrative regions fail to reach their emission reduction target, the NDRC will 
punish them strictly from both the political and economic aspects. With this pioneering experience, the next 
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two batches were implemented in 2012 and 2017, adding three provincial administrative regions of Beijing, 
Shanghai, and Hainan[40,41]. Until now, with a series of successful emission reduction experiences, this low-
carbon pilot policy has been extended across the country gradually, including ten provincial administrative 
regions, 65 prefecture-level cities, and hundreds of county-level cities (towns)[42,43].

Hence, this study explores the spatial differentiation of China’s province-level carbon emission footprint, 
mainly using the Gini decomposition method, the social network analysis, and the difference-in-differences 
estimation. The results show that the Gini gap in carbon emissions between provinces increased gradually 
from 2000 to 2021, accomplished by the stronger mutual connection between those central node provinces. 
With the help of the low-carbon pilot policy, those central node provinces will gradually use their siphoning 
effect to improve carbon emission status. Compared to the non-pilot provinces, those pilot provinces have a 
certain reduction effect on all kinds of carbon emissions. The average treatment effect for the total carbon 
emissions is -17.433 at a 1% significance level. Moreover, structural transformation and improvement are 
the ultimate goals for future sustainable growth, among which industrial rational transformation and green 
innovation performance play essential mechanism roles. Compared to previous studies, this study may have 
two contributions. (1) This study can supplement a growing research stream on the carbon emission 
footprint by providing insights from regional balanced development. Although most studies have analyzed 
the overall development trend of carbon emissions, the sub-regional differences still need in-depth 
discussion. With the help of social network analysis, this study can discuss spatial differentiation deep across 
different provinces; and (2) This study can supplement how a national pilot policy can affect and promote 
regional energy transition. In addition to the Gini-based carbon emission footprint gap, this study also 
evaluates the emission reduction effect of China’s low-carbon pilot policy, which will help accelerate the 
speed and efficiency of carbon neutrality.

This study is as follows. Section "THEORETICAL ANALYSIS" provides the theoretical analysis. Section 
"RESEARCH DESIGN" describes the research design. Section "RESULTS" provides three kinds of analysis 
results. Section "CONCLUSION AND POLICY IMPLICATION" contains the concluding remarks and 
policy implications. Additional figures omitted from the main text are contained in the Supplementary 
Material.

THEORETICAL ANALYSIS
Policy background
China has achieved remarkable economic success in the past forty years, with coal as the main energy 
source. However, due to this extensive growth model, China has contributed nearly 25% of global carbon 
emissions since 2007, making environmentally friendly development an urgent priority[44-46]. To develop a 
low-carbon economy and mitigate climate change problems, China formally adopted the Resolution on 
Actively Responding to Climate Change at the Standing Committee of the National People’s Congress in 
2009. Subsequently, China implemented the corresponding low-carbon pilot policy in three different 
batches from 2010 to 2017, mainly aiming to reduce carbon emissions from the economic structure[47,48].

As for the first batch in 2010, the NDRC directly designated the pilot provinces without advance 
information, requiring them to finish the emission reduction target in multiple ways. Those pilot provincial 
administrative regions, including Tianjin, Chongqing, Guangdong, Hubei, Liaoning, Shanxi, and Yunnan, 
have to achieve a certain degree of carbon emission reduction without any anticipation preparation. In this 
first batch, the NDRC mainly focuses on establishing and promoting the low-carbon economic framework 
at the provincial administrative level[49,50]. With this pioneering experience, the NDRC then allowed other 
regions to apply for low-carbon pilots in the latter two batches implemented in 2012 and 2017, including 
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three provincial administrative regions (Beijing, Hainan, and Shanghai), several prefecture-level cities, and 
some county-level cities (towns). In these two batches, the NDRC wants to expand the low-carbon 
economic framework designed in the first batch to the whole national level by gradually refining it from the 
province-level administrative region to the prefecture-level and county-level[43,51,52]. In this sense, those pilot 
provincial administrative regions still play an essential role in implementing this low-carbon pilot policy. 
Without the prefecture-level framework, those subsequent pilot prefecture-level and county-level regions 
cannot advance this low-carbon pilot policy in an orderly manner. This is also the main reason why we 
conduct the analyses from the perspective of the provincial administrative regions in the study[53-55].

In addition, this low-carbon pilot policy has two advantages compared to other environmental 
regulations[40,56,57]. First, it is a comprehensive environmental regulation. Since the NDRC does not provide 
specific measures to reduce emissions, each pilot region can make emission reduction plans according to its 
own development situation. Therefore, this pilot policy can incorporate different types of environmental 
regulations. Second, it is a weak constraint and strong governance regulation. Besides submitting an overall 
plan to the NDRC, the pilot regions have the right to decide how to reduce emissions and develop native 
energy. However, the NDRC can also manage and regulate pilot regions through its effective administrative 
powers if they do not accomplish the established target.

Literature review
As an important reflection of sustainable development, carbon emission footprint has been highly 
documented and recognized by countries worldwide in all environment-related fields, among which most 
studies focus on its concept scopes, measurement methods, and influencing factors[10,13,15].

Since the introduction of the carbon emission footprint, studies on its definition and scope have continued 
till now. Although there is still no common sense about its unified definition, the general understanding is 
usually expressed as a measure of weight in a certain “unit” of carbon emissions[58,59]. Without loss of 
generality, the carbon emission footprint can be reflected by the carbon emissions equivalent per year in 
some research[60,61]. Following this framework, numerous studies have assessed various types of carbon 
emission footprints at the national, provincial, city, and product levels, providing many constructive 
suggestions for global carbon reduction and eco-friendly development[62-64]. Wiedmann and Minx[65] pointed 
out that, except for its concept and term used in research, the carbon emission footprint is also a widely 
acknowledged pathway in the public debate on addressing the threat of global climate change. 
Academically, since the carbon emission footprint exists in every economic activity, the Organization for 
Economic Co-Operation and Development[66,67] proposed “carbon decoupling” to support sustainable 
economic transition effectively. Regarded as the state in which economic growth is separated from energy 
consumption, carbon decoupling can further alleviate the convergence problem of high carbon intensity in 
industrial economic growth[68,69]. In this sense, how to measure carbon emission footprint becomes relatively 
necessary and important.

Currently, three classical methods are widely used to assess carbon emission footprint: the 
Intergovernmental Panel on Climate Change method, the input-output method, and the life cycle 
assessment[18]. The Intergovernmental Panel on Climate Change method, as an application of the carbon 
emission factor method, has become one of the most accepted guidelines for calculating macro-national 
carbon emission footprint top-down[70,71]. To some extent, this method can accurately measure different 
types of carbon emission footprints in various activities, combining information on human activity and 
quantified emissions per unit[72]. In different countries, sectors, and energy types, the carbon emission factor 
used for standard coal transformation is not the same, with a larger self-decision-making right within a 



Page 5 of Liu et al. Carbon Footprints 2024;3:18 https://dx.doi.org/10.20517/cf.2024.26 28

certain range allowed according to the real emission situation[73]. Many scholars can use it as a classical 
method in various fields. Azarkamand et al. developed a new standard tool to calculate carbon footprint in 
ports, which is a creative practice and endeavor[74]. Foo and Tan even used it in carbon-constrained energy 
planning and carbon emission pinch analysis[75].

