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Abstract
Propane dehydrogenation (PDH) Pt-based catalysts are facing the serious challenge of coke deactivation. The 
locations would greatly influence the coke formation, while the detailed mechanism is not fully explored. Herein, 
the coke mechanisms on different locations including Al2O3, Sn, Pt, and Pt-Sn sites were deeply investigated via in 
situ Fourier transform infrared spectroscopy (FTIR) technology, and the key factors triggering catalyst coke 
deactivation were proposed. Excessive dehydrogenation of propyl species is a crucial initial step in the formation of 
coke, whether at metal sites or supports. These propyl species on Al2O3 supports then cyclize to form monocyclic 
aromatic and bicyclic aromatic species, while those on SnOx sites cyclize to form monocyclic aromatic species. As 
for the Al2O3 supported PtSn catalysts, the strong dehydrogenation function and the interaction between Pt and 
Al2O3 supports trigger the complex coke formation mechanism. The surface Pt sites with saturated coordination 
are prone to coke deposition, leading to rapid deactivation at the initial stage of the reaction. However, the low-
coordination Pt sites with ultra-small size are found to be highly resistant to coke formation in the PDH reaction, 
which selectively catalytic the PDH. Owing to the metal-support interaction, the extensive active hydrogen species 
generated from Pt can regulate the formation of coke precursors on the Al2O3 supports. Furthermore, the effect of 
hydrogen co-feed on coke deposition is also explored. The hydrogen co-feed inhibits the coke formation and results 
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in a higher H/C ratio (3.96) for aromatic coke precursors. This study can enhance the understanding of the coke 
formation in PDH, which is important to designing efficient PDH Pt-based catalysts.

Keywords: Coke mechanism, propane dehydrogenation, Pt-based catalysts, Al2O3, active phase

INTRODUCTION
Pt-based catalysts exhibit excellent catalytic activity in the direct dehydrogenation of propane to propylene, 
while they face a severe challenge of coke deactivation[1-4]. Frequent regeneration not only involves complex 
processes and huge energy consumption but also cannot fundamentally resolve the problem of coke 
deactivation[2,5]. Consequently, researchers have developed extensive optimized strategies from various 
perspectives to suppress coke deactivation, including constructing active phases, selecting carriers, 
enhancing interactions between metal and carriers, and controlling reaction pathways[6-10]. Among these, 
adding tin as a promoter to modify, both electronically and geometrically, the structure of the supported Pt 
on Al2O3 carriers is an effective approach[6,7]. Although this can alleviate the coke deposition problem to 
some extent, a large amount of coke still forms on the Al2O3 supported PtSn catalyst. A fundamental 
resolution to the coke deposition necessitates a deep understanding of the key initiation steps and the 
dynamic evolution mechanism of coke species in propane dehydrogenation (PDH).

The processes of coke formation are complicated, involving complex surface reactions and various 
intermediates in the PDH process[11,12]. The specific effect brought by coke accumulation significantly 
depends on the catalytic system and the location of coke deposition. In Pt-based catalysts, the coke positions 
have been studied, which are classified into three locations, i.e., metallic Pt, the boundary between the Pt 
and the support, and the support[13,14]. Researchers have associated different site characteristics with their 
propensity to cause coke deposition and discovered significant variations in the structure and properties of 
coke formed at different reaction sites[13].

Coke deposition initiated at metallic Pt active sites mainly originates from their strong dehydrogenation 
function. According to the current mechanism for the PDH reaction, propane molecules adsorb onto the 
metal sites and undergo two consecutive dehydrogenations, forming a propylene precursor that strongly 
adsorbs on the metal sites and undergoes excessive dehydrogenation, leading to the formation of coke[8,15]. 
Numerous studies indicate that larger Pt particles are prone to coke deposition, compared with the small-
sized Pt clusters[16,17]. This is mainly attributed to the strong adsorption of propylene precursors on large-
sized Pt particles, resulting in excessive dehydrogenation. Besides, the coordination structure of the Pt active 
phase can also affect coke formation. The coordination-saturated Pt active sites facilitate side reactions, such 
as C–C cleavage and deep dehydrogenation, thereby forming coke deposits[6,18].

The carrier is another crucial factor in the initiation of coke deposition[19]. Alumina, used as the carrier in 
industrial Pt-based PDH catalysts, has pronounced acidic characteristics that enable it to catalyze a series of 
side reactions, such as oligomerization, cyclization, and condensation of the desorbed product olefins, 
leading to the formation of coke with a high hydrogen-to-carbon ratio[20]. Numerous studies have shown 
that reducing the acidity of the carrier can significantly decrease the occurrence of cracking and 
polymerization reactions, enhance the selectivity for propylene in the modified samples, and markedly 
inhibit the coke deactivation of catalysts[21]. However, some investigators also proposed that when the 
acidity of the catalyst is too low, the coke amount increases rather than decreases[13,14]. They attributed it to 
the synergistic effect between metal and acidic sites that inhibited the formation of coke deposition. 
Therefore, it is evident that the formation of coke deposition during PDH is influenced by the carrier acidity 
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and the synergistic interaction between the carrier and metal sites.

In addition to metal sites and carriers, the reaction situation is a key factor affecting coke deposition 
behavior in PDH[8,12,22]. In practical propylene production, hydrogen as a co-feeding gas has been utilized to 
inhibit the deactivation rate, obviously improving the stability of Pt-based catalysts[23]. This inhibitory 
mechanism is usually attributed to two main factors: (i) the desorption barrier of propylene can be reduced; 
(ii) metallic active sites can be preserved with the existence of hydrogen[24]. However, the introduction of 
hydrogen has a large influence on the properties of metal sites and the support acidity, inevitably leading to 
different coke deposition behaviors.

Hydrogen dissociates at metal sites and forms metal-hydride species (M-H), which possess different 
adsorption capabilities for propylene precursors from the metallic active phase, thereby significantly 
influencing coke deposition[25-27]. The hydrogen spillover caused by the metallic Pt sites, forming active 
hydrogen species, also significantly impacts coke formation[28,29]. Besides, the spillover of these active 
hydrogen species onto the carrier can alter its surface properties[30,31], triggering another crucial factor of 
coke formation. Obviously, different sites and reaction situations substantially influence coke formation in 
PDH with a high degree of interconnectivity between them. Due to the complex interactions of the various 
factors and the complexity of the reaction mechanisms, the coke formation mechanisms at different sites in 
PDH are not yet well understood which evidently limits the progress in research on inhibiting coke 
deactivation. Revealing the coke formation mechanisms in the Pt-based catalyst system could significantly 
advance the development of de-coking technologies in the PDH field.

