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Clinicogenetics of Parkinson’s disease: a
drawing but not completed picture
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Parkinson’s disease (PD) is a prevalent neurodegenerative disorder mainly affecting the population over the age of 60 years. The
past decade has seen rapidly emerging data supporting a major importance of genetic factors in the development of PD. Increasing
number of large-scale and replicating association studies has facilitated the confirmation of the possible predisposing factors to
PD and the selection of genetic variants for risk prediction. While evidences are accumulating that variations within the SNCA,
LRRK2, MAPT and GBA genes increase the individuals’ vulnerability to PD, inconclusive or negative results have been reported
for an association between PD and variants of the parkin, PINK1, DJ-1, UCH-L1, Omi/HtrA2, GIGYF2, PLA2G6, VPS35, EIF4G1
and BST1 genes. However, our understanding of the genetic picture of PD remains preliminary. Molecular diagnosis of the disease
is only recommended for cases with clear family history, and currently, there is no ideal genomic biomarker available to predict the
disease onset and progression, or to make a molecular classification of the disease. Efforts are expected to identify more genetic
predisposing factors and to further clarify their roles in the mechanisms of PD.
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INTRODUCTION

Parkinson’s disease (PD) is a prevalent neurodegenerative
disorder affecting 1-29% of the population over the age of
60 years.["! The disease results mainly from progressive
and profound degeneration of dopaminergic neurons
in the substantia nigra with the presence of Lewy
bodies containing aggregates of a-synuclein and other
substances.?? Although the etiology and mechanisms of
PDremain largely unclear, the development of the disease
is believed to be the combined results of three interactive
events: genetic susceptibility, environmental exposures
and the aging process.[*®! The relative role of genetic
and environmental factors has been debated for many
years, however, evidences are rapidly accumulating
that genetic risk factors are of major importance in the
sporadic form of the disease, accounting for at least 10%
of the general PD population.™91"
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One important conceptual update of the genetic
profiling of PD is that mutations or variations within
causative genes for a minority of monogenic familial
PD are also associated with sporadic PD. Studies in
PD families have identified 11 (a-synuclein, parkin,
UCH-L1, PINK1, DJ-1, LRRK2, ATP13A2, OMI/HTRAZ2,
FBX07, VPS35, EIF4G1) causative genes and 4 loci of
linkage across the genome (PARK3, PARK10, PARK12
and PARK16) pending characterization. Analysis
of mutations or variations in many of these genes
has been performed in recent years among diverse
ethnic populations. In addition, the newly emerged
genome-wide association studies (GWAS) have been
used to identify novel genetic associations with the
disease at the whole-genome level.[>**! More recent
progress has been made by the powerful technique
of next-generation sequencing.!'®'”! Further, more
and more large-scale and multi-center collaborative
analyses have been completed thanks to the improving
analytic tools and the increasingly close international
cooperation. The results published so far are consistent
or conflicting with each other, reflecting confirmative,
inconclusive or negative associations between genetic
variants and PD. In this review, we give an up-to-date
view of the genes that may have associations with
the risk for PD and their implications in clinical
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practice, with emphasis on large-scale and multiethnic
evidences, as listed in Table 1.

GENETIC VARIATIONS WITH WELL-EVIDENCED
ASSOCIATIONS WITH PARKINSON’S DISEASE

SNCA

Genetic variability within the SNCA gene encoding
o-synuclein is arguably the most reliable association
of a common genetic risk factor with PD identified to
date. Although mutations in this gene account for < 1%
of PD in the general population, abnormal aggregation
of the SNCA-encoding protein, a-synuclein, the
principal component of Lewy bodies, is present in all
patients with idiopathic PD.!"®! In addition, association
studies have repeatedly suggested the link of the SNCA
variations to both familial and sporadic PD. Further,
several most recently completed GWAS consistently
showed strong linkage of the SNCA locus to PD across
Western and Oriental populations.'21%