By comparison, the input-output method and the life cycle assessment calculate the carbon emission 
footprint from the overall economic process and the individual product cycle[76,77]. Based on the historical 
input and output data, the input-output method can systematically embed carbon emission footprint into 
each economic activity, following the “one ton of carbon emission equals one ton” theory (carbon eternal 
theory)[78]. In recent emerging studies, the carbon emission footprint inventory has aroused a lot of 
attraction, especially in the tourism and building fields. Abbood et al. quantified the carbon activities in the 
US manufacturing sector, with international trade considered in a multi-region input-output life cycle 
assessment framework[79]. Both Demeter et al.[80] and Sun et al.[81] extended the input-output model to 
compile tourism sectoral emissions. In addition to carbon emission tracking and assessment, Sheng et al. 
also used the input-output method for pure statistical carbon accounting from a multi-perspective of 
data[82], topics, and applications. Similar to the input-output method, the life cycle assessment analyzes the 
carbon emission footprint from a specific economic activity or product using the same carbon eternal 
theory[83]. Based on this method, Kanemoto et al. mapped the US carbon emission footprints across several 
states[84]; Li et al. evaluated the emission footprint of electric vehicle batteries[85]; Farzaneh and Jung pointed 
out that electrification can lead to about a 22.6% decrease in carbon emission footprint in Florida[86].

With relatively accurate measurement, analyzing and predicting the future carbon emission footprint is 
important in achieving balanced development[87]. Regarding influencing factors, economic growth, 
population activities, energy structure, imported trade, and foreign direct investment are the main driving 
items for the domestic carbon emission footprint[88,89]. The “Impact = Population * Affluence * Technology” 
model, proposed by Ehrlich and Holdren, was the first formulaic method in exploring the influencing 
factors of environmental impacts[90,91]. After that, the “ln (Impact) = ln (Population) + ln (Affluence) + ln 
(Technology) + ln (Errors)” model further used the natural logarithm form to promote this framework[92,93]. 
With this systematic measurement, studies can link various socio-economic activities to carbon emission 
footprint at the statistical level, thus helping to calculate the current and future trends more intuitively[94-96]. 
In addition, on more accurate carbon emission footprint predictions, the logarithmic mean Divisia index 
decomposition approach[97-99], the three-stage least squares structural model[100,101], the computable general 
equilibrium method[102-104], and other systems engineering methods have been gradually applied in different 
fields[105,106].

Nevertheless, some emerging issues also need to be discussed and addressed, except for the above concept 
scopes, measurement methods, and influencing factors. With the increasing attention on the socio-
economic network, studies have explored how carbon emission is generated and transferred, accompanied 
by its adverse effects[10]. To some extent, the carbon-related socio-economic network combines 
measurement methods and influencing factors, considering both the static emission measurement and the 
dynamic agent correlation. At the macro level, Gao et al. analyzed carbon emission footprint changes in 
Chinese large-scale population migration[107]. At the medium level, Zhang et al. investigated whether the 
digital economy can reduce carbon emissions[108]. At the micro level, Yin and Shi assessed Chinese residents’ 
low-carbon consumption behaviors[109]. Therefore, since the socio-economic network provides many social, 
economic, and structural relationships at different levels, figuring out the role and effect of carbon emission 
becomes relatively essential, especially during the global economic downturn and energy transition period 
after the COVID-19 shocks.
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RESEARCH DESIGN
Sample data
This study compiles a panel dataset of China’s apparent province-level carbon emission data from 2000 to 
2021, accompanied by some necessary socio-economic data such as gross domestic product, total 
population, foreign direct investment, etc. There are several reasons for using this sample data. (1) Based on 
the Carbon Emission Accounts and Datasets (CEADs), this study obtains the latest province-level carbon 
emission data from 1997 to 2021[110-114]. Considering the advantages of long-time series data, especially in 
uncovering and revealing the phenomenon law, this study chooses the beginning year of 2000; and (2) As 
for the missing values in the sample data, the predictive mean matching and the linear interpolation 
methods are applied at the same time[115]. Table 1 shows the descriptive statistics.

Evaluation method
Gini decomposition method
As a common measure of economic inequality, the Gini index reflects the income gap between the real 
income distribution curve and the absolute average curve[116,117]. As shown in Eq. (1), under the definite 
integral method, the Gini index equals the weighted average sum of the differences between the cumulative 
total population proportion (POPi) and the cumulative gross income proportion (WAGi) of the certain 
group (i). Without loss of generality, a higher Gini index will indicate an obvious income gap among 
different groups.

Following this decomposition method, this study calculates the Gini-based carbon emission footprint index 
at the province level in Eq. (2). As for a certain year t of the sample period, this Gini-based index (GICi,t) is 
equal to the weighted average sum of the differences between the cumulative total population proportion 
(POPi) and the cumulative carbon emission proportion (CEi) of the certain group (i). By doing that, this 
Gini-based index can reflect the overall variation in the carbon emission footprint of different 
provinces[118,119].

Compared to other economic inequality indices, such as the Theil index, the Wolfson polarization index, 
and the World Bank inequality index, this Gini index has several distinct advantages in the carbon emission 
decomposition, especially in regional comparison. First, the Gini index is more convenient for measuring 
carbon emission differences, considering its straightforward calculation. Using the Lorenz curve framework, 
He et al. calculate the inequality in carbon emission allowances, revealing the seriously aggravated 
misallocation in the Chinese provincial administrative regions[120]. Teng et al. constructed the carbon Gini 
index to measure inequality in climate change areas[121]. They both pointed out that the Gini-based carbon 
index effectively measures inequality in the distribution of carbon space among different regions. Second, 
the Gini index is more intuitional for the overall and partial comparison, with effective and classified 
illustration in the inequality degree. Studies around this issue have documented that carbon inequality 
differs in character within various national and sub-national scales[122,123]. Clarke-Sather et al. found that the 
inequality of Chinese interprovincial carbon emissions is slightly lower than that of income inequality[124]. 
Third, the Gini index is much more universal for common understanding, especially in a new application 
field. From a comparative perspective, Hou et al. figured out how to decouple economic growth from 
carbon emissions in terms of income inequality[38]. Jorgenson et al. explored the causal relationship between 
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Table 1. Descriptive statistics

Var Definition Obs Mean SD Min Max Source

CEi,t Carbon emissions (apparent) 660 5.27 0.98 0.81 7.64 CEADs

COALi,t Raw coal emissions (apparent) 660 4.93 1.03 0.00 7.62 CEADs

OILi,t Crude oil emissions (apparent) 660 3.02 2.16 0.00 6.12 CEADs

GASi,t Natural gas emissions (apparent) 660 1.42 2.17 0.00 4.14 CEADs

CEMi,t Cement emissions (apparent) 660 2.34 1.13 0.00 4.03 CEADs

GDPi,t Gross domestic product 660 9.14 1.17 5.57 11.73 CSMAR

AGDPi,t Gross domestic product per capita 660 10.18 0.87 7.92 12.14 CSMAR

STRi,t Secondary industry product 660 6.75 1.16 3.69 8.70 CSMAR

ENEi,t Coal consumption proportion 660 0.73 0.14 0.00 0.94 CSMAR

FDIi,t Foreign direct investment 660 10.64 1.63 6.36 15.33 CSMAR

INTi,t Import trade 660 16.11 1.91 10.73 20.03 CSMAR

EXTi,t Export trade 660 16.34 1.81 11.63 20.47 CSMAR

POPi,t Total population 660 8.17 0.76 6.25 9.45 CSMAR

STi,t Industrial rational index 660 1.07 0.36 0.23 2.55 CSMAR

GPi,t Green patent 660 4.29 1.73 0.00 9.62 CSMAR

OFDIi,t Outward foreign direct investment 660 15.31 6.39 0.00 30.81 CSMAR

The table contains a panel dataset of China’s apparent province-level carbon emission data from 2000 to 2021. The province-level carbon 
emission data are retrieved from the Carbon Emission Accounts and Datasets (CEADs). The socio-economic data are retrieved from the China 
Stock Market & Accounting Research (CSMAR) Database. All variables are in natural logarithm form and have been handled by related economic 
deflators correspondingly, if possible and applicable.

consumption-driven carbon emission differences and the Gini-based domestic income gap among 
67 countries[125]. Therefore, this study chooses the Gini index to decompose carbon emissions at the Chinese 
provincial administrative level, thus providing a relatively comprehensive comparative perspective.