Herein, the Al2O3 supported PtSn catalyst, which is widely used and has excellent performance in PDH, is 
used as the research object. Starting with the key initiation steps of coke deposition in PDH, the formation 
mechanisms of coke at different locations are deeply analyzed using a Fourier transform infrared 
spectroscopy (FTIR) method, and an active site structure that does not undergo coke deactivation is 
proposed. More specifically, the relations between the location of coke, structures of active phase and coke 
deactivation mechanism are established. The FTIR spectra can provide very important information on the 
amount and nature of coke and on its effect on the catalyst acidity.

EXPERIMENTAL
Catalyst preparation
Al2O3 (99%, Sasol Germany GmbH) and Sn-Al2O3 (99%, Sasol Germany GmbH) were calcined at 650 °C for 
4 h to make γ-Al2O3 support and Sn-γ-Al2O3, respectively. The obtained catalysts were named as the Al2O3 
and Sn-Al2O3. The Sn content of the Sn-Al2O3 sample is 0.3 wt%.

The Pt/Al2O3 catalyst was synthesized by a wet impregnation method, in which the theoretical amount of Pt 
was 0.5 wt%. First, 13.25 mg of H2PtCl6·6H2O (99.5%, Sinopharm Chemical Reagent Co. Ltd.) were diluted 
in appropriate amounts of water. Subsequently, the solution containing the metal precursors was 
impregnated into 1.0 g of the above calcined Al2O3. After impregnation, the samples were stirred for 15 min, 
maintained at room temperature for 6 h, and then dried at 50 °C for 12 h. This was followed by calcination 
in 20% O2/N2 at 600 °C for 2 h. Sample reduction was conducted in pure H2 atmosphere at 500 °C for 1 h. 
The obtained catalysts were named as the Pt/Al2O3. As for the Pt/Sn-Al2O3, the calcined Sn-Al2O3 was 
chosen as a carrier on which to load the H2PtCl6·6H2O using the same preparation procedure. The obtained 
catalysts were named as the Pt/Sn-Al2O3.
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Catalyst characterization
The crystalline structures of the samples were confirmed using a Bruker D8 Advance X-ray diffraction 
(XRD) instrument. This analysis was conducted using Cu Kα radiation, characterized by a wavelength of 
0.154 nm, under an operating voltage of 3 kV. A transmission electron microscopy (TEM) image was 
recorded on a JEOL-2100F microscope, which was operated at an accelerating voltage of 200 kV. The 
analysis utilizing X-ray photoelectron spectroscopy (XPS) was conducted employing an ESCALAB Xi+ 
instrument from Thermo Fisher Scientific, which utilized Al Kα radiation for the X-ray source. All samples 
underwent a reduction process at 500 °C for 1 h in an atmosphere of pure H2, after which they were 
hermetically sealed and stored in vials. The hydrogen temperature programmed reduction (H2-TPR) 
analysis was executed using a BSD-Chem C200 system. This involved flowing a 10% H2/Ar mixture (with a 
flow rate of 30 mL/min) over a 100 mg sample (with a particle size of 40-60 mesh), while heating at a rate of 
10 °C/min per minute until reaching 700 °C. The hydrogen temperature programmed desorption (H2-TPD) 
analysis was conducted using a BSD-Chem C200 device. In a typical procedure, 50 mg of the catalyst was 
initially treated under a 10% H2/Ar flow (30 mL/min) at 500 °C for 2 h, followed by a 30-minute He purge at 
the same flow rate. To facilitate hydrogen absorption, a H2/Ar mixture was flowed over the catalyst for 
30 min at 30 mL/min, followed by a He purge for 1 h. Subsequently, the sample was heated to 700 °C at 
5 °C/min under He flows (30 mL/min). The ammonia temperature programmed desorption (NH3-TPD) 
followed the same experimental procedure. The amount of coke deposited was determined using a STA 449 
F3 thermogravimetric (TG) analyzer from NETZSCH. The catalyst, weighing 15 mg, underwent He flow 
(40 mL/min) at 200 °C for 1 h, followed by a cooldown to room temperature. Subsequently, the catalyst was 
heated from room temperature to 950 °C at a rate of 5 °C/min under 20% O2/N2 (40 mL/min). Raman 
spectroscopy was performed to investigate the coke properties on a Thermo Fisher DXR Raman 
spectrometer with a 532 nm laser beam. The laser power, resolution of the apparatus and data acquisition 
time were 0.1 mW, 2 cm-1 and 10 s, respectively. An inverted configuration of the Nikon AX was used for 
the confocal fluorescence microscopy studies. All crystals have been measured using a 100 1.0 AU oil 
objective lens. The fluorescence images were collected using a Nikon AX scan head connected to laser light 
sources 405, 488, 561 and 640 nm, while the detection area is full spectrum detection with a photomultiplier 
tube (PMT).