Although three missense mutations in SNCA were
reported in families with PD inheritance!®*% and
thought to increase the aggregation of SNCA protein,
point mutations have not been identified in sporadic
PD,122 and no several nonsynonymous (SNPs)
have been found in the coding region, suggesting
that disease-related amino acid changes in SNCA are
unlikely in sporadic PD.*®! In contrast, multiplication,
in particular triplication, of SNCA was revealed in
both familial®*%®! and sporadic PD cases.” Due to
the absence of point mutations in any of the copies of

SNCA in these patients, the cause of PD appears to be
the mere increase in a-synuclein levels. In support of
this dosage effect, PD patients from families with two
extra copies of SNCA have a more severe phenotype
than PD patients with only one extra copy,?*%*!l and
SNCA mRNA levels in the brain from sporadic patients
are increased.[?%

The pathogenicity of multiple SNCA gene copies and
the apparent dosage effect of a-synuclein levels in
both sporadic and familial PD highlight the clinical
significance of the regulation of SNCA gene expression,
which can take place at both transcriptional and
posttranscriptional levels. Transcription of genes is
mainly regulated by the promoter sequence. The first
promoter variant reported in association with PD
was the mixed dinucleotide repeat sequence (REP1),
which resides approximately 10 kb 5’ to the translation
start site of SNCA. Despite some negative results of
association, the majority of individual studies®®*3% and
a meta-analysis of data™” from 18 sites across multiple
ethnic populations have confirmed an association
between risk for PD and the longer REP allele. In addition,
variants other than REP1 in the promoter region, such
as SNPs flanking the core promoter at the -770 and -116
positions, rs2583988, rs2619364, and rs2619363, were
also reported to increase the susceptibility to PD in
European population.”! Posttranscriptional regulation
of gene expression can be mediated by several elements,
many of which are located in the 3’-untranslated
region of mRNAs.[#24 A series of studies reported
an association of polymorphisms at the 3’-end of

Locus Gene Chromosome Inheritance Type of parkinsonism Mutation/varaint Association with PD
type
PARK1/PARK4 SNCA 4921 AD LOPD/EOPD, dementia Multiplication, point Convinced
PARK2 Parkin 6925-27 AR EOPD Re-arrangement, point  Re-arrangement: convinced;
point: unconvinced

PARK3 Unknown 2p13 AD LOPD Point Unconvinced

PARK5 UCHLA1 4p14 AD LOPD Deletion, point Unconvinced

PARK6 PINK1 1p36 AR EOPD Deletion, point Unconvinced

PARK7 DJ-1 1p36 AR EOPD Deletion, point Unconvinced

PARKS8 LRRK2 12912 AD LOPD Point Convinced

PARK9 ATP13A2 1p36 AR EOPD, Kufor-Rakeb Point Unconvinced
syndrome

PARK10 Unknown 1p32 Unknown LOPD Point Unconvinced

PARK11 GIGYF2 2937 AD LOPD Point Unconvinced

PARK12 Unknown xq21-25 X-linked LOPD Point Unconvinced

PARK13 HTRA2 2pi12 AD LOPD Point Unconvinced

PARK14 PLA2G6 22q13 AR EOPD, Point Unconvinced
dystonia-parkinsonism

PARK15 FOXB7 22q12-13 AR EOPD, pallido- Point Unconvinced
pyramidal syndrome

PARK16 Unknown 1932 Risk LOPD Point Unconvinced

PARK17 VPS35 16q11 Risk LOPD Point Unconvinced

PARK18 EIF4G1 3927 Risk LOPD Point Unconvinced

- GBA 1921 Risk LOPD Point Convinced

- BST1 4p15 Risk LOPD Point Unconvinced

- MAPT 17921 Risk LOPD Haplotype Convinced

- ATXN2 12q12 Risk LOPD Trinucleotide expansion Unconvinced

- ATXN3 1432 Risk LOPD Trinucleotide expansion Unconvinced

AD: autosomal dominant; AR: autosomal recessive; EOPD: early-onset Parkinson’s disease; LOPD: late-onset Parkinson’s disease; PD: Parkinson’s disease
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SNCA (e.g. rs356165 and rs356219) with sporadic
PD, especially those from Southern Germany and
Asian.[***7l Although molecular details are not clear, the
3’-variants have been shown to increase the expression
of a-synuclein.!®