Social network analysis
As a form of social structure, the social network is a relatively stable relationship system connected by 
individual (organization) interaction[126]. In the social network analysis, the individual (organization) is the 
social node, and the mutual relationship is the social network. With various mutual relationships making up 
social networks at different levels, social network analysis focuses more on the mutual relationships between 
nodes and the socio-economic effects among nodes[127]. Following this framework, this study constructs a 
province-level carbon emission footprint spatial correlation network.

In Eqs. (3)-(5), i, j, and t represent the node province, the other node province, and the year, respectively. As 
for a certain year t of the sample period: SPi,j,t represents the mutual network relationship between the node 
province i and the node province j; Ki,j,t represents the carbon emission proportion of the node province i 
among the overall mutual carbon emissions; Di,j,t represents the weighted average spatial correlation 
between the node province i and the node province j; DISTi,j,t represents the spherical distance between the 
node province i and the node province j; CEi,t represents the carbon emission of the node province i; GDPi,t 
represents the gross domestic product of the node province i; AGDPi,t represents the gross domestic product 
per capita of the node province i; and POPi,t represents the total population of the node province i.
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In Eq. (6), the mutual spatial network relationship (SPi,j,t) is converted into an absolute value matrix (SPt). 
According to the general definition, for a certain node province i and node province j in a certain year t, if 
their mutual network value (SPvalue) is larger than the average value of the whole matrix row, then the 
average mutual network relationship will be set to 1. As shown in Eq. (7), the average dummy value matrix 
(ASPt) is obtained by normalizing the absolute value matrix (SPt) on average. After that, the social network 
characteristics, including global network characteristics, node network characteristics, and dynamic 
network characteristics (mutual non-redundant node relations), can be further analyzed.

First, for the global network characteristics, network density, network connectedness, network hierarchy, 
network efficiency, network graph clustering coefficient, network hybrid reciprocity, network non-vacuous 
transitive ordered triples, network average distance, network compactness distance, and network breadth 
distance will be calculated, respectively. These indices, to a certain extent, can describe the overall 
characteristics of the global network from scale, rank, and structure[128,129]. Take network density, network 
hierarchy, and network efficiency as examples.

In Eq. (8), network density (DENt) represents the carbon emission footprint intensity. Mi,j,t is the number of 
network connections between two provinces, and N is the number of connected nodes. In Eq. (9), network 
hierarchy (HIEt) represents the network status of the node provinces. Vi,j,t is the number of unreachable 
node relations, and MAX(Vi,j,t) is the maximum number of unreachable node relations. In Eq. (10), network 
efficiency (EFFt) represents the redundant connections of node provinces. Wi,j,t is the number of redundant 
node relations, and MAX(Wi,j,t) is the maximum number of redundant node relations.
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Second, regarding node network characteristics, this study focuses on degree centrality, closeness centrality, 
and betweenness centrality in particular. As the most direct reflection of node status, the three indices 
describe the connection numbers, the shortest connected lengths, and the shortest connected frequencies of 
a certain node province i, respectively[130,131].

In Eq. (11), degree centrality (DCi,t) represents the outward direct connection numbers of a certain node 
province i. Mi,j,t is the direct connection numbers, and N is the number of connected nodes. In Eq. (12), 
closeness centrality (CCi,t) represents the average distance of the outward shortest connected lengths of a 
certain node province i. L(i, j) is the shortest length between a certain node province i and another node 
province j. In Eq. (13), betweenness centrality (BCi,t) represents the average percentage of all the outward 
shortest connected lengths that pass through the certain node province i. LM(k, j) is the number of the 
shortest length between a third-party node province k and another node province j, and LM(i, k, j) is the 
number of the shortest length between the third-party node province k and another node province j that 
must pass through the certain node province i.

Third, in terms of the dynamic network characteristics (mutual non-redundant relations between nodes), 
the structural hole is the essential index in assessing node dynamic competitive advantage[132]. As for the 
node provinces, those possessing structural holes will have better advantages in handling redundant 
relationships with other nodes, thus stimulating their own network competitiveness[133]. In this framework, 
this study estimates structural hole scale, structural hole efficiency, structural hole constraints, and 
structural hole hierarchy. As for node province i, all connected node provinces will be set to j, and all third-
party node provinces will be set to k.

In Eq. (14), the structural hole scale (HSi,t) equals the network scale minus network redundancy. pik is the 
proportion that the node province i used for connecting the third-party node provinces k. mjk is the 
marginal intensity that the node province j used for connecting the third-party node provinces k. In 
Eq. (15), structural hole efficiency (HFi,t) equals the ratio of effective network scale to actual network scale. 
N is the number of connected nodes. In Eq. (16), structural hole constraint (HCi,t) represents the ability to 
use structural holes. pij is the proportion that the node province i used for connecting another node 
province j. pqj is the proportion that the node province j used for connecting the third-party node provinces 
k. In Eq. (17), structural hole hierarchy (HHi,t) represents the constraint possibility of using structural holes. 
AHCi,t is the average structural hole constraint for all node provinces.
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Difference-in-differences model
Since China’s low-carbon pilot policy has three different batches, this study employs the staggered DID 
model to observe how it works for carbon emission reduction[134]. The specific empirical model is set as 
follows in Eq. (18), where i and t represent the province and the year, respectively.

CEi,t is the dependent variable, referring to the apparent carbon emissions of province i in the year t. LCCi,t is 
the independent variable (as dummy variable form), referring to the implementation of the low-carbon pilot 
policy. The value will be set to 1 if the province i is on the low-carbon pilot list in the year t. θ is the 
estimated coefficient, referring to the overall average treatment effect of the low-carbon pilot policy on 
carbon emission reduction. Xi,t is a set of control variables, with β as their corresponding coefficients. fi,t is 
the potential province-fixed and year-fixed effects. α is the constant term. εi,t is the remaining residuals.

As illustrated in the policy background section, the first batch of the low-carbon pilot policy mainly targets 
seven provincial administrative regions. With this pioneering experience, the latter two batches then expand 
the low-carbon pilot policy from the province-level administrative region to the prefecture-level and 
county-level, with the low-carbon economic framework designed in the first batch. Therefore, the pilot 
provincial administrative regions still play an essential role in implementing this low-carbon pilot policy. 
Those subsequent pilot prefecture-level and county-level regions cannot advance this low-carbon pilot 
policy in an orderly manner if the prefecture-level framework is lacking. Considering this crucial reason, we 
set the independent variable at the provincial administrative region level in Eq. (18)[43,51,52].

RESULTS
Gini decomposition results
Overall analyses
Figure 1 shows the Gini decomposition results of China’s apparent province-level carbon emissions from 
2000 to 2021. The horizontal axis represents the year, the left vertical axis represents the stack area plot 
value, and the right vertical axis represents the line plot value. Regarding carbon emission composition, the 
total Gini-based carbon emission footprint index can be divided into four aspects: raw coal, crude oil, 
natural gas, and cement. The line plot with marked points expresses the total Gini-based carbon emission 
footprint index. The stack area plots express the Gini-based carbon emission gap in those four sub-indices 
from bottom to top in an orderly fashion.