FTIR spectra were recorded on a Thermo Scientific Nicolet iS50 FTIR spectrometer. All spectra were 
collected as an average of 64 scans at 4 cm-1 resolutions. The difference spectrum is obtained by subtracting 
the collected infrared (IR) spectra from the background spectra. (1) CO-adsorption experiment: the sample 
was initially reduced with H2/Ar (30 mL/min) for 1 h and subsequently cooled to 30 °C. Following this, it 
was exposed to a 10% CO/Ar mixture until equilibrium was reached. Then, the cell was purged with Ar flow 
to remove the physically adsorbed CO, with IR spectra being gathered continuously until stabilization; (2) 
Pyridine-adsorption experiment: the samples were activated at 400 °C for 2 h under a vacuum setup 
(< 10-3 Pa). The sample was subjected to pyridine vapor at 150 °C for 30 min. FTIR spectra were then 
recorded after degassing at 150 and 400 °C for 1 h; (3) C3H8-dosing and C3H8/H2-dosing experiment: the 
sample was reduced at 500 °C for 1 h under 10% H2/Ar (30 mL/min). In Ar atmosphere, the temperature 
was raised to 600 °C to collect the background spectrum. The pulse experiments were carried out at 600 °C 
by pulses of pure propane or C3H8/H2 mixture (volume ratio = 1:1) [pulse volume = 0.50 cm3 standard 
temperature and pressure (STP)] to the in situ cell, which was maintained under Ar flow (30 mL/min). After 
the pulse, FTIR spectra were continuously recorded for five minutes; (4) The isotope exchange reactions 
with hydrogen and deuterium (H/D) and C3H8-dosing experiment: the sample was evacuated (< 10-3 Pa) at 
400 °C for 1 h, and the background spectrum was collected. Then, the sample was exposed to D2O vapor 
until adsorption saturation. The completely deuterated sample was fed 500 Pa of propane at 400 °C; (5) 
C3H8 Multiple pulse experiments: the propane pulse experiment procedure is the same as in Part (3). After 
pulsing propane at 600 °C, the sample was cooled to 30 °C for CO adsorption, using the procedure in Part 
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(1). Following complete CO desorption, the temperature was raised back to 600 °C for a new round of 
propane pulsing. The IR spectra after 1-10 rounds of propane pulsing and in-situ FTIR spectra of CO 
adsorption after rounds 1-2 and 9-10 were recorded.

Catalytic tests
The PDH performance was conducted in a tubular quartz reactor with a fixed bed under atmospheric 
pressure. The reactor’s temperature was regulated using a Golden Eagle temperature controller (Series 
708P). In each test, 0.1 g of the catalyst was utilized. A gaseous mixture containing C3H8 and H2 in a 1:1 
volume ratio was introduced over the catalyst layer at 600 °C. Product analysis was performed using an 
inline gas chromatograph. For the separation and detection of H2, C3H8, C3H6, C2H4, C2H6, CH4, and C4-C6 in 
the effluent, KB-1 (8 m × 0.32 mm × 0.50 μm) and TDX-01 (3 mm × 1 m) columns were employed. The 
conversion of propane and the selectivity for the various products were determined by:

Propane conversion:

where [C3H8]in, [C3H8]out and [C3H6]out were the imported molar concentration of C3H8, the outlet molar 
concentration of C3H8 and C3H6 in the effluent gas, respectively.

RESULTS AND DISCUSSION
Evolution path of coke precursors on different sites of Al2O3 supported PtSn catalysts
The coke formation on Al2O3 supported PtSn catalysts primarily occurs at metal sites, metal-support 
interface and supports, with distinct mechanisms at each location. However, the current research on the 
coke deposition mechanism at different sites and the interactive effects between various sites remain unclear 
[Supplementary Table 1]. To investigate the coke formation mechanisms at these sites, four model catalysts, 
Al2O3, Sn/Al2O3, Pt/Al2O3, and Pt/Sn-Al2O3, were designed and prepared. All samples maintain the typical 
crystal phase structure of γ-Al2O3 [Supplementary Figure 1] but have different active components. These 
four catalysts exhibit similar crystalline morphology and size [Supplementary Figures 2 and 3].

To investigate the formation mechanism of coke precursors on catalysts, a hyphenated technique 
combining pulse, high temperature and in situ IR spectroscopy was utilized to analyze the types and 
formation mechanisms of these precursors [Figure 1]. The pulse experiments were carried out at 600 °C by 
pulses of pure propane (pulse volume = 0.50 cm3 STP) to the in-situ cell, which was maintained under Ar 
flow (30 mL/min). After the pulse, FTIR spectra were continuously recorded for five minutes. Table 1 
exhibits the summary of the vibrational modes and positions of adsorption peaks. When 0.5 mL of C3H8 is 
pulsed into the in situ cell at 600 °C, strong absorption peaks at 2,872-2,985 cm-1 attributed to the stretching 
vibrations of methyl C–H bonds in C3H8 are observed [Figure 1][32,33]. These four catalysts show distinct 
formation processes of coke precursor due to differences in their active components.

For the Al2O3 sample, four peaks between 1,372 and 1,450 cm-1 attributed to the bending vibrations of C–H 
in CH2 and CH3 groups are observed at the initial stage of pulsing propane [Figure 1A]. Specifically, the 
peak at 1,450 cm-1 is associated with 1-propyl and 2-propyl vibrations, 1,396 cm-1 with 1-propylidene and 

Conv. (%) = ([C3H8]in - [C3H8]out)/[C3H8]in × 100                                                 (1)

Selectivity of products:

Selectivity (%) = [C3H6]out/([C3H8]in - [C3H8]out) × 100                                             (2)

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202501/cs4043-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202501/cs4043-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202501/cs4043-SupplementaryMaterials.pdf
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Figure 1. The coke mechanism of PDH on various locations. FTIR differential spectra following propane pulse adsorption for (A) Al2O 3, 
(B) Sn-Al2O 3, (C) Pt/Al2O3 and (D) Pt/Sn-Al2O 3. The pulse experiments were carried out at 600 °C by pulses of pure propane (pulse 
volume = 0.50 cm3 STP) to the in situ cell at Ar (30 mL/min) atmosphere. The yellow dashed line represents the adsorption peak, while 
the white dashed line represents the inverted peak caused by the occupation of adsorption sites. PDH: Propane dehydrogenation; FTIR: 
Fourier transform infrared spectroscopy; STP: standard temperature and pressure.

2-propylidene, 1,372 and 1,387 cm-1 with 1-propylidyne, and 1,305 cm-1 with olefinic C–H stretching 
vibration[34,35]. These vibrational peaks persist after Ar purging, indicating chemical rather than physical 
adsorption. It can be seen that propane undergoes dehydrogenation on the Al2O3 surface. According to 
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Table 1. Summary of the vibrational modes and positions of adsorption peaks (1,200-4,000 cm-1)

Band position (cm-1)
Species Vibrational 

mode This 
work Literature range

Olefin δm (C–H) 1,305 1,295-1,310[34]

1-Propylidyne δs (C–H) 1,372, 1,387 1,370-1,377[34,35]

1-Propylidene 
2-Propylidene

δs (C–H) 1,396 1,392-1,398[34,35]

1-Propyl 
2-Propyl

δs (C–H) 1,450 1,450-1,458[34,35]

Benzene ν (C=C) 1,470 1,450-1,650[43-46]

Naphthalene ν (C=C) 1,545 1,488-1,545[43-46]

