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INTRODUCTION

Parkinson’s disease (PD) is a prevalent neurodegenerative 
disorder affecting 1-2% of the population over the age of 
60 years.[1] The disease results mainly from progressive 
and profound degeneration of dopaminergic neurons 
in the substantia nigra with the presence of Lewy 
bodies containing aggregates of α-synuclein and other 
substances.[2,3] Although the etiology and mechanisms of 
PD remain largely unclear, the development of the disease 
is believed to be the combined results of three interactive 
events: genetic susceptibility, environmental exposures 
and the aging process.[4-8] The relative role of genetic 
and environmental factors has been debated for many 
years, however, evidences are rapidly accumulating 
that genetic risk factors are of major importance in the 
sporadic form of the disease, accounting for at least 10% 
of the general PD population.[1,9-11]

One important conceptual update of the genetic 
profiling of PD is that mutations or variations within 
causative genes for a minority of monogenic familial 
PD are also associated with sporadic PD. Studies in 
PD families have identified 11 (a‑synuclein, parkin, 
UCH‑L1, PINK1, DJ‑1, LRRK2, ATP13A2, OMI/HTRA2, 
FBX07, VPS35, EIF4G1) causative genes and 4 loci of 
linkage across the genome (PARK3, PARK10, PARK12 
and PARK16) pending characterization. Analysis 
of mutations or variations in many of these genes 
has been performed in recent years among diverse 
ethnic populations. In addition, the newly emerged 
genome-wide association studies (GWAS) have been 
used to identify novel genetic associations with the 
disease at the whole-genome level.[12-15] More recent 
progress has been made by the powerful technique 
of next-generation sequencing.[16,17] Further, more 
and more large-scale and multi-center collaborative 
analyses have been completed thanks to the improving 
analytic tools and the increasingly close international 
cooperation. The results published so far are consistent 
or conflicting with each other, reflecting confirmative, 
inconclusive or negative associations between genetic 
variants and PD. In this review, we give an up-to-date 
view of the genes that may have associations with 
the risk for PD and their implications in clinical 
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practice, with emphasis on large-scale and multiethnic 
evidences, as listed in Table 1.

GENETIC VARIATIONS WITH WELL‑EVIDENCED 
ASSOCIATIONS WITH PARKINSON’S DISEASE

SNCA
Genetic variability within the SNCA gene encoding 
α-synuclein is arguably the most reliable association 
of a common genetic risk factor with PD identified to 
date. Although mutations in this gene account for < 1% 
of PD in the general population, abnormal aggregation 
of the SNCA-encoding protein, α-synuclein, the 
principal component of Lewy bodies, is present in all 
patients with idiopathic PD.[16] In addition, association 
studies have repeatedly suggested the link of the SNCA 
variations to both familial and sporadic PD. Further, 
several most recently completed GWAS consistently 
showed strong linkage of the SNCA locus to PD across 
Western and Oriental populations.[12-15]

Although three missense mutations in SNCA were 
reported in families with PD inheritance[18-20] and 
thought to increase the aggregation of SNCA protein, 
point mutations have not been identified in sporadic 
PD,[21,22] and no several nonsynonymous (SNPs) 
have been found in the coding region, suggesting 
that disease-related amino acid changes in SNCA are 
unlikely in sporadic PD.[23] In contrast, multiplication, 
in particular triplication, of SNCA was revealed in 
both familial[24-29] and sporadic PD cases.[30] Due to 
the absence of point mutations in any of the copies of 

SNCA in these patients, the cause of PD appears to be 
the mere increase in α-synuclein levels. In support of 
this dosage effect, PD patients from families with two 
extra copies of SNCA have a more severe phenotype 
than PD patients with only one extra copy,[25,27,31] and 
SNCA mRNA levels in the brain from sporadic patients 
are increased.[32-35]