In terms of the total Gini-based carbon emission footprint index, as the line plot goes, it shows an overall 
growth trend from 2000 to 2021, indicating the increasing Gini gap in carbon emissions between provinces. 
From 2000 to 2007, the total Gini-based carbon emission footprint index has a clear downward trend, falling 
from 0.14 to 0.11, with a maximum decline larger than 16%. After a positive promotion to 0.14 in 2008, it 
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Figure 1. The total Gini-based carbon emission footprint index. It shows the Gini decomposition results of China’s apparent province-
level carbon emissions from 2000 to 2021. The horizontal axis represents the year, the left vertical axis represents the stack area plot 
value, and the right vertical axis represents the line plot value. The total Gini-based carbon emission footprint index can be divided into 
four aspects: raw coal, crude oil, natural gas, and cement. The line plot with marked points expresses the total Gini-based carbon 
emission footprint index. The stack area plots express the Gini-based carbon emission gap in those four sub-indices from bottom to top 
in an orderly fashion.

kept a relatively stable growth development from 2009 to 2012. Since then, the index has been on a roll to 
0.25 around 2020, with a considerable annual growing trend at 5%.

In terms of the four sub-indices, as the stack area plots show, to some extent, they exhibit two distinct types 
of developmental characteristics from 2000 to 2021, suggesting two contradictory Gini gaps in carbon 
emissions. On the one hand, raw coal and crude oil sub-indices maintain a continuous growth trend, 
increasing from 0.04 to 0.08 and from 0.14 to 0.16, respectively. On the other hand, natural gas and cement 
sub-indices have been falling constantly, with the decline from 0.26 to 0.06 and from 0.04 to 0.02, 
respectively. By comparison, although the Gini gaps in natural gas and cement become narrow from 2000 to 
2021, they can not make up for the increasingly considerable Gini differences in raw coal and crude oil, thus 
leading the growth trend for the total Gini-based carbon emission footprint index. In sum, the Gini gap in 
carbon emissions becomes larger across provinces from 2000 to 2021, with raw coal and crude oil being the 
main causes.

Comparative analyses
Figure 2 shows the total Gini-based carbon emission footprint index among the pilot and non-pilot 
provinces. The horizontal axis represents the year, the left vertical axis represents the stack area plot value, 
and the right vertical axis represents the line plot value. The line plot with marked points expresses the total 
Gini-based carbon emission footprint index. The stack area plots express the Gini-based carbon emission 
gap in the pilot and non-pilot provinces from bottom to top. In a statistical sense, the Gini-based carbon 
emission footprint index in non-pilot provinces is almost twice as large as that of pilot provinces, revealing 
the relatively balanced growth trend in carbon emissions across pilot provinces. As the main policy 
implementers, those pilot provinces must finish the targeted emission reduction goals after 2010. If failed, 
they will be punished strictly by the NDRC.
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Figure 2. Gini-based carbon emission footprint index among different provinces. It shows the total Gini-based carbon emission footprint 
index among the pilot and non-pilot provinces. The horizontal axis represents the year, the left vertical axis represents the stack area 
plot value, and the right vertical axis represents the line plot value. The line plot with marked points expresses the total Gini-based 
carbon emission footprint index. The stack area plots express the Gini-based carbon emission gap in the pilot and non-pilot provinces 
from bottom to top.

In Figure 3, the stack waterfall plots further show the four sub-indices among the pilot and non-pilot 
provinces. The horizontal axis represents the Gini decomposition value, and the middle vertical axis 
represents the year. As for the pilot provinces on the left side, except for the raw coal, the other three sub-
indices have shown a shrinking development trend. These phenomena indicate that the pilot provinces have 
better governance in crude oil, natural gas, and cement emissions. As for the non-pilot provinces on the 
right side, the development trends of the four sub-indices are the same as the total situation in Figure 1. 
While the raw coal and crude oil sub-indices keep a growth trend, the natural gas and cement sub-indices 
present the decline characteristics. To sum up, it is evident that China’s low-carbon pilot policy has a 
positive effect on narrowing the province-level gap in crude oil emissions, to some extent in the statistical 
sense of the Gini decomposition.

Social network analysis results
Figure 4 shows China’s province-level carbon emission footprint spatial network in 2000, 2010, and 2021. 
Regarding the overall social network structure, its directed network level has undergone obvious changes. 
On the one hand, the mutual connection between node provinces increases as the overall social network 
structure becomes tighter. On the other hand, the central node province is also constantly changing. In 
2000, the central node provinces were the Anhui, Fujian, Hunan, and Tianjin. In 2010, Anhui, Chongqing, 
Guangxi, Liaoning, and Tianjin became the central ones. In 2021, the central node provinces changed to 
Guangxi, Liaoning, Shandong, and Tianjin.

Global network characteristics
Table 2 shows the global network characteristics of China’s province-level carbon emission footprint from 
2000 to 2021, containing four aspects totaling 11 indices. First, the network scale shows a relatively stable 
trend, with the network density (DENt) around 0.16-0.17 and standard deviation (SD) around 0.3. It shows 
that there are no obvious mutual relationship changes within the current carbon emission footprint spatial 
network. Second, the network level increases slightly, especially in the network hierarchy. While network 
connectedness (CONt) and network efficiency (EFFt) remain relatively stable, the network hierarchy (HIEt) 
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Table 2. Global network characteristics

Scale Level Interaction Distance
Year

DENt SD CONt HIEt EFFt GRAt RECt TRIt NADt NCDt NBDt

2000 0.175 0.380 1.000 0.067 0.727 0.213 0.086 170 2.256 0.506 0.494

2001 0.167 0.373 1.000 0.067 0.754 0.235 0.124 177 2.386 0.488 0.512

2002 0.164 0.371 1.000 0.067 0.741 0.210 0.067 162 2.415 0.482 0.518

2003 0.164 0.371 1.000 0.067 0.746 0.196 0.083 153 2.371 0.487 0.513

2004 0.167 0.373 1.000 0.067 0.761 0.215 0.151 160 2.257 0.503 0.497

2005 0.166 0.372 1.000 0.067 0.761 0.237 0.143 166 2.229 0.504 0.496

2006 0.176 0.381 1.000 0.067 0.722 0.223 0.078 199 2.259 0.506 0.494

2007 0.175 0.380 1.000 0.129 0.734 0.221 0.110 189 2.336 0.484 0.516

2008 0.172 0.378 1.000 0.067 0.746 0.264 0.136 177 2.276 0.503 0.497

2009 0.176 0.381 1.000 0.067 0.724 0.181 0.085 164 2.420 0.491 0.509

2010 0.184 0.387 1.000 0.129 0.714 0.243 0.103 233 2.243 0.497 0.503

2011 0.168 0.374 1.000 0.129 0.759 0.178 0.150 158 2.366 0.477 0.523

2012 0.166 0.372 1.000 0.129 0.759 0.208 0.134 144 2.232 0.489 0.511

2013 0.164 0.371 1.000 0.129 0.749 0.246 0.092 179 2.287 0.482 0.518

2014 0.167 0.373 1.000 0.188 0.739 0.222 0.074 166 2.215 0.476 0.524

2015 0.163 0.370 1.000 0.129 0.754 0.201 0.101 146 2.321 0.478 0.522

2016 0.168 0.374 1.000 0.188 0.744 0.225 0.098 179 2.396 0.461 0.539

2017 0.166 0.372 1.000 0.129 0.749 0.252 0.099 175 2.319 0.480 0.520

2018 0.166 0.372 1.000 0.129 0.744 0.234 0.083 152 2.246 0.488 0.512

2019 0.166 0.372 1.000 0.188 0.749 0.197 0.099 138 2.280 0.469 0.531

2020 0.169 0.375 1.000 0.189 0.732 0.196 0.065 167 2.339 0.465 0.535

2021 0.169 0.363 1.000 0.181 0.803 0.153 0.067 166 3.022 0.479 0.621

The table shows the global network characteristics of China’s province-level carbon emission footprint from 2000 to 2021, including network 
density (DENt), network connectedness (CONt), network hierarchy (HIEt), network efficiency (EFFt), network graph clustering coefficient (GRAt), 
network hybrid reciprocity (RECt), network non-vacuous transitive ordered triples (TRIt), network average distance (NADt), network compactness 
distance (NCDt), and network breadth distance (NBDt).

changes from 0.067 in 2000 to 0.151 in 2021 (the maximum value is 0.189 in 2020). These dynamic changes 
in network hierarchy indicate progressively increasing inner network layers. Regarding the relatively stable 
network scale and the increased network level, those node provinces in the inner network center will have 
more outward mutual connections.

