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Abstract
In order to understand the charging and discharging processes of sodium-ion batteries, we are interested in the 
relationship between the size of sodium clusters inserted into the hard carbon anode and the solid-state 23Na NMR 
chemical shifts. In this study, we investigated the predictability of the size dependence of 23Na NMR shielding 
constants by SchNet, a deep learning model that uses the distance between Na atoms without graph connection 
information. The data set required for training the neural network was constructed by density functional theory 
(DFT) calculations. This study shows that the neural network model, which only used structural data, achieved 
comparable accuracy in predicting the shielding constant to the Lasso model, which utilized gross orbital 
population predicted from DFT calculations. Moreover, by introducing a penalty term to the neural network's loss 
function, the neural network was able to reproduce the skewed distribution of the shielding constant without 
modifying its architecture.
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INTRODUCTION
Lithium-ion batteries (LIBs) are essential and used in various devices. The demand for rechargeable 
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batteries is expected to increase as electric vehicles become common nowadays; however, owing to the risk 
of instability in the supply of raw materials, it is crucial to develop battery technologies that can be applied 
as an alternative to LIBs.

The abundance of sodium in the earth’s crust is 23,600 ppm, which is significantly higher than that of 
lithium (20 ppm)[1], making sodium-ion batteries (SIBs) an attractive alternative to LIBs. Hard carbon (HC) 
exhibits potential for application in the SIB anode. The charge-discharge process needs to be further 
explored[2,3]. Therefore, we used nuclear magnetic resonance (NMR) spectroscopy, one of the primary 
techniques to obtain information on the molecular structure of compounds, to improve the performance of 
HC anodes. The effect of HC preparation conditions on the amount of sodium inserted into HC anodes 
using solid 23Na NMR chemical shifts has been experimentally analyzed[2-4]. The correlation of NMR 
chemical shifts of sodium clusters based on pore size and structure is a relevant technique to evaluate the 
size distribution of closed pores in HCs and other amorphous carbon materials. However, with regard to 
the computational cost, it becomes difficult to predict NMR chemical shifts of large sodium clusters based 
on the density functional theory (DFT).

In recent years, graph convolutional networks (GCNs) have been developed to predict the physical 
properties of various molecules by considering the atomic information on the vicinity of the bond based on 
convolution[4]. For example, NMR chemical shifts of small molecules, e.g., 1H and 13C, can be predicted 
using the message passing neural network, which is an enhanced version of the GCN model[5]. However, it 
is difficult to use the model that utilizes graphical information for sodium clusters since the graph 
information is not sufficient for them. On the contrary, SchNet[6,7] proposed by Schütt et al., is a deep 
learning model that uses the distance between atoms instead of the connection information of the graph.

This study investigates the possibility of using SchNet to predict the shielding constant of 23Na NMR based 
on the structure of sodium clusters. First, a baseline model is created to verify the performance of the 
SchNet neural network model using Lasso regression, in which coordination numbers are learned as 
structural descriptors. The results of the DFT calculations are added to the coordination numbers as 
descriptors of the gross population to train the Lasso regression. Although SchNet has generally been used 
to predict molecular energies and forces on nuclei, formally, it can also be adapted to cluster models. 
Therefore, in this study, we use SchNet to create a model that predicts NMR shielding constants from the 
structure of Na clusters and evaluate the performance of this model by comparing it to Lasso regression.

MACHINE LEARNING
Data set
The second-order bond length distribution algorithm (S-BLDA)[8], an algorithm based on bond length 
distribution analysis, was used to generate random Nan (n = 14, 16, ..., 28, 30, 40) cluster structures. 
Parameters of S-BLDA were set to μ1 = 3.50 Å, μ2 = 3.60 Å, and σ1 = σ2 = 0.1 Å. S-BLDA creates clusters by 
adding one atom to the current structure each time. Atoms are added so that the distribution of the distance 
between each atom and its neighbors and the distribution of the distance between each atom and its next 
neighbor can approximate a normal distribution (mean μ1, standard deviation σ1) and a normal distribution 
(mean μ2, standard deviation σ2), respectively. These parameters were determined to reproduce the 
distribution of distances between atoms in the clusters that were structurally optimized by DFT calculations.

The NMR isotropic shielding constant σiso for the generated structures was determined based on DFT 
calculations using Gaussian16[9]. B3LYP[10,11] and 6-31G(d) were used for a functional and a basis function, 
respectively. The electronic wavefunction was described by an open-shell singlet state, and structures with 
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eigenvalues of the spin operator S2 less than 0.05 were used to avoid spin contamination, and the structure 
generation was repeated until 200 structures were obtained for each n. Nan (n = 14, 16, ..., 26), Nan (n = 28, 
30), and Nan (n = 40) were used as the training, validation, and test sets. The neural network was trained to 
minimize the loss function of the validation set.