The pathogenicity of multiple SNCA gene copies and 
the apparent dosage effect of α-synuclein levels in 
both sporadic and familial PD highlight the clinical 
significance of the regulation of SNCA gene expression, 
which can take place at both transcriptional and 
posttranscriptional levels. Transcription of genes is 
mainly regulated by the promoter sequence. The first 
promoter variant reported in association with PD 
was the mixed dinucleotide repeat sequence (REP1), 
which resides approximately 10 kb 5′ to the translation 
start site of SNCA. Despite some negative results of 
association, the majority of individual studies[36-39] and 
a meta-analysis of data[40] from 18 sites across multiple 
ethnic populations have confirmed an association 
between risk for PD and the longer REP allele. In addition, 
variants other than REP1 in the promoter region, such 
as SNPs flanking the core promoter at the -770 and -116 
positions, rs2583988, rs2619364, and rs2619363, were 
also reported to increase the susceptibility to PD in 
European population.[41] Posttranscriptional regulation 
of gene expression can be mediated by several elements, 
many of which are located in the 3’-untranslated 
region of mRNAs.[42,43] A series of studies reported 
an association of polymorphisms at the 3’-end of 

Table 1: Genes and loci related to Parkinson’s disease
Locus Gene Chromosome Inheritance Type of parkinsonism Mutation/varaint 

type
Association with PD

PARK1/PARK4 SNCA 4q21 AD LOPD/EOPD, dementia Multiplication, point Convinced
PARK2 Parkin 6q25‑27 AR EOPD Re‑arrangement, point Re‑arrangement: convinced; 

point: unconvinced
PARK3 Unknown 2p13 AD LOPD Point Unconvinced
PARK5 UCHL1 4p14 AD LOPD Deletion, point Unconvinced
PARK6 PINK1 1p36 AR EOPD Deletion, point Unconvinced
PARK7 DJ‑1 1p36 AR EOPD Deletion, point Unconvinced
PARK8 LRRK2 12q12 AD LOPD Point Convinced
PARK9 ATP13A2 1p36 AR EOPD, Kufor‑Rakeb 

syndrome
Point Unconvinced

PARK10 Unknown 1p32 Unknown LOPD Point Unconvinced
PARK11 GIGYF2 2q37 AD LOPD Point Unconvinced
PARK12 Unknown xq21‑25 X‑linked LOPD Point Unconvinced
PARK13 HTRA2 2p12 AD LOPD Point Unconvinced
PARK14 PLA2G6 22q13 AR EOPD, 

dystonia‑parkinsonism
Point Unconvinced

PARK15 FOXB7 22q12‑13 AR EOPD, pallido‑ 
pyramidal syndrome

Point Unconvinced

PARK16 Unknown 1q32 Risk LOPD Point Unconvinced
PARK17 VPS35 16q11 Risk LOPD Point Unconvinced
PARK18 EIF4G1 3q27 Risk LOPD Point Unconvinced
‑ GBA 1q21 Risk LOPD Point Convinced
‑ BST1 4p15 Risk LOPD Point Unconvinced
‑ MAPT 17q21 Risk LOPD Haplotype Convinced
‑ ATXN2 12q12 Risk LOPD Trinucleotide expansion Unconvinced
‑ ATXN3 14q32 Risk LOPD Trinucleotide expansion Unconvinced
AD: autosomal dominant; AR: autosomal recessive; EOPD: early‑onset Parkinson’s disease; LOPD: late‑onset Parkinson’s disease; PD: Parkinson’s disease
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SNCA (e.g. rs356165 and rs356219) with sporadic 
PD, especially those from Southern Germany and 
Asian.[44-47] Although molecular details are not clear, the 
3’-variants have been shown to increase the expression 
of α-synuclein.[48]

LRRK2
The discovery of mutations in the LRRK2 gene as 
the cause of PD in the families linked to the PARK8 
locus (12q12) was probably the most important 
step forward since the α-synuclein discovery.[49,50] 
LRRK2 is a very large gene that contains 51 exons, 
and over 30 sequence variants have been linked to 
autosomal-dominant Parkinsonism. However, only 
five (R1441C, R1441G, Y1699C, G2019S, and I2020T) 
have been shown or be clearly pathogenic, and two 
substitutions (G2385R, R1628P) have been associated 
with an increased risk for sporadic PD.