Third, network interaction is a dynamic development trend. Whether it is network graph clustering 
coefficient (GRAt), network hybrid reciprocity (RECt), or network non-vacuous transitive ordered triples 
(TRIt), they all show irregular characteristics. This phenomenon reflects the intense competition situation 
for the central node provinces in the carbon emission footprint spatial network. Fourth, network distance 
further illustrates this fierce competition. While the network average distance (NADt) remains relatively 
stable, the network compactness distance (NCDt) becomes smaller. However, the network breadth distance 
(NBDt) becomes larger simultaneously. This interesting result shows that those central node provinces will 
use their own advantages to consolidate the network position, thus siphoning extra socio-economic 
resources from the neighboring node provinces. Regarding dynamic network interaction and network 
distance, competition for the central node position has become more intense, as the siphoning effect can 
bring extra socio-economic benefits to the node provinces.
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Figure 3. Four composition sub-indices among different provinces. It shows four carbon emission footprint sub-indices among the pilot 
and non-pilot provinces. The horizontal axis represents the Gini decomposition value, and the middle vertical axis represents the year.

Node network characteristics
Table 3 shows the node network characteristics of China’s province-level carbon emission footprint in 2000, 
2010, and 2021, containing three indices of degree centrality (DCi,t), closeness centrality (CCi,t), and 
betweenness centrality (BCi,t).

In terms of degree centrality, the average value among 30 provinces does not change significantly from 2000 
to 2021. As for pilot provinces, their average value shows a slight upward trend. However, the opposite goes 
for the non-pilot provinces. In this sense, those pilot provinces gradually become the center of China’s 
carbon emission footprint spatial network. In addition to the average value changes, some development 
trends are also noteworthy. First, provinces like Beijing, Hebei, and Jilin keep stable network positions 
throughout the sample period. Second, provinces like Hainan, Inner Mongolia, and Ningxia are making 
concerted efforts to improve their network position. Third, provinces like Chongqing, Jiangsu, Qinghai, and 
Shandong are engaged in fierce competition with each other. In the last, provinces like Tianjin and Hunan 
are experiencing a downward growth trend.

In terms of closeness centrality, the average value among 30 provinces goes down throughout the whole 
sample period, both in pilot and non-pilot provinces. In terms of betweenness centrality, the average value 
among 30 provinces remains relatively stable, with a slight dynamic change only in pilot provinces. 
Combined with the average variation of closeness centrality and betweenness centrality, it will be evident 
that those non-pilot provinces have more internal motivations for the network central position. With the 
competition in non-pilot provinces being more intense than that in pilot provinces, node provinces will 
correspondingly reduce the connection with other competitive provinces, thus consolidating the existing 
network position.
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Table 3. Node network characteristics

Degree centrality Closeness centrality Betweenness centrality
2000 2010 2021 2000 2010 2021 2000 2010 2021

Beijing 15.57 13.35 17.79 30.47 25.11 14.33 6.76 2.31 2.94

Chongqing 15.57 33.36 17.79 37.46 37.83 34.24 3.71 31.81 9.24

Guangdong 8.90 17.79 15.57 30.79 27.52 23.23 0.00 2.89 4.35

Hainan 17.79 26.69 26.69 38.42 37.19 35.30 8.34 34.49 35.18

Hubei 13.35 15.57 13.35 37.01 31.19 26.99 14.92 5.58 22.28

Liaoning 24.47 33.36 33.36 41.90 42.83 40.96 45.61 49.99 29.83

Shaanxi 22.24 20.02 24.47 37.40 31.73 29.19 33.29 12.10 23.26

Shanghai 17.79 20.02 20.02 41.30 38.69 36.03 27.01 7.72 35.20

Tianjin 44.48 37.81 35.59 48.37 45.87 42.20 35.32 11.25 19.83

Yunnan 17.79 8.90 13.35 35.27 29.41 27.13 13.10 0.49 4.99

Average 19.79 22.69 21.80 37.84 34.74 30.96 18.81 15.86 18.71

Anhui 33.36 40.03 13.35 47.81 45.91 29.14 70.79 45.76 15.84

Fujian 31.14 24.47 26.69 46.07 32.71 33.01 27.54 24.22 32.98

Gansu 20.02 22.24 13.35 41.00 36.78 32.07 8.89 46.80 4.79

Guangxi 31.14 40.03 40.03 43.54 45.61 42.02 25.73 57.77 73.69

Guizhou 22.24 13.35 13.35 42.44 28.85 29.13 20.76 20.30 12.02

Hebei 20.02 15.57 17.79 35.44 31.16 29.20 28.62 5.29 11.69

Heilongjiang 22.24 15.57 20.02 36.90 32.02 30.95 13.25 12.93 26.38

Henan 20.02 13.35 17.79 35.22 32.13 31.19 15.14 7.05 22.00

Hunan 33.36 15.57 13.35 46.79 18.73 17.78 33.41 0.00 0.00

Inner Mongolia 17.79 22.24 26.69 38.72 35.85 35.69 14.16 14.10 30.56

Jiangsu 13.35 20.02 20.02 33.63 34.47 27.82 2.05 20.74 14.84

Jiangxi 22.24 20.02 20.02 41.73 39.48 34.73 35.66 16.53 9.50

Jilin 17.79 15.57 24.47 35.66 36.96 34.31 7.15 19.42 53.11

Ningxia 4.45 8.90 8.90 19.35 17.09 12.65 0.00 0.00 0.00

Qinghai 15.57 22.24 20.02 38.12 37.78 32.25 12.68 18.04 14.96

Shandong 13.35 31.14 28.91 37.90 38.43 32.15 14.59 35.10 32.46

Shanxi 17.79 13.35 8.90 38.12 31.52 24.49 6.81 1.56 8.76

Sichuan 24.47 24.47 22.24 37.43 36.06 33.09 22.47 20.02 19.77

Xinjiang 15.57 17.79 17.79 31.02 35.57 27.79 3.68 5.73 9.01

Zhejiang 28.91 22.24 22.24 40.25 38.55 30.62 41.57 36.65 10.19

Average 21.24 20.91 19.79 38.36 34.28 30.00 20.25 20.40 20.13

All average 20.76 21.50 20.46 38.18 34.43 30.32 19.77 18.89 19.66

The table shows the node network characteristics of China’s province-level carbon emission footprint from 2000 to 2021, including degree 
centrality (DCi,t), closeness centrality (CCi,t), and betweenness centrality (BCi,t).

Dynamic network characteristics
Table 4 shows the dynamic network characteristics of China’s province-level carbon emission footprint in 
2000, 2010, and 2021, containing three indices of structural hole efficiency (HFi,t), structural hole constraints 
(HCi,t), and structural hole hierarchy (HHi,t).