Polyaromatic ν (C=C) 1,575 1,575-1,602[43-46]

Acetone δs (C–H) 
ν (C=O) 
δ (C–H)

3,014 
1,737 
1,440

3,000-3,300[40] 
1,668-1,725[40-42] 
1,434-1,436[40-42]

Alkyne ν (C≡C) 2,104-2,190 2,100-2,260[43]

νvs (C=C) 2,985-2,872 2,875-2,990[44]Propane 
Al2O3 νvs (H–O) 3,700-3,200 3,200-3,700[45]

NH3-TPD and Py-FTIR results [Supplementary Figures 4 and 5], the Al2O3 possesses numerous medium-
strong acid sites[36], predominantly as Lewis acid sites at tri-coordinated Al defect sites 
[Supplementary Figure 6][37-41]. Therefore, it is believed that propane molecules undergo successive 
dehydrogenation reactions at these Lewis acid sites of Al2O3. Wang et al. also proposed that this type of tri-
coordinated Al defect site with Lewis acidity can catalyze the dehydrogenation of propane[42]. The C–H 
bonds in propane are activated at AlIII sites, forming an AlIV-C3H7 species. Initially, the C–H bonds in 
propane are broken by proton abstraction by surface oxygen atoms, leading to bonding of propyl with 
surface aluminum to form the AlIV-C3H7 surface species. In the second step, β-hydrogen is eliminated from 
AlIV-C3H7, yielding H2 and propylene products, as illustrated in Scheme 1. Therefore, these 1-propylidene, 2-
propylidene and 1-propylidyne formed on Al2O3 are the main precursor triggering coke species. A 
comparison of the product distribution in PDH for Al2O3 samples reveals that the primary gaseous products 
are propylene, ethylene, and methane resulting from cracking [Supplementary Figure 7]. With increasing 
reaction time, the content of ethylene remains higher than that of methane and does not show a significant 
decline, suggesting that ethylene formed from cracking does not undergo further reactions and is not the 
key species triggering coke formation. Instead, the formation of coke precursors is due to the deep 
dehydrogenation of propyl species at strong Lewis acid sites [Scheme 1].

Furthermore, the FTIR spectrum of Al2O3 also exhibits absorption peaks at 1,470-1,600 cm-1 and 2,100-
2,400 cm-1 [Figure 1A]. The peaks at 1,470 and 1,545 cm-1 are attributed to the C=C stretching vibrations of 
monocyclic and bicyclic aromatic species, respectively[43-48]. The peaks at 2,190 and 2,300-2,380 cm-1 
correspond to the C≡C stretching vibration of alkynes and C=C=C stretching vibrations of dienes. With the 
increase of reaction time, the peak at 1,470 cm-1 increases first and then shows a declining trend, while the 
peak at 1,545 cm-1 gradually forms and grows. These results indicate that the coke formation pathway on the 
Al2O3 surface starts with deep dehydrogenation of propene to form propylidene and 1-propylidyne species, 
which then gradually cyclizes to form substituted monocyclic aromatic species. As the reaction intensifies, 
these monocyclic aromatic species further dehydrogenate and cyclize to form polyaromatic species 
[Scheme 2].

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202501/cs4043-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202501/cs4043-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202501/cs4043-SupplementaryMaterials.pdf
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Scheme 1. Reaction mechanism for PDH on the Al2O3 sample. PDH: Propane dehydrogenation.

Scheme 2. Formation mechanism of coke precursors on the Al2O3 sample.

Doping Sn species into alumina alters its acidity. Similar to alumina, Sn-Al2O3 only contains Lewis acid sites, 
but both its acid amount and strength are significantly higher than those of Al2O3 [Supplementary Figures 4 
and 5][49]. XPS results show that the Sn species in Sn-Al2O3 mainly exists in the form of Sn4+ [Supplementary 
Figure 8]. This is further confirmed by the absence of significant Sn species reduction peaks in H2-TPR of 
Sn-Al2O3 [Supplementary Figure 9][50]. These results indicate that the main Sn species in Sn-Al2O3 is SnOx. 
Therefore, the acidity change in the Sn-Al2O3 catalyst primarily originates from SnOx species, which show 
Lewis acidity. When pulsing propane into the Sn-Al2O3 catalyst, the absorption peaks at 1,396, 1,470, and 
1,545 cm-1 intensify [Figure 1B]. The intensities of peaks at 1,470 and 1,545 cm-1 belonging to C=C stretching 
vibrations for monocyclic and polycyclic aromatic species in Sn-Al2O3 are notably higher than those in 
Al2O3, indicating that the stronger acid strength and higher acid amount of the Sn-Al2O3 sample lead to the 
formation of more coke. Notably, the peak strength of monocyclic aromatic does not decrease with the 
formation of polycyclic aromatics, suggesting that a large amount of monocyclic aromatics forms without 
further transforming into polycyclic aromatics. Combining the coke formation mechanism on Al2O3 
[Scheme 2], polycyclic coke formation primarily originates from coke deposition on the Al2O3 support, 
while SnOx sites predominantly produce monocyclic aromatic coke precursors. Wang et al. also found that 
the introduction of SnOx species could facilitate the decarbonylation of acetone to form xylene in Sn-
HZSM-5 catalysts[51]. Hence, SnOx sites mainly catalyze the deep dehydrogenation of propane to form 
monocyclic aromatic coke precursor species [Scheme 3].