The most common LRRK2 mutation is Gly2019Ser. 
It is detected in about 5% of familial and 1-2% 
of sporadic European PD patients[51,52] and up to 
30% of patients with PD from North African and 
10-40% of Middle Eastern populations.[53-56] One 
intriguing feature of this mutation is its association 
with both familial and sporadic PD. However, 
the penetrance of this mutation is relatively low. 
By analyzing the pooled data of 24 populations 
worldwide (including 19,376 unrelated patients with 
PD), the International LRRK2 Consortium reported 
the risk of PD for a person who inherits the LRRK2 
G2019S mutation was 28% at age 59 years, 51% 
at 69 years and 74% at 79 years. Although motor 
and nonmotor symptoms of LRRK2-associated PD 
were more benign than those of idiopathic PD, the 
core features (asymmetrical, tremor predominant 
parkinsonism with bradykinesia and rigidity that 
responded to dopamine) of the patients with LRRK2 
G2019S-associated PD are indistinguishable from 
patients with idiopathic PD, again implying a critical 
contribution of LRRK2 to the PD pathogenesis.[57]

Although the G2019S is prevalent in PD patients 
in the above-mentioned populations, it does not 
occur at appreciable frequency in control cohorts 
from these populations and is strikingly rare in 
Chinese[58,59] and South African.[60] Therefore, it is 
more a population-specific mutation than a popular 
susceptibility variant. In contrast, two variants reported 
from Asian populations appear to be true risk variants 
for PD. The first G2385R was initially described in a 
Taiwanese family.[61] Assessment of this variant in large 
Asian populations showed association with risk for 
disease in Taiwanese, Japanese, Hong Kong Chinese 
and mainland Chinese populations.[61-63] In general this 
variant is present in about 10% of PD populations and 

0.5-5% in controls and confers at least two-fold risk for 
the chance of PD. Given that this association appears 
robust across Asian populations, this risk allele is an 
underlying factor in a very large number of PD cases 
worldwide. More recently a second LRRK2 risk allele, 
also identified within Asian PD populations has been 
described.[64,65]

Microtubule associated protein tau
The microtubule associated protein tau (MAPT) gene 
encodes MAPT. Tau modulates the assembly, dynamic 
behavior, and spatial organization of microtubules, and 
is a major protein component of neurofibrillary tangles, 
a hallmark lesion of Alzheimer’s disease (AD). Mutations 
in the MAPT gene were identified to cause autosomal 
dominant frontotemporal dementia with parkinsonism 
linked to chromosome 17.[66] In addition to rare causal 
mutations, common variability in MAPT has been 
linked to disease such as progressive supranuclear palsy, 
AD and PD. The most frequently reported variation is 
caused by a common genomic inversion within a large 
block (approximately 1.6 Mb in length) containing the 
MAPT locus that shows reduced recombination and 
high levels of linkage disequilibrium. This phenomenon 
results in two common Caucasian haplotype groups 
across this locus, often termed H1 and H2. Association 
between MAPT H1 and risk for PD has been tested by many 
groups,[67,68] and the results in general show a consistent 
association with the disease. Moreover, patients carrying 
the H1 allele present in their fifth decade either with 
behavioral/cognitive changes or with rapidly progressive 
and poorly levodopa-responsive parkinsonism. A recent 
follow-up study demonstrated that 17% of incident 
PD patients developed dementia over 5 years, and the 
MAPT H1/H1 genotype was an independent predictor 
of dementia risk (odds ratio = 12.1).[69] The results 
also suggested that Lewy body deposition in posterior 
cortical areas, which is influenced by MAPT genotype 
and the aging process are associated with subsequent 
global cognitive decline and dementia. However, the H1 
haplotype may not be a universal risk allele because the 
H2 haplotype is almost exclusively Caucasian in origin, 
and its prevalence in other populations is essentially 
zero.[70]

In addition to the H1 haplotype, a subhaplotype 
within the H1 clade composed of two “H1-SNPs” 
(rs242562 and rs2435207) spanning MAPT exons 
1-4 was also significantly overrepresented in cases 
versus control subjects.[71,72] However, except for in 
one Greek and one Nowegian study, the association of 
H1-subhaplotype with PD was not well replicated in 
other Caucasian studies, and Taiwan Chinese,[68,73,74] 
and it has not been tested whether this subhaplotype is 
associated with PD in populations that possess merely 
the H1 clade.
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Glucocerebrosidase
The glucocerebrosidase (GBA) gene encoding 
a lysosomal enzyme called glucocerebrosidase 
that hydrolyses the beta-glycosidic linkage of 
glucosylceramide, a ubiquitous sphingolipid present in 
the plasma membrane of mammalian cells.[75] Over 200 
mutations have been described in GBA, including point 
mutations, deletions and recombination alleles derived 
from the pseudogene sequence.[76] These mutations usually 
cause a recessive lysosomal storage disorder - Gaucher 
disease (GD), which is characterized by macrophages 
enlarged with deposits of glucosylceramide.