Lasso regression
With the atomic shielding constant as the objective variable[12], Lasso regression was used. The running 
coordination number and/or gross orbital population were used as the explanatory variables. The running 
coordination number is the number of atoms located from the center of an atom to the radius rmax. The delta 
function used to calculate the running coordination number is approximated by a normally distributed 
density function with σ = 0.01 Å. Therefore, the running coordination number can be a fraction. The values 
used for rmax were rmax = 3.1, 3.2, ..., 12.0 Å. These explanatory variables are highly correlated, and we expect 
that the use of Lasso regression will improve model stability and robustness by automatically performing 
feature selection, providing a sparse representation of the model and preventing over-training and 
multicollinearity.

The functions, 1S, 2S, 2PX, 2PY, 2PZ, 3S, 3PX, 3PY, 3PZ, 4S, 4PX, 4PY, 4PZ, 5DXX, 5DYY, 5DZZ, 5DXY, 5DXZ, and 
5DYZ, in the 6-31G(d) basis were used as the gross orbital population. The explanatory variables were 
standardized such that the mean value of the shielding constant of the training set and the variance were 0 
and 1, respectively. The α parameters of Lasso regression were each fitted to the training set with a model 
that had α = 10-5, 10-4,...,104, 105 and selected to minimize the RMSE against the validation set.

Neural network
SchNet, as implemented in SchNetPack 1.0.0[13], was used. It predicts the properties of molecules by 
combining the contributions of individual atoms; however, instead of combining contributions, this study 
uses the value of the contribution of each atom to predict the value of the atomic shielding constant. The 
“Number of features to describe atomic environments”, “Number of filters used in continuous-filter 
convolution”, and “Number of Gaussian functions used to expand atomic distance” were set to SchNet 
default values of 128, 128, and 25, respectively. The “Number of interaction blocks” and “Cutoff radii” were 
2 and 6.0 Å, respectively. Shifted Softplus was used as the activation function for hidden NNs, and Adam 
optimizer[14] was used at a learning rate of 0.01. The mini-batch size was set to 100. A maximum of 2,000 
epochs of training was carried out. As results significantly depend on the initial weights of the neural 
network, twenty different seeds to generate pseudo-random numbers were used, and the model with the 
best performance against validation was selected.

Loss function
Shielding constants exhibited a generalized logistic distribution irrespective of the number of atoms in the 
clusters [Figure 1]. As this distribution is skewed to the left, if neural networks were trained with the mean 
squared error (MSE) as a loss function, the neural networks would focus on low values and neglect values 
around the most frequent value. Therefore, the shielding constant was used for the cumulative distribution 
function (CDF) of the generalized logistic distribution and the percent point function of the standard 
normal distribution. In other words, the probability distribution was transformed by adapting the inverse 
CDF of the standard normal distribution to the CDF of the generalized logistic distribution.

The generalized logistic distribution used parameters fitted to the distribution of shielding constants in the 
training set.
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Figure 1. Distribution of the shielding constant σiso for cluster size n and the fitting curve of the generalized logistic distribution.

The loss function was set as follows, with a term added to the MSE to reproduce the distribution.

where y is the shielding constant calculated using the DFT and  is the shielding constant predicted by the 

neural network, . In addition,  are the values of shielding constants sorted in the mini-batch. In this 
study, a = 3 was used.

In order to reproduce the shape of the distribution, it is necessary to output values corresponding to the tails 
of the distribution. However, since it is difficult to predict these values accurately, the predicted values for 
some samples may have large errors, which may worsen the RMSE. Additionally, when minimizing RMSE, 
samples that show values at the base of the distribution tend to be less important because they are few 
relative to other samples. Thus, there is a trade-off between reproducing the shape of the distribution and 
RMSE.

RESULTS AND DISCUSSION
Lasso regression
We confirmed the relationship between the shielding constant and the gross orbital population. Regarding 
relations to the shielding constant, 3S was positively correlated, and 3P was negatively correlated [Figure 2A 
and B]. In contrast, 4S, which constitutes the 3s orbital, and 4P, which constitutes the 3p orbital, as well as 
3S and 3P, show no correlation with the shielding constant [Figure 2C and D]. Based on the relation 
between the coordination number and the gross orbital population [Figure 2E and F], when the 
coordination number is small, only 3S orbitals are found. When the coordination number starts to increase, 
the number of 3S orbitals decreases while that of 3P increases. However, when the coordination number 
increases further, the number of 3S starts to increase as well. In other words, the atoms near the surface have 
mainly 3S orbitals with high shielding constants; the interior atoms have both 3S and 3P orbitals with large 
shielding constants, and the atoms in between the coordination numbers tend to have 3P orbitals with 
smaller shielding constants.