LRRK2

The discovery of mutations in the LRRK2 gene as
the cause of PD in the families linked to the PARKS
locus (12q12) was probably the most important
step forward since the a-synuclein discovery.!#*5°
LRRK2 is a very large gene that contains 51 exons,
and over 30 sequence variants have been linked to
autosomal-dominant Parkinsonism. However, only
five (R1441C, R1441G, Y1699C, G2019S, and 12020T)
have been shown or be clearly pathogenic, and two
substitutions (G2385R, R1628P) have been associated
with an increased risk for sporadic PD.

The most common LRRK2 mutation is Gly2019Ser.
It is detected in about 5% of familial and 1-2%
of sporadic European PD patients®*? and up to
30% of patients with PD from North African and
10-40% of Middle Eastern populations.!®s-*! One
intriguing feature of this mutation is its association
with both familial and sporadic PD. However,
the penetrance of this mutation is relatively low.
By analyzing the pooled data of 24 populations
worldwide (including 19,376 unrelated patients with
PD), the International LRRK2 Consortium reported
the risk of PD for a person who inherits the LRRK2
G2019S mutation was 28% at age 59 years, 51%
at 69 years and 74% at 79 years. Although motor
and nonmotor symptoms of LRRK2-associated PD
were more benign than those of idiopathic PD, the
core features (asymmetrical, tremor predominant
parkinsonism with bradykinesia and rigidity that
responded to dopamine) of the patients with LRRK2
G2019S-associated PD are indistinguishable from
patients with idiopathic PD, again implying a critical
contribution of LRRK2 to the PD pathogenesis.!®”

Although the G2019S is prevalent in PD patients
in the above-mentioned populations, it does not
occur at appreciable frequency in control cohorts
from these populations and is strikingly rare in
Chinesel®®% and South African.’® Therefore, it is
more a population-specific mutation than a popular
susceptibility variant. In contrast, two variants reported
from Asian populations appear to be true risk variants
for PD. The first G2385R was initially described in a
Taiwanese family.! Assessment of this variant in large
Asian populations showed association with risk for
disease in Taiwanese, Japanese, Hong Kong Chinese
and mainland Chinese populations.!®%% In general this
variant is present in about 10% of PD populations and

0.5-5% in controls and confers at least two-fold risk for
the chance of PD. Given that this association appears
robust across Asian populations, this risk allele is an
underlying factor in a very large number of PD cases
worldwide. More recently a second LRRK2 risk allele,
also identified within Asian PD populations has been
described. %4

Microtubule associated protein tau

The microtubule associated protein tau (MAPT) gene
encodes MAPT. Tau modulates the assembly, dynamic
behavior, and spatial organization of microtubules, and
is a major protein component of neurofibrillary tangles,
a hallmark lesion of Alzheimer’s disease (AD). Mutations
in the MAPT gene were identified to cause autosomal
dominant frontotemporal dementia with parkinsonism
linked to chromosome 17.1! In addition to rare causal
mutations, common variability in MAPT has been
linked to disease such as progressive supranuclear palsy;,
AD and PD. The most frequently reported variation is
caused by a common genomic inversion within a large
block (approximately 1.6 Mb in length) containing the
MAPT locus that shows reduced recombination and
high levels of linkage disequilibrium. This phenomenon
results in two common Caucasian haplotype groups
across this locus, often termed H1 and H2. Association
between MAPT H1 and risk for PD has been tested by many
groups,®%! and the results in general show a consistent
association with the disease. Moreover, patients carrying
the H1 allele present in their fifth decade either with
behavioral/cognitive changes or with rapidly progressive
and poorly levodopa-responsive parkinsonism. A recent
follow-up study demonstrated that 17% of incident
PD patients developed dementia over 5 years, and the
MAPT H1/H1 genotype was an independent predictor
of dementia risk (odds ratio = 12.1).%9 The results
also suggested that Lewy body deposition in posterior
cortical areas, which is influenced by MAPT genotype
and the aging process are associated with subsequent
global cognitive decline and dementia. However, the H1
haplotype may not be a universal risk allele because the
H2 haplotype is almost exclusively Caucasian in origin,
and its prevalence in other populations is essentially
zero 7%