Regarding structural hole efficiency (HFi,t), the average value among 30 provinces fluctuates down and up 
(decrease-increase) from 2000 to 2021, where those pilot provinces perform better than the non-pilot 
provinces. Since structural hole efficiency equals the ratio of effective network scale to actual network scale, 
this comparative result shows that pilot provinces have better abilities in handling invalid redundant 
relationships, thus improving the main effective mutual node connections. Regarding structural hole 
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Table 4. Dynamic network characteristics

Efficiency (HFi,t) Constraint (HCi,t) Hierarchy (HHi,t)
2000 2010 2021 2000 2010 2021 2000 2010 2021

Beijing 0.857 0.778 0.758 0.339 0.400 0.376 0.054 0.095 0.070

Chongqing 0.786 0.740 0.688 0.377 0.237 0.421 0.071 0.061 0.113

Guangdong 0.688 0.555 0.786 0.747 0.419 0.325 0.195 0.023 0.039

Hainan 0.738 0.735 0.857 0.447 0.421 0.325 0.107 0.052 0.123

Hubei 0.657 0.743 0.767 0.308 0.226 0.221 0.064 0.042 0.058

Liaoning 0.760 0.648 0.711 0.308 0.378 0.309 0.081 0.046 0.041

Shaanxi 0.757 0.661 0.692 0.340 0.354 0.347 0.100 0.050 0.092

Shanghai 0.765 0.749 0.724 0.180 0.213 0.216 0.037 0.061 0.057

Tianjin 0.695 0.594 0.736 0.392 0.749 0.505 0.073 0.087 0.142

Yunnan 0.857 0.778 0.758 0.339 0.400 0.376 0.054 0.095 0.070

Average 0.745 0.689 0.747 0.382 0.377 0.338 0.087 0.057 0.082

Anhui 0.760 0.737 0.667 0.216 0.199 0.463 0.046 0.048 0.037

Fujian 0.694 0.702 0.681 0.252 0.317 0.294 0.055 0.089 0.054

Gansu 0.572 0.745 0.611 0.375 0.326 0.487 0.074 0.055 0.063

Guangxi 0.778 0.794 0.772 0.248 0.197 0.197 0.073 0.052 0.053

Guizhou 0.690 0.903 0.667 0.339 0.320 0.454 0.064 0.111 0.016

Hebei 0.674 0.781 0.676 0.395 0.260 0.283 0.139 0.054 0.027

Heilongjiang 0.827 0.607 0.719 0.290 0.416 0.365 0.037 0.080 0.073

Henan 0.714 0.634 0.794 0.317 0.449 0.311 0.069 0.066 0.055

Hunan 0.839 0.905 0.719 0.280 0.286 0.358 0.053 0.039 0.041

Inner Mongolia 0.733 0.592 0.667 0.245 0.479 0.434 0.082 0.061 0.038

Jiangsu 0.694 0.623 0.788 0.373 0.360 0.263 0.034 0.075 0.084

Jiangxi 0.625 0.662 0.753 0.516 0.356 0.310 0.054 0.058 0.064

Jilin 0.695 0.672 0.656 0.334 0.356 0.366 0.075 0.042 0.057

Ningxia 0.750 0.778 0.629 0.345 0.368 0.305 0.041 0.073 0.057

Qinghai 0.500 0.625 0.688 1.125 0.684 0.695 0.000 0.168 0.072

Shandong 0.776 0.646 0.611 0.399 0.321 0.377 0.043 0.092 0.033

Shanxi 0.667 0.695 0.769 0.443 0.258 0.254 0.077 0.044 0.068

Sichuan 0.590 0.536 0.875 0.417 0.545 0.406 0.065 0.049 0.055

Xinjiang 0.678 0.740 0.654 0.306 0.291 0.344 0.076 0.038 0.073

Zhejiang 0.633 0.556 0.758 0.408 0.444 0.369 0.077 0.096 0.040

Average 0.697 0.694 0.708 0.375 0.361 0.364 0.060 0.069 0.052

All average 0.711 0.692 0.720 0.377 0.366 0.357 0.068 0.066 0.061

The table shows the dynamic network characteristics of China’s province-level carbon emission footprint from 2000 to 2021, including structural 
hole efficiency (HFi,t), structural hole constraints (HCi,t), and structural hole hierarchy (HHi,t).

constraints (HCi,t), the average value among 30 provinces goes down throughout the whole sample period, 
both in pilot and non-pilot provinces. With the gradual reduction in structural hole constraints, node 
provinces will normally have more socio-economic resource connections with the neighboring node 
provinces. Regarding structural hole hierarchy (HHi,t), the average value among 30 provinces also decreases 
throughout the sample period. However, those pilot provinces present a decrease-increase trend, while non-
pilot provinces show an increase-decrease one. For example, with increasing structural hole efficiency and 
decreasing structural hole constraints, Guangdong, Hubei, and Jiangsu have become progressively 
important in the carbon emission footprint spatial network. This kind of “resource-bridge” role can give 
them a more structural hole hierarchy in the overall network position, thus obtaining better development 
opportunities.
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Figure 4. Carbon emission footprint spatial network in 2000, 2010, and 2021.

Inter-provincial dynamic interaction
After considering global network, node network, and dynamic network characteristics, we further analyze 
how those central node provinces interact with other non-central ones. According to Figure 4, we set three 
different baseline conditions: the 2000, 2010, and 2021 cases. Figure 5 shows the average prediction 
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Figure 5. Carbon emission footprint spatial network prediction based on 2000, 2010, and 2021.

networks for the next five years. Table 5 shows the average prediction value of degree centrality (DCi,t), 
betweenness centrality (BCi,t), and structural hole efficiency (HFi,t) for the next five years.

As can be seen in Figure 5, the average prediction network structure becomes stable and dense for the next 
five years, regardless of different baseline conditions. For the whole network density (DENt), it has increased 
nearly fourfold than the original baseline years: from 0.175 to 0.479 in 2000, from 0.184 to 0.556 in 2010, and 
from 0.169 to 0.436 in 2021. These considerable changes indicate that the whole carbon emission footprint 
spatial network will gradually mature with the increasing inter-provincial dynamic interactions. In addition, 
although those central node provinces play an essential role in maintaining and improving network 
structure, they actually also produce a certain central siphon effect. Within the prediction network, the 
spatial network relationship of the central circle layer intensifies more than the outer circle layer.

In Table 5, the most noticeable performance is that the siphoning effect of the central node provinces is too 
strong, which causes other node provinces to lose their positions. To some extent, although the siphoning 
effect plays a role among those pilot provinces, they still have an essential position in the whole spatial 
network. For example, in the 2000 baseline, the central node provinces were the Anhui, Fujian, Hunan, and 
Tianjin. After five years of average prediction, the pilot province Guandong suffers a great shock in terms of 
betweenness centrality (BCi,t). The same goes for the 2010 baseline but not for the 2021 baseline. By contrast, 
those non-pilot provinces suffer more from the siphon effect. Without the low-carbon pilot policy, they will 
gradually lose their network competitiveness if they are not closely linked to the central node, especially as 
the baseline condition changes from 2000 to 2021. In sum, under different scenarios, the central node 
provinces will gradually use their siphoning effect to improve carbon emission status. With the help of the 
low-carbon pilot policy, the siphoning effect can be further enhanced.
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Table 5. Inter-provincial dynamic interaction

Centrality (DCi,t) Betweenness (BCi,t) Efficiency (HFi,t)
Baseline year 2000 2010 2021 2000 2010 2021 2000 2010 2021