The initial recognition of an association between PD 
and GBA mutations came from the clinical observations 
of parkinsonian manifestations in genotypically 
heterogeneous patients with GD.[77] Moreover, brain 
samples from autopsy-confirmed PD cases revealed 
significantly higher carrier frequencies (14%) than 
the estimated GBA mutation carrier frequency in 
the general population (0%).[78] The frequency and 
distribution of GBA mutations in PD vary among 
populations. Ashkenazi Jewish PD patients have the 
highest carrier frequency with a range 13.7-31.3%, 
compared with 4.5-6.2% in controls.[79,80] It was lower 
in nonAshkenazi-Jewish populations, ranging 2.8-12%, 
compared with 0.2-5.3% controls from the same 
populations.[81-83] Among all the mutations, L444P and 
N370S turned out to be the most frequently identified 
in PD patients. Although N370S is also common in 
European populations, it has not been encountered 
among Asians.[84] In contrast, L444P was believed as 
a panethnic mutation associated with PD.[85,86] A most 
recent multi-center study including 5691 patients 
and 4898 controls from 16 centers revealed that either 
mutation was found in 15% of patients and 3% of 
controls among Ashkenazi Jewish subjects, and in 3% 
of patients versus 1% of controls among nonAshkenazi 
Jewish subjects.[87] The odds ratio for any GBA mutation 
in patient’s versus controls was 5.43 across centers, 
which is the highest effect size conferred by the known 
risk variants for PD. There is preliminary evidence 
that, overall, mutation carriers have an earlier age at 
onset (AAO), more atypical clinical manifestations, 
more cognitive changes and more likely to have affected 
relatives.[82,88]

GENETIC VARIANTS IN INCONCLUSIVE OR 
NEGATIVE ASSOCIATION WITH PARKINSON’S 
DISEASE

Parkin
The most frequent mutations in early-onset 
PD (EOPD) (AAO ≤ 50 years) patients are those identified 
in the parkin gene, which account for up to 50% of 
autosomal recessive juvenile parkinsonism (AR-JP) 

and 15-20% of sporadic EOPD.[89-91] Over 100 types of 
mutations including sequence substitutions, insertions 
and exonic deletions/duplications (or dosage mutations) 
in the parkin gene have been described in diverse 
ethnic groups.[92] While homozygous or compound 
heterozygous mutations are causative, heterozygous 
mutations have been suggested to increase the risk for 
PD.[93,94] The predisposing effects of heterozygote were, 
however, soon questioned by other studies in which 
they were reported as common in control subjects as 
in PD patients.[95,96] These conflicting observations, 
as suggested by some studies, may come from the 
heterogeneous effects of different types of mutations, 
which may have different origins and pathogenic effects. 
For example, a haplotype analysis for a European EOPD 
family series demonstrated that exonic rearrangements 
occurred independently whereas point mutations may 
have been transmitted by a common founder.[97] In 
addition, some studies suggested that dosage mutations 
are more pathogenic than sequence mutations in the 
development of familial PD.[98,99] However, these results 
remain to be confirmed by large-scale studies, and it is 
unclear whether the dosage mutations are associated 
with typical sporadic PD.

PINK1
Mutations in the PTEN-induced putative kinase 
1 (PINK-1) gene are the second common cause of 
autosomal recessive EOPD after parkin. The gene 
resides on chromosome 1p35-36 (PARK6) and encodes 
a protein locating on mitochondria.[100-102] Evidences 
are gathering that PINK-1 is crucial for the normal 
functions of mitochondria and might participate in 
the detoxification of proteins.[103] Different PINK-1 
mutations including missense, nonsense, splice site 
mutations and entire PINK-1 gene deletion have been 
identified in both familial[104] and sporadic EOPD 
cases,[105,106] with a frequency ranging from 1% to 8%. 
However, single heterozygous PINK-1 mutations have 
also been reported in healthy controls and large-scale 
case-control studies confirming the association between 
PINK-1 mutations, and sporadic PD are not available.