In addition to the H1 haplotype, a subhaplotype
within the H1 clade composed of two “H1-SNPs”
(rs242562 and rs2435207) spanning MAPT exons
1-4 was also significantly overrepresented in cases
versus control subjects.”"72l However, except for in
one Greek and one Nowegian study, the association of
H1-subhaplotype with PD was not well replicated in
other Caucasian studies, and Taiwan Chinese,[©87374
and it has not been tested whether this subhaplotype is
associated with PD in populations that possess merely
the H1 clade.

Neuroimmunol Neuroinflammation | Volume 1 | Issue 3 | December 2014

117



Glucocerebrosidase

The glucocerebrosidase (GBA) gene encoding
a lysosomal enzyme called glucocerebrosidase
that hydrolyses the beta-glycosidic linkage of
glucosylceramide, a ubiquitous sphingolipid present in
the plasma membrane of mammalian cells.”” Over 200
mutations have been described in GBA, including point
mutations, deletions and recombination alleles derived
from the pseudogene sequence.” These mutations usually
cause a recessive lysosomal storage disorder - Gaucher
disease (GD), which is characterized by macrophages
enlarged with deposits of glucosylceramide.

The initial recognition of an association between PD
and GBA mutations came from the clinical observations
of parkinsonian manifestations in genotypically
heterogeneous patients with GD.”] Moreover, brain
samples from autopsy-confirmed PD cases revealed
significantly higher carrier frequencies (14%) than
the estimated GBA mutation carrier frequency in
the general population (0%).¥! The frequency and
distribution of GBA mutations in PD vary among
populations. Ashkenazi Jewish PD patients have the
highest carrier frequency with a range 13.7-31.3%,
compared with 4.5-6.2% in controls.”®®! It was lower
in nonAshkenazi-Jewish populations, ranging 2.8-12%,
compared with 0.2-5.3% controls from the same
populations.®- Among all the mutations, 1.444P and
N370S turned out to be the most frequently identified
in PD patients. Although N370S is also common in
European populations, it has not been encountered
among Asians.!® In contrast, L444P was believed as
a panethnic mutation associated with PD.[#5¢ A most
recent multi-center study including 5691 patients
and 4898 controls from 16 centers revealed that either
mutation was found in 15% of patients and 3% of
controls among Ashkenazi Jewish subjects, and in 3%
of patients versus 1% of controls among nonAshkenazi
Jewish subjects."”! The odds ratio for any GBA mutation
in patient’s versus controls was 5.43 across centers,
which is the highest effect size conferred by the known
risk variants for PD. There is preliminary evidence
that, overall, mutation carriers have an earlier age at
onset (AAQ), more atypical clinical manifestations,
more cognitive changes and more likely to have affected
relatives.[82#8