After loading Pt, its strong dehydrogenation capability significantly influences the coke deposition 
mechanism on the catalyst, warranting a discussion on the formation mechanism of coke precursors on 
Pt/Al2O3 [Figure 1C]. Compared to Al2O3 and Sn-Al2O3 catalysts [Figure 1A and B], the intensity of δs (C–H) 
absorption peaks for propylidene and propyl groups at 1,372-1,450 cm-1, and δm (C–H) absorption peaks for 
olefins at 1,305 cm-1 significantly increase. This indicates intense dehydrogenation reactions of C3H8 
molecules at Pt sites with strong dehydrogenation ability, forming a large amount of propyl and olefin 
species. The intensity of peak at 2,104-2,190 cm-1 increases with the intensification of the peaks at 1,305-
1,396 cm-1. Hence, further dehydrogenation of propylidyne can form adsorbed diene or acetylene species, 
whose further cyclization can produce monocyclic aromatics. Different from the Al2O3 and Sn-Al2O3 
catalysts [Figure 1A and B], the Pt/Al2O3 catalyst rapidly forms a strong vibration peak at 1,515 cm-1 at the 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202501/cs4043-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202501/cs4043-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202501/cs4043-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202501/cs4043-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202501/cs4043-SupplementaryMaterials.pdf
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Scheme 3. Formation mechanism of coke precursors on the Sn-Al2O3 sample.

reaction onset, situated between the peak of polycyclic aromatics at 1,545 cm-1 and the peak of monocyclic 
aromatics at 1,470 cm-1. This peak is attributed to the cycloalkyl benzene coke precursors[52,53]. As the peak 
areas of monocyclic aromatics at 1,470 cm-1 and cycloalkyl benzene species at 1,515 cm-1 decrease, the 
polycyclic aromatic peak at 1,575 increases, suggesting that the polycyclic aromatic coke precursors are 
primarily derived from the condensation of monocyclic aromatic and cycloalkyl benzene species.

Interestingly, an absorption peak at ~1,737 cm-1 is observed in the Pt/Al2O3 [Figure 1C], which is attributed 
to the ν (C–O) vibration[54,55]. Concurrently, a significant negative peak appears at 3,600-3,800 cm-1, 
indicating that the hydroxyl groups in the alumina are occupied. These results suggest that the C in coke 
precursors is linked to O in Al2O3, forming C–O bonds. Airaksinen et al. and Finocchio et al. also reported 
the presence of acetone-like species in coke precursors on alumina, which further confirms the formation of 
the C–O bonds in our study[56,57]. Comparative analysis of the change in these C–O species absorption peaks 
during the reaction indicates that the concentration of C–O species initially increases rapidly with reaction 
time, then gradually decreases until it completely vanishes. Notably, the absorption peak of C–O species was 
only observed in the FTIR difference spectra of Pt/Al2O3 sample, not in Al2O3 or Sn-Al2O3 
[Figure 1A and B], suggesting a close correlation between the formation of C–O species and Pt active sites in 
Pt/Al2O3 [Scheme 4A]. Given the strong dehydrogenation capability of Pt active sites, the dynamic changes 
of C–O species are highly correlated with Pt sites.

Another significant difference between Pt/Al2O3 [Figure 1C] and Al2O3 [Figure 1A] or Sn-Al2O3 [Figure 1B] 
is the strong absorption peak at 2,020-2,030 cm-1, which is attributed to Pt–H species or active hydrogen 
species produced by the activation of hydrogen on Pt sites[58]. The large amount of hydrogen spillover 
desorption peaks at 200-500 °C in H2-TPD for Pt/Al2O3 further confirms substantial active hydrogen species 
[Supplementary Figure 10]. There is a correlation between active hydrogen species and C–O species 
absorption peaks. The formation of active hydrogen species is accompanied by the appearance of C–O 
species. As the C–O species decrease, the content of active hydrogen species also diminishes, and the 
corresponding inverted peak at the surface hydroxyl groups becomes significantly smaller. This indicates 
that active hydrogen spills over from Pt sites to the support surface, reacting with C–O species to form 
hydrocarbon molecules, thereby restoring the alumina hydroxyl groups [Scheme 4B].

Based on scanning transmission electron microscopy (STEM) [Supplementary Figure 3] and CO adsorption 
IR spectroscopy [Supplementary Figure 11] results, the geometric effect of Sn leads to a smaller size of metal 
clusters in the Pt/Sn-Al2O3 catalyst (1.51 nm) compared to Pt/Al2O3 (1.74 nm). XPS and H2-TPR results 
confirm that Pt species in the Pt/Sn-Al2O3 catalyst exist in a lower coordination number and a partially 
oxidized state [Supplementary Figures 9 and 12, Supplementary Table 2][59-61]. Correspondingly, the main Sn 
species in the Pt/Sn-Al2O3 catalyst consist of Sn4+ (495.5, 487.0 eV) accounting for 74.0%, Sn2+ (494.6, 
486.2 eV) for 4.4%, and Sn0 (492.7, 484.4 eV) for 21.5% [Supplementary Figure 8, Supplementary Table 3]. 
In this case, the interface structure between Pt and Sn species primarily comprises the structure of Pt-SnOx-
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Scheme 4. (A) The deep dehydrogenation of propane at the oxygen species of Al2O3 support in Pt/Al2O3 sample; (B) Formation 
mechanism of the coke precursor and dehydrogenation mechanism on Pt/Al2O3 in PDH, the red ball and line represent the active 
hydrogen species; (C) Formation mechanism of the coke precursor and dehydrogenation mechanism on the Pt/Sn-Al2O3 catalyst. PDH: 
Propane dehydrogenation.

Al2O3, which agrees with the previous results[62-65]. The introduction of Sn effectively regulates the geometric 
and electronic structures of Pt[66], affecting the formation of coke precursors. As shown in the FTIR 
spectrum of the Pt/Sn-Al2O3 catalyst [Figure 1D], the vibration peak of olefins at 1,470-1,600 cm-1 is 
observed, along with absorption peaks for monocyclic and polyaromatic species. There is a dynamic 
transition from monocyclic to bicyclic naphthalene species. Interestingly, the Pt/Sn-Al2O3 catalyst does not 
exhibit the absorption peak at 1,575 cm-1, and the overall intensity of its IR absorption peaks is weaker than 
that of Pt/Al2O3. This suggests that the reactivity of Pt/Sn-Al2O3 is milder, focusing primarily on monocyclic 
and bicyclic aromatic species rather than the more heavily cyclized polycyclic aromatic hydrocarbons.