DJ‑1
The DJ-1 gene (PARK7) encodes a protein belonging to 
the DJ-1/Thi/PfpI protein super family. It was initially 
described in association with oncogenesis and male 
rat infertility,[107,108] and later found to be associated 
with autosomal recessive EOPD.[109,110] DJ-1 is proposed 
to play a role in protecting neurons from oxidative 
stress and protecting against mitochondrial damage.[111] 
A few PD-causing mutations have been identified, 
including exon deletions, truncations, homozygous and 
heterozygous point mutations, which predominantly 
result in loss of function.[109,112] However, there is 
currently a lack of information about the frequency of 
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mutations, including single heterozygous mutation, 
for DJ-1 in both familial and sporadic parkinsonism, 
especially in large population samples. Moreover, in 
a recent complete mutational analysis of DJ-1 coding 
sequence in a large cohort of familial and sporadic PD 
cases from 12 countries, none had causative mutation 
in DJ-1, suggesting its mutations are very rare in either 
familial or in sporadic parkinsonism.[113]

UCH‑L1
The UCH‑L1 gene (PARK5) encodes the ubiquitin 
carboxy-terminal hydrolase L1, which is a component 
of LB and possesses both a hydrolase activity to generate 
the ubiquitin monomer and a ligase activity to link 
ubiquitin molecules to tag proteins for disposal.[114] The 
detection of an Ile93Met mutation in the UCH-L1 gene 
in a German family with autosomal dominant PD[115] 
suggested a role for an impaired ubiquitin-proteasomal 
activity in PD pathogenesis. In contrast, a Ser18Tyr 
polymorphism affecting mainly the ligase activity has 
been suggested to have a protective effect in PD in 
some association studies.[116] However, a subsequent 
large case-control study involving 3,044 PD cases and 
3,252 controls, failed to replicate the association.[117]

Omi/HtrA2
The gene Omi/HtrA2 (PARK13) encodes a serine-protease 
with pro-apoptotic activity containing a mitochondrial 
targeting sequence at its N-terminal region.[118] Several 
lines of evidence in the literature support a role for 
Omi/HtrA2 in neurodegeneration.[119,120] The first 
pathogenic mutation (G399S) a risk variant (A141S) 
for PD were identified in a German cohort.[121] 
However, a later case-control study screening the 
whole coding region of Omi/HtrA2 revealed that 
neither of the two variants was overrepresented in the 
patients.[122] Although another mutation, R404W, was 
found in Belgian PD patients,[123] it is not clear whether 
it is associated with PD patients in other populations. 
Further, the most recent large-scale analysis of the 
five most informative SNPs spanning the Omi/HtrA2 
gene in a cohort of 6,378 cases and 8,880 controls 
from 20 sites worldwide again confirmed the lacking 
of association of Omi/HtrA2 variants with PD.[124] 
Therefore, the genetic basis for the involvement of 
Omi/HtrA2 is still not conclusive at this point.

GIGYF2
Recently, it has been proposed that the GIGYF2 gene 
corresponds to the PARK11 locus causes a form 
of autosomal-recessive familial PD.[125,126] In two 
independent French and Italian familial PD populations, 
10 changes in 16 unrelated PD patients were found 
in the shortest form of GIGYF2, yielding a mutation 
frequency of 6.4%.[127] However, no disease-causing 
mutations were found in other European populations[128] 

and in recent months, over 10 replication studies have 
provided conflicting data, casting considerable doubt 
on the causal role of GIGYF2.[129] In addition, a pooled 
analysis of over 4,500 PD and 5,500 controls revealed 
that the estimated frequency of GIGYF2 mutations in 
the entire replication cohort was only about 0.001%.[127] 
Furthermore, the presence of mutations in healthy 
population controls or within asymptomatic family 
members of PD patients argues against causality even 
if longitudinal data are not available. Thus, unless 
new information emerges to suggest otherwise, it is 
reasonable to conclude that GIGYF2 does not play a 
major role in PD.