GENETIC VARIANTS IN INCONCLUSIVE OR
NEGATIVE ASSOCIATION WITH PARKINSON’S
DISEASE

Parkin

The most frequent mutations in early-onset
PD (EOPD) (AAO < 50 years) patients are those identified
in the parkin gene, which account for up to 50% of
autosomal recessive juvenile parkinsonism (AR-JP)

and 15-20% of sporadic EOPD.%%1 Qver 100 types of
mutations including sequence substitutions, insertions
and exonic deletions/duplications (or dosage mutations)
in the parkin gene have been described in diverse
ethnic groups.’” While homozygous or compound
heterozygous mutations are causative, heterozygous
mutations have been suggested to increase the risk for
PD."394 The predisposing effects of heterozygote were,
however, soon questioned by other studies in which
they were reported as common in control subjects as
in PD patients.®>%! These conflicting observations,
as suggested by some studies, may come from the
heterogeneous effects of different types of mutations,
which may have different origins and pathogenic effects.
For example, a haplotype analysis for a European EOPD
family series demonstrated that exonic rearrangements
occurred independently whereas point mutations may
have been transmitted by a common founder."”! In
addition, some studies suggested that dosage mutations
are more pathogenic than sequence mutations in the
development of familial PD.**** However, these results
remain to be confirmed by large-scale studies, and it is
unclear whether the dosage mutations are associated
with typical sporadic PD.

PINK1

Mutations in the PTEN-induced putative kinase
1 (PINK-1) gene are the second common cause of
autosomal recessive EOPD after parkin. The gene
resides on chromosome 1p35-36 (PARK6) and encodes
a protein locating on mitochondria.['*1°? Evidences
are gathering that PINK-1 is crucial for the normal
functions of mitochondria and might participate in
the detoxification of proteins.['**! Different PINK-1
mutations including missense, nonsense, splice site
mutations and entire PINK-1 gene deletion have been
identified in both familial'®* and sporadic EOPD
cases,['%1001 with a frequency ranging from 1% to 8%.
However, single heterozygous PINK-1 mutations have
also been reported in healthy controls and large-scale
case-control studies confirming the association between
PINK-1 mutations, and sporadic PD are not available.

DIJ-1

The DJ-1 gene (PARK?7) encodes a protein belonging to
the DJ-1/Thi/PfpI protein super family. It was initially
described in association with oncogenesis and male
rat infertility,*?71%1 and later found to be associated
with autosomal recessive EOPD.['%11% DJ-1 is proposed
to play a role in protecting neurons from oxidative
stress and protecting against mitochondrial damage.!"*"
A few PD-causing mutations have been identified,
including exon deletions, truncations, homozygous and
heterozygous point mutations, which predominantly
result in loss of function.['°®12l However, there is
currently a lack of information about the frequency of
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mutations, including single heterozygous mutation,
for DJ-1 in both familial and sporadic parkinsonism,
especially in large population samples. Moreover, in
a recent complete mutational analysis of DJ-1 coding
sequence in a large cohort of familial and sporadic PD
cases from 12 countries, none had causative mutation
in DJ-1, suggesting its mutations are very rare in either
familial or in sporadic parkinsonism.™**!

UCH-L1

The UCH-L1 gene (PARK5) encodes the ubiquitin
carboxy-terminal hydrolase L1, which is a component
of LB and possesses both a hydrolase activity to generate
the ubiquitin monomer and a ligase activity to link
ubiquitin molecules to tag proteins for disposal.l*** The
detection of an Ile93Met mutation in the UCH-L1 gene
in a German family with autosomal dominant PD!"*!
suggested a role for an impaired ubiquitin-proteasomal
activity in PD pathogenesis. In contrast, a Ser18Tyr
polymorphism affecting mainly the ligase activity has
been suggested to have a protective effect in PD in
some association studies.'*®! However, a subsequent
large case-control study involving 3,044 PD cases and
3,252 controls, failed to replicate the association.!!”!