The 2,020-2,031 cm-1 region is attributed to the vibrational peaks resulting from the interaction between 
hydrogen and Pt. Compared to the Pt/Al2O3 catalyst [Figure 1C], the peak of Pt–H species in the Pt/Sn-
Al2O3 catalyst is mainly concentrated at a lower wavenumber ~2,020 cm-1, with a lower peak intensity 
[Figure 1D]. Combined with H2-TPD results [Supplementary Figure 10], the desorption peak area of 
hydrogen spillover of the Pt/Sn-Al2O3 catalyst is significantly lower than that of the Pt/Al2O3 catalyst. This 
indicates that the reduction in active hydrogen content due to hydrogen spillover leads to a decrease in peak 
intensity at the 2,020-2,031 cm-1. In H2-TPD [Supplementary Figure 10], hydrogen spillover occurs at higher 
temperatures, which are energy-intensive. According to FTIR analysis of vibrational characteristics, the 
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peak at 2,031 cm-1 is assigned to active hydrogen species, while the peak at 2,020 cm-1 is attributed to Pt–H 
species [Figure 1C and D]. The Pt–H species are an efficient active site for PDH. Correspondingly, there is a 
slight recovery in the hydroxyl region (3,200-4,000 cm-1) after a reduction in hydroxyl coverage, but this 
recovery is much less significant than in Pt/Al2O3. This further indicates that SnOx species in the Pt/Sn-
Al2O3 catalyst regulate Pt to suppress the formation of active hydrogen. Compared to other catalysts, SnOx 
species promote the formation of Pt–H bonds, establishing efficient active sites for PDH to propylene 
[Scheme 4C].

Key factors affecting coke deposition of Al2O3 supported PtSn catalysts
Structures of Pt active phase
The coke formation mechanism on Pt active sites is proposed, but various Pt active sites are observed in in-
situ FTIR spectra of CO adsorption which can affect the formation of coke precursors. For instance, the 
linear adsorption peaks at 2,060 and 2,040 cm-1 correspond to high-coordination and low-coordination Pt 
species, respectively, and the bridge adsorption peak at 1,800 cm-1 [Supplementary Figure 11]. To investigate 
the influence of different Pt active phase structures on coke deposition, we designed multiple pulse 
experiments to observe the correlation between coke precursor generation and the structure of Pt active 
sites. After pulsing propane at 600 °C, the Pt/Sn-Al2O3 catalyst was cooled to 30 °C for CO adsorption 
analysis. Following complete CO desorption, the temperature was raised back to 600 °C for a new round of 
propane pulsing. The IR spectra after 1-10 rounds of propane pulsing [Figure 2] and in-situ FTIR spectra of 
CO adsorption after rounds 1-2 and 9-10 [Figure 3] were recorded.

Figure 2D shows that with increasing pulse numbers, the intensity of the absorption peaks at 1,470 and 
1,545 cm-1 gradually rises, indicating the formation of monocyclic and polyaromatic hydrocarbon species. 
At the same time, the stretching vibrations of aromatic substituents or unsaturated hydrocarbons at 2,300-
2,380 cm-1 (C=C=C) and the stretching vibration of unsaturated hydrocarbons at 2,190 cm-1 (C≡C) slightly 
increase [Figure 2C], attributed to aromatic substituents and unsaturated hydrocarbon species formed by 
deep dehydrogenation. This indicates that with the increasing number of pulses, monocyclic and polycyclic 
aromatic hydrocarbon precursors with alkyl substituents continuously form and deposit on the Pt sites. As 
the formation of coke precursor species, the gradual decrease in intensity within the 3,767-3,784 cm-1 
hydroxyl region suggests that the surface hydroxyl groups of supports are covered by coke precursors 
[Figure 2A]. Combining the above analysis, a positive correlation is observed between the number of 
propane pulsing cycles and the content of aromatic species. The reduction in hydroxyl content suggests that 
coke deposition occurs not only at Pt sites but also on the surface of the Al2O3 support.

The intriguing observation from Figure 2D is that the rate of coke deposition during the first 1-2 pulsing 
cycles is significantly higher than during the 9-10 cycles. This demonstrates a shift in the coke deposition 
sites. Therefore, we attempt to elucidate the relationship between coke precursors and various Pt sites using 
in-situ FTIR spectra of CO adsorption [Figure 3]; the intensity of CO adsorption peaks on Pt active sites 
decreases as the number of pulsing cycles grows. This suggests that coke precursors poison parts of Pt sites. 
The linear CO adsorption peak for fresh catalysts is predominantly at 2,060 cm-1, shifting mainly to 
2,040 cm-1 after the first pulsing cycle, with the emergence of an adsorption peak at 1,925 cm-1 attributed to 
CO adsorption on ultra-small Pt clusters[61]. This indicates that surface Pt sites with saturated coordination 
are firstly poisoned, while smaller-size and low-coordinated Pt sites (edge and corner sites of metal clusters) 
are not covered by coke deposition. After several pulsing cycles, the CO adsorption peaks are primarily at 
2,040 and 1,925 cm-1. It is worth noting that the peak at 2,060 cm-1 completely disappeared, while the peaks 
at 2,040 and 1,925 cm-1 contain no significant changes after the 9-10th pulsing cycles. In this case, the Pt 
sites in catalyst mainly consist of small-size and low-coordination Pt active phase, which is unaffected by 
coke precursors.
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Figure 2. FTIR differential spectra of Pt/Sn-Al2O3 at 600 °C with different numbers of pulses of propane. (A) 4,000-3,200 cm-1; (B) 
3,200-2,700 cm-1; (C) 2,700-1,800 cm-1; (D) 1,800-1,200 cm-1. The pulse experiments were carried out at 600 °C by pulses of pure 
propane (pulse volume = 0.50 cm3 STP) to the in situ cell, which was maintained under Ar flow (30 mL/min) between two successive 
pulses. The yellow dashed line represents the adsorption peak, while the white dashed line represents the inverted peak caused by the 
occupation of the adsorption site. FTIR: Fourier transform infrared spectroscopy; STP: standard temperature and pressure.

Figure 3. FTIR differential spectra of CO adsorption on the Pt/Sn-Al2O3 sample after pulse propane and reaction completion. After each 
pulse experiment, the sample was cooled to 30 °C, and the spectrum was collected after adsorption and desorption of CO. The 
temperature was raised to 600 °C for the next propane pulse experiment. The CO adsorption FTIR spectra of periods 1-2 and 9-10 were 
collected. FTIR: Fourier transform infrared spectroscopy.