We predicted the shielding constant using Lasso regression with the coordination number and gross orbital 
population as the explanatory variables [Figure 3]. The RMSE was 37.6 ppm when using the coordination 
number [Figure 3A], and it was 35.1 ppm when using the gross orbital population [Figure 3C]. As the NMR 
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Figure 2. Relation between the gross orbital population (GOP). (A) 3S; (B) 3PX; (C) 4S; and (D) 4PX and the shielding constant, and 
the relation between the coordination number (rmax = 4.0 Å) and GOP; (E) 3S and (F) 3PX.

shielding constant is strongly influenced by the electrons in the s orbitals, it is assumed that these results
reflect that the gross orbital population is effective in predicting the shielding constant. However, the
coordination number can be calculated only from the structure, whereas the gross orbital population can be
obtained only using DFT calculation. The RMSE of the model using these two types of explanatory variables
simultaneously was 34.9 ppm, which hardly differed from that using the gross orbital population alone.
Next, by transforming the shielding constant to a normal distribution, the peak position shifted to the right
and approached the distribution peak provided by the DFT analysis. However, the RMSE deteriorated
considerably. It is assumed that this is because the machine learning model learns to minimize the error in
the shielding constant after the conversion by converting the shielding constant to a normal distribution.

From the analysis of the gross orbital population, the atoms near the surface have mainly 3S orbitals with
high shielding constants, and the atoms in the interior have both 3S and 3P orbitals with large shielding
constants; the atoms with coordination numbers in between tend to have 3P orbitals with small shielding
constants.
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Figure 3. Distribution of the shielding constants predicted by Lasso, and scatter plots of the shielding constants predicted by Lasso vs. 
those calculated by DFT for the test set Na40. To handle shielding constants that follow a generalized logistic distribution, in (B) and 
(D), the shielding constants are once transformed to a normal distribution to train the Lasso model. When making predictions, the 
prediction values of the Lasso model were back-transformed into shielding constants based on the original generalized logistic 
distribution. On the other hand, in (A) and (C), the shielding constants are predicted directly. In terms of the explanatory variables, (A) 
and (B) use the coordination numbers calculated from the structure, and (C) and (D) use the gross orbital population calculated by DFT 
calculations.

Neural network
The neural network was trained, and its prediction performance was verified for the test set. First, the
distribution of shielding constants calculated using the DFT for the test set Na40 [Figure 4A] peaks around
600 ppm, which is similar to a generalized logistic distribution as illustrated by the Quantile-Quantile plot
(Q-Q plot) [Figure 4B].
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Figure 4. Q-Q plot for (A) the distribution of shielding constants and (B) generalized logistic distribution for the test set Na40.

The predicted values of the neural network were compared with the DFT-calculated values [Figure 5]. The 
model trained with MSE as a loss function [Figure 5A and C] reproduced the average value but failed to 
output the most frequent value and shielding constant below 500 ppm. On the contrary, the loss function of 
Equation (1), introduced in this study [Figure 5B and D], deteriorated the root mean square error (RMSE); 
however, it reproduced the shape of the distribution of the shielding constant, and the position of the peak 
shifted to the right. No significant change was observed in the distribution of the predicted values when the 
shielding constant was converted to generate a normal distribution.

There were issues in both the Lasso regression and neural network models, as the peaks in the distribution 
of the predicted shielding constant did not coincide with those given by DFT. Therefore, the shielding 
constants were converted to a normal distribution, and the shielding constants were predicted after the 
conversion. As a result, in the Lasso regression model, the peak position shifted to the right and approached 
the distribution peak given by DFT. However, the peak position did not shift in the neural network model, 
showing that it had no effect.

Figure 3A and B predict shielding constants by Lasso regression using only the simplest descriptor, 
coordination numbers. Figure 5A-D uses SchNet to predict shielding constants from information on more 
complex structures. Comparing these results, the RMSE of Figure 5A and C is smaller than that of the Lasso 
regression, indicating that the prediction performance is improved. Moreover, Figure 3C has the smallest 
RMSE in this case. This is due to the use of the gross orbital population from the DFT calculation as the 
descriptor. However, SchNet, which predicts shielding constants from structural information alone without 
using the results of DFT calculations, succeeded in predicting RMSE comparable to the smallest RMSE 
(see Figure 5A and C).