Omi/HtrA2

The gene Omi/HtrA2 (PARK13) encodes a serine-protease
with pro-apoptotic activity containing a mitochondrial
targeting sequence at its N-terminal region.*¥! Several
lines of evidence in the literature support a role for
Omi/HtrA2 in neurodegeneration.[''*'?"] The first
pathogenic mutation (G399S) a risk variant (A141S)
for PD were identified in a German cohort.!"?!
However, a later case-control study screening the
whole coding region of Omi/HtrA2 revealed that
neither of the two variants was overrepresented in the
patients.['?2! Although another mutation, R404W, was
found in Belgian PD patients,'*! it is not clear whether
it is associated with PD patients in other populations.
Further, the most recent large-scale analysis of the
five most informative SNPs spanning the Omi/HtrA2
gene in a cohort of 6,378 cases and 8,880 controls
from 20 sites worldwide again confirmed the lacking
of association of Omi/HtrA2 variants with PD.['2%
Therefore, the genetic basis for the involvement of
Omi/HtrA2 is still not conclusive at this point.

GIGYF2

Recently, it has been proposed that the GIGYF2 gene
corresponds to the PARK11 locus causes a form
of autosomal-recessive familial PD.I'">>1261 In two
independent French and Italian familial PD populations,
10 changes in 16 unrelated PD patients were found
in the shortest form of GIGYF2, yielding a mutation
frequency of 6.4%.1'?” However, no disease-causing
mutations were found in other European populations!?!

and in recent months, over 10 replication studies have
provided conflicting data, casting considerable doubt
on the causal role of GIGYF2.'*! In addition, a pooled
analysis of over 4,500 PD and 5,500 controls revealed
that the estimated frequency of GIGYF2 mutations in
the entire replication cohort was only about 0.001%.1%”!
Furthermore, the presence of mutations in healthy
population controls or within asymptomatic family
members of PD patients argues against causality even
if longitudinal data are not available. Thus, unless
new information emerges to suggest otherwise, it is
reasonable to conclude that GIGYF2 does not play a
major role in PD.

VPS35

The most recently described cause of monogenic PD
is the mutations of a gene encoding vacuolar protein
sorting-associated protein 35 (VPS35), which were
identified by the next-generation of sequencing
technique.***131 Vilarifio-Gtiell et al.**” described the
identification of the p.D620N mutation in VPS35 within
affected members of a Swiss kindred and three other
families with late-onset, autosomal dominant PD, and
in one sporadic PD case. At the same time, Zimprich
et al."*V published the identification of the p.D620N
mutation in a large multigenerational Austrian family
with PD and in two additional families screened for
VPS35 mutations. Both groups also identified additional
mutations in VPS35; however, the pathogenicity of
these additional variants remains unknown. Moreover,
VPS35 mutations have been detected only in whites
with PD. Studies in both Chinese and Japanese have
excluded an association between VPS35 mutations and
sporadic PD.[#%184

PLA2G6

Mutations in phospholipase A2, group VI (PLA2G6)1%!
usually cause an early-onset recessive degenerative
disorder with spasticity, ataxia and dystonia; however,
later adult onset forms of the disease can present with
a dystonia predominant parkinsonism.*®! The patients
with PLA2G6 homozygous mutations presented in
their 20s with slowly progressive gait problems,
clumsiness, imbalance, hand tremor, cognitive decline
and dysarthria. Most patients with Parkinsonism are
Levodopa-responsive at first, but this usually lasts only
1-2 years. PLA2G6 mutations have been screened for
both early- and late-onset PD. Although SNPs have
been identified in PD patients, none of these has been
convincingly associated with the risk for PD.[137:138]

EIF4G1

Most recently, translation initiator mutations in
EIF4G1 were genetically linked to autosomal dominant
late-onset PD with brainstem Lewy body pathology.[*%"
EIF4G1 is a central component of the EIF4F complex
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that regulates translation of mRNAs with highly
structured 5’-sequences. The most popular mutations,
p-Ala502Val and p.Arg1205His mutation were found
to be with PD in some population. However, later
replication studies in multiple ethnicities failed to
confirm EIF4G1 mutations as a cause or a susceptible
factor for familial or sporadic PD.[38:140.141)