This can also be confirmed by the correlation between PDH performance and coke deposition behavior of 
different Pt clusters [Figure 4]. The initial conversion of propane over the Pt/Al2O3 catalyst is 74.5%, which 
rapidly decreases to 49.2% after 1 h of reaction, a decline of 25.3% [Figure 4A]. This rapid decrease in 
activity is due to the extensive coke formed on surface Pt sites with saturated coordination [Figure 3, 
Supplementary Figure 11]. As coke extensively forms and covers these surface Pt sites with saturated 
coordination, the decreased rate of propane conversion slows down significantly after 1 h, indicating that 
the left Pt active sites have a strong capability to inhibit coke formation. These Pt active sites exist as low-
coordination Pt sites with ultra-small size [Figure 3, Supplementary Figure 11]. As for the Pt/Sn-Al2O3 
catalyst, the Sn can regulate Pt species to form more low-coordination Pt sites with ultra-small size, 
resulting in a slower deactivation of the Pt/Sn-Al2O3 catalyst. The initial conversion decreases from 33.2% to 
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Figure 4. Product distribution of different catalysts as a function of time on stream during PDH for (A) Pt/Al2O3 and (B) Pt/Sn-Al2O3 
samples. Dehydrogenation conditions: mcatalyst = 100 mg, C3H8/H2 = 1/1 (2.3 mL/min of propane and 2.3 mL/min of H2), Treduction = 
500 °C, Treaction = 600 °C, GHSV = 1,000. PDH: Propane dehydrogenation; GHSV: gas hourly space velocity.

22.5%, a reduction of only 10.7% [Figure 4B]. However, due to the electronic regulation of Pt by Sn, the 
conversion of Pt/Sn-Al2O3 catalyst is also reduced, which is significantly lower than the thermodynamic 
equilibrium conversion (~52%) under the same reaction condition [Supplementary Figure 7]. To further 
investigate the stability of the catalyst, a 100 h of PDH reaction was conducted for the Pt/Sn-Al2O3 catalyst 
[Supplementary Figure 13]. The propane conversion of Pt/Sn-Al2O3 gradually decreases as the reaction 
progresses, stabilizing at ~8% after approximately 50 h. Integrating these findings, the continued increase in 
coke deposition precursors and the sustained decrease in hydroxyl content, despite Pt sites no longer being 
affected, indicate that the carrier surface is the primary site of coke deposition.

Al2O3 carriers
Figure 5 shows the TG and corresponding differential TG (DTG) curves of catalysts after 3 h of PDH 
reaction. The degrees of weight loss in various catalysts increase in the order of Al2O3 (1.4%) < Sn-Al2O3 
(1.9%) < Pt/Sn-Al2O3 (5.4%) < Pt/Al2O3 (18.5%) [Figure 5A]. The first weight loss peak within the 300-450 °C 
is attributed to coke at metal sites, while the peak within the 450-600 °C corresponds to coke on Al2O3 
supports [Figure 5B]. Despite the lower coke content on the Al2O3, a peak in the high-temperature region 
suggests the formation of coke on the Al2O3 support. For the Sn-Al2O3 catalyst, weight loss is observed in 
both high- and low-temperature regions, with the high-temperature peak mainly due to coke on the support 
surface, and the low-temperature peak associated with monocyclic aromatic coke on SnOx species, as 
indicated by above FTIR analysis [Figure 1B]. The peaks for the Pt/Al2O3 catalyst are predominantly in the 
low-temperature region, suggesting that extensive coke deposition occurs on the Pt metal sites. The Pt/Sn-
Al2O3 sample shows significant weight loss not only in the 300-400 °C range but also between 500-600 °C, 
confirming substantial coke accumulation on the Pt/Sn-Al2O3 support. Notably, the coke content on the 
pure Al2O3 sample is low, whereas the significantly severe coke deposition formed on the Al2O3 support in 
the Pt/Sn-Al2O3 under the same conditions, and there are distinct differences in the weight loss 
temperatures. These results further confirm that the introduction of Pt enhances coke deposition on the 
alumina support due to the synergistic effect of the dehydrogenation function of Pt and the acidity of the 
alumina support.
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Figure 5. (A) TG profiles under air atmosphere and (B) corresponding DTG profiles of spent Al2O 3, Sn-Al2O 3, Pt/Al2O3 and Pt/Sn-Al2O 3. 
The inset is the enlarged profiles at 250-600 °C. TG: Thermogravimetric; DTG: differential thermogravimetric.

The Raman spectroscopy was performed to further investigate the coke properties on various sites. 
Generally, the graphitic degree of coke can be reflected by the ID1/IG ratio (height ratio of D1 and G bands), 
with a smaller value indicating a higher graphitic degree [Supplementary Figure 14][67]. The ID1/IG ratios for 
Al2O3, Sn-Al2O3, Pt/Al2O3, Pt/Sn-Al2O3 after 3.3 h of reaction, and Pt/Sn-Al2O3 after 100 h of reaction are 
0.96, 0.98, 0.71, 0.89, and 0.72, respectively. The ID1/IG ratios for Al2O3 and Sn-Al2O3 are significantly higher 
than those for the Pt-based catalysts. In addition, the H/C (mol ratio) values from elemental analysis in 
Supplementary Table 4 show that Al2O3 (15.85) and Sn-Al2O3 (19.59) have higher H/C ratios than the Pt-
based catalysts (< 3.96), indicating higher hydrogen content in coke species. This suggests less graphitic coke 
on Al2O3 and Sn-Al2O3 than Pt/Al2O3 and Pt/Sn-Al2O3.

Confocal fluorescence microscopy was employed to detect the non-graphitized coke on the catalyst after 
reactions [Supplementary Figure 15]. The significantly higher fluorescence intensity for Al2O3 and Sn-Al2O3 
than Pt-based catalysts indicates their lower graphitic degree, which agrees with the Raman result. As shown 
in the confocal fluorescence spectrum [Supplementary Figure 15F], the peaks located at 421-481, 486-556, 
561-646 and 651-736 nm are attributed to the benzene, naphthalene, anthracene and phenanthrene, 
benzophenanthrene and triphenylene, and coronene. The types of coke on Al2O3 and Sn-Al2O3 are similar. 
Interestingly, the Sn-Al2O3 sample has a higher content of benzene species than other samples, indicating 
that SnOx sites are more prone to forming benzene species, which is consistent with the above FTIR results. 
The Pt/Al2O3 and Pt/Sn-Al2O3-100h samples did not show polycyclic coke species under fluorescence 
excitation, indicating that their coke species are mainly graphitized coke. These results suggest that the coke 
on Al2O3 and Sn-Al2O3 catalysts has a lower graphitic degree, compared with Pt-based catalysts.