The large RMSE of these neural networks is expected to be caused by the difficulty in predicting shielding 
constants for low values, i.e., below 500 ppm. The relationship between the shielding constants and running 
coordination number at a radius of 4.0 Å indicates that such low values of shielding constants are obtained 
for Na atoms with intermediate coordination numbers ranging from 4 to 9 [Figure 6]. The running 
coordination number represents the number of Na atoms located at radius rmax from the center of a Na atom 
as the delta function used in the calculation is approximated using a normally distributed density function 
with σ = 0.01 Å, the running coordination number can be small.
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Figure 5. Distribution of shielding constants predicted by the neural network and the scatter plot of the shielding constants predicted by 
the neural network vs. the shielding constant calculated using the DFT based on the test set Na40. Two approaches were employed for 
handling the generalized logistic distribution of shielding constants. One approach is to convert the shielding constant to a normal 
distribution before training the neural network in (C) and (D). However, before plotting, the neural network predictions are converted to 
the original generalized logistic distribution. In contrast, in (A) and (B), the shielding constants are learned directly. The other approach 
used Equation (1) as the loss function in (B) and (D). In contrast, (A) and (C) employ only MSE as the loss function.

Structures of Na20 clusters optimized by Murrell–Mottram potential [Figure 7A][15] and the particle swarm 
optimization (CALYPSO) method[16] have been reported, both possessing a Na atom with coordination 
number 12 in the center. However, structures generated using the proposed method rarely exhibit high 
coordination numbers [Figure 6]. Such an unstable cluster structure reduces the shielding constant, i.e., 
below 500 ppm. To solve this problem, the neural network can be trained using stable cluster structures as 
data are obtained using structural optimization.
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Figure 6. Relationship between the shielding constant and running coordination number at a radius of 4.0 Å for the entire data set.

Figure 7. Line plot of the structure of Na20 and the running coordination number of each atom (represented by a different colored line) 
in the structure. (A) Stable structure predicted based on Murrell-Mottram potential[15]; (B) structure generated in this study; (C) 
structure-optimized version of (B). (A) and (B) are outlier atoms with shielding constants of 368.1 and 386.4 ppm, respectively.
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One cluster structure, which includes outliers, is extracted and analyzed. The cluster structures and their 
running coordination numbers are shown in Figure 7B, where Na atoms with shielding constants of 368.1 
and 386.4 ppm are located in the range of 4-7. The cluster structures appear to include 9-10 coordinated Na 
atoms at most. The optimized cluster structure is shown in Figure 7C. The cluster structure is round (almost 
spherical), and one Na atom exhibits a coordination number of 12. The minimum value of the shielding 
constant of the cluster structure is 581.9 ppm, which indicates that the cluster structure does not include any 
Na atoms with a shielding constant outlier. Thus, the number of shielding constant outliers can be reduced 
using structural optimization. The reason for the wider hem in Figure 1 can be attributed to the fact that the 
clusters have not undergone structural optimization calculations.

If the neural network is trained based on the cluster structure, which was structurally optimized based on 
the DFT level, this neural network for unknown structures is required to calculate the DFT level every time. 
Therefore, structural optimization using the self-consistent-charge density-functional tight-binding 
method[17,18], which incurs a low cost, can help reduce computational costs. DFTB is effective in generating 
structures for gold and silver clusters[19]. Moreover, Gupta potential[15,20,21] or Murrell-Mottram potential[15], 
which have been globally used to optimize Na clusters, can be an alternative. The CALYPSO method has 
successfully explored the structures of medium-sized metal-doped boron clusters[22-25] and silicon clusters[26].

CONCLUSION
This study used a SchNet-based neural network to predict shielding constants of Na clusters and structures 
generated using the S-BLDA method.

The RMSE of the model using the neural network was 35.2 ppm, which was almost the same as the 34.9 and 
35.1 ppm obtained in the Lasso regression model that respectively used the running coordination number 
and gross orbital population, or only the gross orbital population as the explanatory variables. While the 
neural network model used only the structure data, the Lasso regression model used the gross orbital 
population predicted by the DFT calculation as an explanatory variable. Therefore, it is considered that this 
neural network model, using only the structure data, achieved comparable performance to that of the Lasso 
model, which uses gross orbital population correlated with the shielding constant.

The S-BLDA method exhibited a skewed distribution for shielding constants, yielding low shielding 
constants. This may be because the randomly generated non-equilibrium cluster structure tends to 
destabilize electronic states, resulting in unrealistic values of the shielding constant, which are extremely 
low. SchNet and Lasso were unable to reproduce such a distribution. However, by adding a penalty term to 
reproduce the original distribution as a loss function, the distorted distribution can be handled without 
changing the structure of the neural network. It became possible to output an extremely low shielding 
constant.

To further improve the prediction performance, it would be necessary to stabilize each structure to reduce 
the anomalies in the shielding constants and improve the performance of each system. Future research will 
be conducted in this direction.
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