BST1

Recently, GWAS in PD have provided association
evidence at 16 loci, including a region encompassing
a gene encoding bone marrow stromal cell antigen
1 (BST1) on 4p15.1"#? Interestingly, all PD-associated
single-nucleotide polymorphisms (SNPs) on the
BST1 locus lie within linkage disequilibrium blocks
containing only the BST1 gene.'*?) However, by direct
sequencing of the entire coding region of BST1, we did
not reveal a variant associated with PD.!'#3

CONCERNS ON THE TRANSLATION OF GENETIC
INFORMATION INTO CLINICAL APPLICATIONS

Molecular diagnosis of Parkinson’s disease: possibilities
and concerns

As mutations in several genes are able to cause
monogenic forms of PD, molecular diagnosis using
these mutations for familial PD is possible. However,
cautions must take before extensive applications of
these mutations to genetic counseling, because most of
our knowledge about the genetic basis of PD remains
preliminary. According to the latest European Federation
of Neurological Societies guidelines on the molecular
diagnosis of PD,!'*! for mutations that are detected
in rare familial forms of PD, such as point mutation
or multiplication of SNCA in familial PD, molecular
diagnosis should be considered only for clearly familial
cases. Even for the LRRK2 genes in which mutations
are much more prevalent in Europeans, molecular
testing is only recommended for cases with dominant
inheritance of parkinsonian syndromes, and testing
for the G2019S mutation is only recommended for
familial and sporadic patients in the Ashkenazi Jews
or North African Arabs. Similarly, testing for mutations
in recessive PD-genes (parkin, PINK-1, DJ-1) is only
recommended for families suggestive of recessive
inheritance (affected sib pairs) or sporadic patients
with very early onset (< 35 years). For most of the other
mutations, using of them for genetic testing should wait
until their causative role in the disease is convincingly

established.

Use of genetic variation as predictive biomarkers for
Parkinson’s disease: is it possible now?

A biomarker is a substance used as an indicator of
normal biologic and pathogenic processes, or responses
to a therapeutic intervention. Biomarkers for PD may

be directed at disease risk, disease progression, or both.
A mutation or genetic variant can be considered a risk
biomarker for PD if it is associated with the disease. The
discovery of mutations that cause monogenetic forms
of PD has allowed clinical investigators to determine
the cause of the disease and to predict the risk for
developing the disease. However, at least two factors
have to be simultaneously considered before defining
such mutations as biomarkers: the penetrance of the
mutations and the variability of AAO of PD caused
by the mutations. Mutations that confer high risk of
developing a disease usually display a high penetrance
(> 80%), and the variability of AAOs of patients
carrying such mutations is usually low. In autosomal
dominant form of PD, the most affirmatively causative
mutations are those within the SNCA and LRRK2
genes. Point mutations, duplications, and triplications
of SNCA cause PD with high penetrance. However, the
AAO of each mutation type in this gene is associated
with a fairly high variability among cases (ranging
from mid- 30s to late 80s), making it difficult to use
these mutations to predict the onset and course. On the
other hand, although the causative role of the LRRK2
(G2019S mutation is not in question, and the AAQO is less
variable (usually at 60s), it is clear that the penetrance
of this gene is only 30-40%. Therefore, carrying this
mutation does not unequivocally predict development
of PD during a lifetime.["*® The situation for the risk
variants associated with the onset and progression of
sporadic PD are even more complicated and puzzling
as it may involve multiple independent and interactive
factors. Thus, the value of a genetic biomarker in
predicting an individual’s risk of developing the disease
is questionable at the current stage.

Can genetic variations help in molecular classification of
Parkinsonian disorders?