To further explore the relationship between the Pt active phase, support acidity, and coke deposition on the 
support surface, Figure 6 presents the IR difference spectra after extensive isotope exchange reactions with 
H/D followed by pulsing with 500 Pa of propane for Al2O3 samples. As the reaction time increases, the 
intensity of the absorption peaks at 1,457-1,608 cm-1 gradually increases, indicating the formation of coke 
precursor species. Concurrently, the 2,400-2,800 cm-1 region, attributed to O–D stretching vibrations, shows 
a decreasing trend, while the 3,200-4,000 cm-1 region, corresponding to O–H stretching vibrations, tends to 
increase. This suggests that the O–D groups on the alumina support participate in the dehydrogenation of 
reactant molecules, leading to the formation of coke. Consequently, D atoms on the support surface are 
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Figure 6. FTIR differential spectra following propane pulse adsorption for Al2O3 after D2O replacement. The pulse experiments were 
carried out at 600 °C by pulses of pure propane (pulse volume = 0.50 cm3 STP) to the in situ cell at Ar (30 mL/min) atmosphere. FTIR: 
Fourier transform infrared spectroscopy; STP: standard temperature and pressure.

replaced by H, forming O–H. These data indicate that deep dehydrogenation and cyclization to form 
aromatic coke precursors occur on the Al2O3 surface, further confirming that the support contributes to the 
formation of coke precursors. In addition, the deactivation constant for the catalysts shows that the 
deactivation constant of Al2O3 is slightly higher than that of the catalysts containing Pt [Supplementary 
Table 5]. This indicates that the active sites on Al2O3 can accumulate coke, leading to catalyst deactivation.

The effect of hydrogen co-feed
It is well known that the introduction of H2 can suppress the coke deposits in PDH. Therefore, we pulsed 
pure propane or C3H8/H2 mixture (volume ratio = 1:1) (pulse volume = 0.50 cm3 STP) to the in situ cell 
under Ar flow (30 mL/min), and continuously recorded FTIR spectra for 5 min. Figure 7 presents a 
comparative FTIR difference spectrum of propane and a propane-hydrogen gas mixture, further exploring 
the impact of H2 on the formation of coke precursor species on the Pt/Sn-Al2O3 catalyst. The absorption 
peaks attributed to aromatic hydrocarbons ν (C=C) in 1,470-1,600 cm-1 show a significant decrease in 
intensity [Figure 7B and D], indicating that the introduction of H2 effectively inhibits the formation of 
aromatic and unsaturated hydrocarbons. Additionally, an observation of the νm (C–H) vibrational peak in 
the aromatic region of 3,050-3,140 cm-1 further suggests that the aromatic species are dominated by a higher 
H/C ratio [Figure 7A and C]. The introduction of H2 reduces the content and changes the types of coke 
precursor species.

In Supplementary Figure 16, in-situ FTIR spectra of CO adsorption were utilized to investigate the effect of 
feed composition on Pt sites. The area of the CO adsorption peak at Pt sites in the mixed-feed sample 
exhibits a lesser decline compared to the propane-only feed, indicating that the presence of H2 inhibits the 
poisoning of Pt sites by coke deposition. In the mass spectrometry (MS) analysis presented in Figure 7C and 
D, a significant amount of propylene desorption is detected in the MS when C3H8 is fed alone, coupled with 
an increase in the intensity of the coke deposition IR peaks, suggesting that deep dehydrogenation on the 
catalyst leads to coke formation and poisons the Pt sites. Conversely, when the mixed feed is analyzed, a 
higher content of hydrogenolysis product CH4 is detected, along with a decrease in the intensity of the coke 
IR peaks, indicating that the coke precursor species on the Pt sites undergo hydrogenolysis, thereby 
inhibiting the poisoning of Pt sites by coke. The introduction of hydrogen effectively controls and adjusts 
the content and types of coke precursor species while also preventing the poisoning of Pt sites by coke.
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Figure 7. FTIR differential spectra following (A and B) pure C3H8 and (C and D) C3H8/H2 mixture (volume ratio = 1:1) pulse adsorption 
for Pt/Sn-Al2O 3, and corresponding mass spectrum of (E) pure C3H8 and (F) C3H8/H2 mixture pulse. The pulse experiments were 
carried out at 600 °C by pulses of pure propane and C3H8/H2 mixture (pulse volume = 0.50 cm3 STP) to the in situ cell at Ar 
(30 mL/min) atmosphere. The yellow dashed line represents the adsorption peak. FTIR: Fourier transform infrared spectroscopy; STP: 
standard temperature and pressure.

CONCLUSIONS
The formation mechanisms of coke at Al2O3, Sn, Pt and Pt-Sn sites of Al2O3 supported PtSn catalysts in 
PDH are clarified. Compared to Pt and Pt-Sn sites, the coke initiation capability of Al2O3 and Sn is 
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significantly weaker. The tri-coordinated aluminum with Lewis acidity in Al2O3 is the primary site for coke 
formation, where propane undergoes excessive dehydrogenation to form propylidene and propylidyne, 
which further cyclize to form monocyclic and polycyclic aromatic coke precursors. The coke precursors at 
SnOx sites differ from those on Al2O3, where the propyl species only forms monocyclic aromatic coke 
precursors after excessive dehydrogenation. For the Pt/Sn-Al2O3 catalyst, the strong dehydrogenation 
function and the interaction between Pt and supports trigger the complex coke formation mechanism. The 
coke formation is mainly ascribed to the following three factors: the structures of Pt-Sn clusters, active 
hydrogen species, Al2O3 support under the influence of active hydrogen species. The surface Pt sites with 
saturated coordination are prone to coke deposition, while the low-coordination Pt sites with ultra-small 
size are found to be highly resistant to coke formation in the PDH reaction. The strong dehydrogenation 
ability of Pt and the active hydrogen species play a vital role in the formation of coke precursors on Al2O3. 
Hydrogen co-feed also affects the formation of coke precursor. Hydrogen co-feed significantly inhibits the 
formation of coke precursors and leads to the formation of aromatic hydrocarbon coke precursors with 
higher H/C ratios. This work can provide the theoretical basis for the development of PDH catalysts with 
excellent coking resistance performance, and the established research method of coke is expected to be 
applied to more catalytic research fields.
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