Beijing 9.483 18.966 6.897 0.767 0.595 0.200 0.461 0.337 0.405

Chongqing 8.621 70.690 9.483 0.543 19.320 0.003 0.496 0.688 0.467

Guangdong 6.897 22.414 6.897 0.003 0.476 0.333 0.438 0.255 0.365

Hainan 10.345 27.586 10.345 0.619 3.190 1.500 0.481 0.408 0.494

Hubei 8.621 18.966 8.621 0.500 0.810 0.733 0.478 0.321 0.465

Liaoning 12.931 77.586 38.793 2.110 19.320 24.893 0.452 0.701 0.759

Shaanxi 12.069 24.138 9.483 2.900 1.310 1.200 0.516 0.306 0.420

Shanghai 9.483 24.138 8.621 1.910 0.762 0.333 0.550 0.371 0.436

Tianjin 41.379 81.034 41.379 15.960 19.320 24.893 0.758 0.706 0.767

Yunnan 10.345 15.517 6.034 1.133 0.005 0.200 0.447 0.250 0.382

Average 13.017 38.104 14.655 2.644 6.510 5.429 0.508 0.434 0.496

Anhui 37.069 79.310 6.034 15.960 19.32 0.367 0.771 0.706 0.425

Fujian 38.793 27.586 6.897 15.960 2.435 0.767 0.717 0.383 0.476

Gansu 11.207 24.138 9.483 0.876 2.077 1.000 0.450 0.373 0.449

Guangxi 13.793 79.310 37.069 4.038 19.320 24.893 0.544 0.706 0.782

Guizhou 11.207 18.966 7.759 1.000 0.667 0.002 0.412 0.423 0.502

Hebei 11.207 20.690 7.759 3.410 1.071 0.200 0.598 0.292 0.343

Heilongjiang 12.069 18.966 8.621 2.762 0.810 1.200 0.476 0.265 0.435

Henan 11.207 18.966 5.172 2.333 1.190 0.002 0.526 0.342 0.392

Hunan 38.793 20.690 6.897 15.960 0.000 0.003 0.75 0.286 0.346

Inner Mongolia 9.483 25.862 9.483 1.333 1.143 1.167 0.457 0.314 0.441

Jiangsu 8.621 24.138 7.759 0.143 1.310 0.200 0.434 0.334 0.357

Jiangxi 11.207 20.690 9.483 2.300 0.929 1.710 0.516 0.313 0.462

Jilin 10.345 18.966 12.069 1.252 1.952 2.533 0.442 0.429 0.455

Ningxia 5.172 15.517 10.345 0.003 0.003 0.002 0.364 0.272 0.405

Qinghai 8.621 24.138 10.345 1.595 1.625 1.567 0.466 0.348 0.451

Shandong 7.759 32.759 31.034 0.743 3.595 24.893 0.403 0.407 0.763

Shanxi 10.345 18.966 7.759 0.200 0.003 0.600 0.386 0.187 0.391

Sichuan 12.931 27.586 12.931 4.010 1.786 3.376 0.505 0.377 0.509

Xinjiang 9.483 22.414 12.931 0.910 0.500 2.867 0.467 0.232 0.494

Zhejiang 14.655 24.138 9.483 7.243 1.167 1.376 0.524 0.343 0.447

Average 14.698 28.190 11.466 4.101 3.045 3.436 0.510 0.367 0.466

All average 14.138 31.494 12.529 3.616 4.200 4.100 0.510 0.389 0.476

The table shows the inter-provincial dynamic interaction of China’s province-level carbon emission footprint from 2000 to 2021, including degree 
centrality (DCi,t), betweenness centrality (BCi,t), and structural hole efficiency (HFi,t).

Difference-in-differences results
Benchmark analyses
Table 6 shows the corrected relationship between China’s low-carbon pilot policy (LCCi,t) and province-
level carbon emissions (CEi,t) using the staggered DID estimation regression. In column (1), the 
foundational effect of China’s low-carbon pilot policy is explored without any control variables. In column 
(2), all control variables and fixed effects are used together. In columns (3)-(6), province-level carbon 
emissions (CEi,t) are replaced by its four compositions: raw coal emissions (COALi,t), crude oil emissions 
(OILi,t), natural gas emissions (GASi,t), and cement emissions (CEMi,t). All the regressions are clustered at the 
province level, with the province-fixed and the year-fixed effects.
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Table 6. Effect of China’s low-carbon pilot policy, benchmark

(1) (2) (3) (4) (5) (6)
CEi,t CEi,t COALi,t OILi,t GASi,t CEMi,t

LCCi,t -12.250** -17.433*** -12.243*** -2.119** -0.778** -2.290**

(-1.97) (-2.67) (-2.71) (-2.18) (-2.33) (-2.13)

AGDPi,t 47.978** 83.941** 43.820** 14.210** 22.066***

(2.23) (2.48) (2.37) (2.48) (2.64)

STRi,t 9.898** 10.244* 5.060** 3.320** 2.036**

(2.57) (1.72) (2.17) (2.55) (2.35)

ENEi,t -31.148* -35.311* -33.581* -14.99* -15.582**

(-1.90) (-1.85) (-1.85) (-1.86) (-1.98)

FDIi,t 6.412 7.121* -9.798* 0.568 0.520

(1.55) (1.72) (-2.04) (1.49) (1.49)

INTi,t 3.997 13.022 6.413* 2.804 0.193

(0.13) (0.43) (1.82) (1.44) (0.14)

EXTi,t -18.932 -29.321 -4.574 -2.286** -3.527***

(-0.56) (-0.94) (-1.18) (-1.96) (-2.74)

CONS 21.640** 24.835** 16.664*** 28.871** 29.060***

(2.02) (2.51) (2.78) (2.34) (4.22)

Covariant No Yes Yes Yes Yes Yes

Year-fixed Yes Yes Yes Yes Yes Yes

Province-fixed Yes Yes Yes Yes Yes Yes

Cluster Yes Yes Yes Yes Yes Yes

N 660 660 660 660 660 660

Adjusted R2 0.45 0.49 0.40 0.31 0.64 0.76

This table reports the corrected relationship between China’s low-carbon pilot policy and province-level carbon emissions. All the regressions are 
clustered at the province level, with the province-fixed and the year-fixed effects. The t-statistics are presented in parentheses. *, **, and *** 
represent significance levels of 10%, 5%, and 1%, respectively.

The estimated results show that China’s low-carbon pilot policy can effectively reduce carbon emissions. 
Compared to the non-pilot provinces, this pilot policy has a certain reduction effect on all kinds of carbon 
emissions. The average treatment effect is -17.433 at a 1% significance level for the total carbon emissions. 
However, this overall reduction effect varies if total carbon emissions are decomposed into four 
compositions. In terms of the raw coal emissions, the average treatment effect is -12.243 at a 1% significance 
level. In terms of crude oil emissions, natural gas emissions, and cement emissions, the average treatment 
effect becomes -2.119, -0.778, and -2.290, both at a 5% significance level. In this sense, China’s low-carbon 
pilot policy is more evident in raw coal emission reduction, thus helping to reduce the total emissions.

Inter-provincial interaction
In addition, we change the dependent variable from carbon emissions (CEi,t) to structural hole efficiency 
(HFi,t), structural hole constraints (HCi,t), and structural hole hierarchy (HHi,t). As the dynamic network 
characteristics of China’s province-level carbon emission footprint, these three variables can further reveal 
how node provinces reduce emissions in the dynamic network. In columns (1)-(3) of Table 7, the estimated 
results show that this low-carbon pilot policy has more significant promotion effects on the pilot node 
provinces. As for structural hole efficiency and structural hole hierarchy, this low-carbon pilot policy has a 
3% stimulation effect at the 1% significance level. In contrast, it has a 2% reduction effect on structural hole 
constraints at the 5% significance level. Under the low-carbon pilot policy, all provinces have to conduct an 
orderly emission reduction behavior, with different execution effects for the pilot and non-pilot provinces. 
However, just simple emission reduction is not the optimal goal. Structural transformation and 
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Table 7. Effect of China’s low-carbon pilot policy, discussions

(1) (2) (3) (4) (5) (6)
HFi,t HCi,t HHi,t CEi,t+1 CEi,t+1 CEi,t+1

LCCi,t 0.0311*** -0.0219** 0.0330***

(3.05) (-2.11) (2.93)

LCCi,t * STi,t+1 -0.1271**

(-2.44)

LCCi,t * GPi,t+1 -0.3009**

(-2.04)

LCCi,t * OFDIi,t+1 -0.0061

(-1.37)

Covariant No Yes Yes Yes Yes Yes

Year-fixed Yes Yes Yes Yes Yes Yes

Province-fixed Yes Yes Yes Yes Yes Yes

Cluster Yes Yes Yes Yes Yes Yes

N 660 660 660 630 630 630

Adjusted R2 0.37 0.33 0.35 0.66 0.83 0.62

This table reports the estimated results of China’s low-carbon pilot policy on province-level carbon emissions. All the regressions are clustered at 
the province level, with the province-fixed and the year-fixed effects. The t-statistics are presented in parentheses. *, **, and *** represent 
significance levels of 10%, 5%, and 1%, respectively. To conserve space, this table only shows the descriptive statistics of the main variables.

improvement are the ultimate goals for future sustainable growth, especially among inter-provincial 
interactions. After the emission reduction process, compared to the non-pilot one, the pilot node provinces 
will use more resources to strengthen their structural ability, status, and rank, thereby expanding their 
central siphon position.