Parkinsonian disorders are a group of clinically and
pathogenically diverse disorders. For diagnostic and
therapeutic purposes, it has long been expected to
classify this clinical complex further. Currently, the
classification of these disorders is mainly based on
pathological findings. According to autopsy findings,
the histological characteristics in the patients’
brain have been classified as a-synucleinopathies
and non-a-synucleinopathies, the latter including
tauopathies, TDP-43 proteinopathies and nonspecific
degeneration in the pars compacta of the substantia
nigra (SNPc).["! However, this classification is made
postpartum and, therefore, less useful for preclinical
and clinical diagnosis. Interestingly, studies have
demonstrated that similar pathologies might result
from the influence of mutations in genes that are part
of the same pathways.[""'*"] For example, PD cases
with mutations in SNCA, LRRK2 and GBA genes
usually display a common oa-synuclein pathology,
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while those with mutations in the MAPT gene tend
to possess both a-synuclein and tau pathologies. In
contrast, except for nonspecific neuronal loss and
gliosis, no histopathological hallmark was revealed
in most of the AR-JP patients caused by mutations
in the parkin gene.® Moreover, many variations in
these genes are not only associated with increased
risk for PD, but strongly correlate with certain profiles
of the disease. Hence, it is reasonable to assume that
genetically determined loci, especially when combined
with pathological and clinical information, can help
in establishing a classification for PD. In a recent
study, we have investigated clinical profiles of PD
related to LRRK2 (LRRK2-PD), GBA (GBA-PD) variant,
or none of the variants (idiopathic PD, IPD).["% As
a result, LRRK2-PD is largely similar to IPD, while
GBA-PD patients had an earlier onset and more
frequent and severe nonmotor symptoms. These results
favor the feasibility of genetic classification of PD.
However, since much of our knowledge about the
genetic-pathologic-clinical axis of parkinsonism is
quite limited so far, there is still along way ahead before
a rational nosology for parkinsonian disorders linked
to their genetic underpinnings is made and before the
classification becomes a practice guideline.

CONCLUDING REMARKS AND FUTURE
RESEARCH CONCERNS

The past decade has been an exciting time for
investigators involved in genetic research in PD. The
rapidly emerging evidences of the genetic contribution
to PD have changed the way we think about the disease.
However, we are still not able to see a complete genetic
picture of the disease. Many concerns remain to be
addressed. First, the highly genetic heterogeneity among
populations reminds us that the genetic information of
a gene or locus provided by current studies for certain
populations is limiting and segmentary. For example,
although the link of the LRKK2 G2019S mutation to
PD in multiple populations has been well-established,
it provides little information for Eastern Asians. The
emerging evidences for the contribution of another
variant, G2385R, residing in a different domain of
the protein may suggest a yet-unknown, but sharply
different story of LRRK2 from that of the G2019S
mutation. Thus, before characterizing the roles played
by G2385R or other potential significant variants, a
complete genetic behavior of LRRK2 should not be
described merely by the G2019S information, nor
should it be applied extensively to clinical practice.
Similarly, it is not reasonable to overestimate the
genetic contribution of the H1 haplotype of MAPT gene
because the homozygous H1 allele is dominant while
the H2 haplotype lacks in Asians. These problems
necessitate clinical and genetic studies surrounding

the population-specific variants. Second, most of
the current genetic studies are focused on sequence
variations (i.e. point mutations or SNPs) and much less
have been directed to copy-number variations (CNVs),
whose pathogenic or predisposing effects sometimes
are even more evident and important. Dosage mutations
of the parkin gene, for instance, have been suggested
to be more pathogenic than the sequence mutations for
familial PD among Europeans. Therefore, large-scale
and multi-central analysis of CNVs are urgently needed
to improve the image of risk genetic variants for PD.
Third, the work on genetic mechanisms underlying
PD is far away from just identifying mutations or risk
variants. We have to figure out how these variants
act on the disease, e.g. how they interact with other
genes and/or environmental factors, and how they are
linked to pathophysiological pathways involved in PD.
In addition, prospective studies of presymptomatic
carriers of mutations or risk genetic variants of PD
genes are necessary to confirm their genetic roles in
the disease development and progression.
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