Underlying reduction mechanism
In columns (4)-(6) of Table 7, we then conduct the potential mechanism analyses using the interaction term 
regression processes. Following the method of Liu et al.., we use the industrial rational index (STi,t), green 
patent output (GPi,t), and outward foreign direct investment (OFDIi,t) as the respective mechanism 
variables[41]. The industrial rational index reflects the degree of resource utilization among sectors, calculated 
by the average ratio of the output percentage to the labor force percentage in each sector. The green patent 
output reflects the innovation output in green, measured by the number of green patents granted[135]. 
Outward foreign direct investment reflects the direct outflows of investment funds. The estimated results 
show that local governments prefer to conduct internal improvements instead of outward emission transfers 
to address their local carbon emissions. For industrial rational index and green patent output, their 
mechanism effects between the low-carbon pilot policy and province-level carbon emissions are 12.71% and 
30.09% at the 5% significance level. For outward foreign direct investment, no obvious mechanism effect 
shows even at the 10% significance level. By promoting industrial rational transformation and green 
innovation performance, provinces (especially pilot provinces) will optimize resource allocation and guide 
funds flows reasonably and effectively, thus helping carbon emission reduction at the source stage. These 
results also hold the view that domestic improvements have more sustainable development potential than 
outward transfers.

CONCLUSION AND POLICY IMPLICATION
Conclusions
Global climate change and the accompanying energy consumption have aroused widespread societal 
concerns and brought new challenges to countries. As a responsible developing country, China is trying 
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hard to reduce carbon emissions to achieve carbon neutrality by 2060. This study explores the spatial 
differentiation of China’s province-level carbon emission footprint from 2000 to 2021, using the Gini 
decomposition method, the social network analysis, and the difference-in-differences estimation. With 
some theoretical analysis and empirical evidence provided, this study may be useful for achieving carbon 
neutrality through regional carbon emission footprint coordinated development. The main conclusions are 
as follows:

First, the total Gini-based carbon emission footprint index shows an overall growth trend from 2000 to 
2021, indicating the increasing Gini gap in carbon emissions between provinces. However, the four sub-
indices exhibit two distinct types of developmental characteristics. While raw coal and crude oil sub-indices 
keep a growth trend, natural gas and cement sub-indices have been falling constantly. In comparison, the 
Gini-based carbon emission footprint index in non-pilot provinces is almost twice as large as that of pilot 
provinces, revealing the relatively balanced growth trend in carbon emissions across pilot provinces. Among 
these considerable differences, it is evident that China’s low-carbon pilot policy has a positive effect on 
narrowing the province-level gap in crude oil emissions.

Second, the overall social network structure has undergone obvious changes from loose to tight. Regarding 
global network characteristics, those node provinces in the inner network center will have more outward 
mutual connections, as the siphoning effect can bring extra socio-economic benefits. Regarding node 
network characteristics, those pilot provinces have a comparative advantage regarding social network 
position. In response, the competition in non-pilot provinces is more intense than those in the pilot 
provinces, thus consolidating their existing network position. Regarding dynamic network characteristics, 
pilot provinces have better abilities in handling invalid redundant relationships, thereby stimulating the 
“resource-bridge” role to obtain better development opportunities. Considering the interaction between 
those central node provinces and other non-central ones, it is found that the average prediction network 
structure becomes stable and dense for the next five years, regardless of different baseline conditions. 
Nevertheless, although those central node provinces play an essential role in maintaining and improving 
network structure, they also produce a certain central siphon effect, thus causing other node provinces to 
lose their positions gradually.

Third, compared to the non-pilot provinces, China’s low-carbon pilot policy can effectively reduce all kinds 
of carbon emissions in pilot provinces. The average treatment effect is -17.433 for the total carbon 
emissions, -12.243 for the raw coal emissions, -2.119 for the crude oil emissions, -0.778 for the natural gas 
emissions, and -2.290 for the cement emissions. In a statical sense, this low-carbon pilot policy is more 
evident in raw coal emission reduction. By broadening the understanding of national policy effectiveness in 
regional energy transition, this result can help us achieve the pressing objectives of reducing carbon 
emissions from burning raw coal, thus increasing climate resilience. Furthermore, structural transformation 
and improvement are the ultimate goals for future sustainable growth if compared to simple emission 
reduction. After the emission reduction process, the estimated results show that the pilot node provinces 
will use more resources to strengthen their structural ability, status, and rank. Regarding the internal 
mechanisms, provinces (especially pilot provinces) will optimize resource allocation and guide funds flows 
reasonably through industrial rational transformation and green innovation performance. No direct 
evidence supports the outward transfer mechanism.

Policy implications
At the crossroads of sustainable development, how to speed up the green transformation through regional 
coordinated development will be incredibly important. This study will put forward the following policy 
implications based on our conclusion.
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First, considering the increasing Gini gap in carbon emissions between provinces, the Chinese central 
government should further promote the low-carbon pilot policy at the nationwide level. In terms of laws, 
the central government should formulate enough auxiliary environmental regulations to coordinate the 
relationship between low-carbon pilot policy and the current national carbon market, thus helping narrow 
the inter-provincial Gini gaps to some extent. In practice, the corresponding environmental regulations 
have already performed well among some Chinese urban agglomerations, such as the Yangtze River Delta 
and Pearl River Delta urban agglomerations. One effective measurement will be the regional environmental 
court, which has addressed many cross-regional pollution and emission events.

Second, considering global networks, node networks, dynamic networks, and especially the inter-provincial 
interaction prediction of the carbon emission footprint, the Chinese local governments should formulate 
some sub-regional cooperation development plans. In terms of dynamic scenario analysis, the future 
network structure will be more centralized and stable in the prediction. With the increasing central siphon 
effects, those central node provinces will become the core of the carbon emission footprint network. For 
other node provinces, while maintaining their own advantages, choosing the right central node to 
communicate and cooperate will be an effective way of sustainable development. For those areas in the 
middle level of the central node provinces, figuring out how to make strong relationships with both central 
nodes should be the major task.

Last, considering the effective effects of the low-carbon pilot policy on emission reduction, the Chinese local 
governments should enhance the mechanism processes at both the industrial and corporate levels. In terms 
of the current mechanism implementations, more funds should be directed toward the environmental-
related sectors and projects, especially those that should be used domestically. At the industrial level, local 
governments should formulate appropriate and specialized industrial funding plans based on their own 
industrial structure, thus cooperating with the low-carbon pilot policy for industrial upgrading. At the 
corporate level, management should set corporate strategies from the long-term sustainable development 
perspective. By guiding funds flows, more low-carbon technologies can be cultivated.

To a certain extent, this study also has some limitations. Although this study has analyzed the spatial 
differentiation of China’s province-level carbon emission footprint, it has not assessed it at the city level. In 
the next plan, we will refine this research topic further at a more detailed city level.
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