VPS35
The most recently described cause of monogenic PD 
is the mutations of a gene encoding vacuolar protein 
sorting-associated protein 35 (VPS35), which were 
identified by the next-generation of sequencing 
technique.[130,131] Vilariño-Güell et al.[130] described the 
identification of the p.D620N mutation in VPS35 within 
affected members of a Swiss kindred and three other 
families with late-onset, autosomal dominant PD, and 
in one sporadic PD case. At the same time, Zimprich 
et al.[131] published the identification of the p.D620N 
mutation in a large multigenerational Austrian family 
with PD and in two additional families screened for 
VPS35 mutations. Both groups also identified additional 
mutations in VPS35; however, the pathogenicity of 
these additional variants remains unknown. Moreover, 
VPS35 mutations have been detected only in whites 
with PD. Studies in both Chinese and Japanese have 
excluded an association between VPS35 mutations and 
sporadic PD.[132-134]

PLA2G6
Mutations in phospholipase A2, group VI (PLA2G6)[135] 
usually cause an early-onset recessive degenerative 
disorder with spasticity, ataxia and dystonia; however, 
later adult onset forms of the disease can present with 
a dystonia predominant parkinsonism.[136] The patients 
with PLA2G6 homozygous mutations presented in 
their 20s with slowly progressive gait problems, 
clumsiness, imbalance, hand tremor, cognitive decline 
and dysarthria. Most patients with Parkinsonism are 
Levodopa-responsive at first, but this usually lasts only 
1-2 years. PLA2G6 mutations have been screened for 
both early- and late-onset PD. Although SNPs have 
been identified in PD patients, none of these has been 
convincingly associated with the risk for PD.[137,138]

EIF4G1
Most recently, translation initiator mutations in 
EIF4G1 were genetically linked to autosomal dominant 
late-onset PD with brainstem Lewy body pathology.[139] 
EIF4G1 is a central component of the EIF4F complex 
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that regulates translation of mRNAs with highly 
structured 5’-sequences. The most popular mutations, 
p.Ala502Val and p.Arg1205His mutation were found 
to be with PD in some population. However, later 
replication studies in multiple ethnicities failed to 
confirm EIF4G1 mutations as a cause or a susceptible 
factor for familial or sporadic PD.[133,140,141]

BST1
Recently, GWAS in PD have provided association 
evidence at 16 loci, including a region encompassing 
a gene encoding bone marrow stromal cell antigen 
1 (BST1) on 4p15.[142] Interestingly, all PD-associated 
single-nucleotide polymorphisms (SNPs) on the 
BST1 locus lie within linkage disequilibrium blocks 
containing only the BST1 gene.[142] However, by direct 
sequencing of the entire coding region of BST1, we did 
not reveal a variant associated with PD.[143]

CONCERNS ON THE TRANSLATION OF GENETIC 
INFORMATION INTO CLINICAL APPLICATIONS

Molecular diagnosis of Parkinson’s disease: possibilities 
and concerns
As mutations in several genes are able to cause 
monogenic forms of PD, molecular diagnosis using 
these mutations for familial PD is possible. However, 
cautions must take before extensive applications of 
these mutations to genetic counseling, because most of 
our knowledge about the genetic basis of PD remains 
preliminary. According to the latest European Federation 
of Neurological Societies guidelines on the molecular 
diagnosis of PD,[144] for mutations that are detected 
in rare familial forms of PD, such as point mutation 
or multiplication of SNCA in familial PD, molecular 
diagnosis should be considered only for clearly familial 
cases. Even for the LRRK2 genes in which mutations 
are much more prevalent in Europeans, molecular 
testing is only recommended for cases with dominant 
inheritance of parkinsonian syndromes, and testing 
for the G2019S mutation is only recommended for 
familial and sporadic patients in the Ashkenazi Jews 
or North African Arabs. Similarly, testing for mutations 
in recessive PD-genes (parkin, PINK-1, DJ-1) is only 
recommended for families suggestive of recessive 
inheritance (affected sib pairs) or sporadic patients 
with very early onset (< 35 years). For most of the other 
mutations, using of them for genetic testing should wait 
until their causative role in the disease is convincingly 
established.

Use of genetic variation as predictive biomarkers for 
Parkinson’s disease: is it possible now?
A biomarker is a substance used as an indicator of 
normal biologic and pathogenic processes, or responses 
to a therapeutic intervention. Biomarkers for PD may 

be directed at disease risk, disease progression, or both. 
A mutation or genetic variant can be considered a risk 
biomarker for PD if it is associated with the disease. The 
discovery of mutations that cause monogenetic forms 
of PD has allowed clinical investigators to determine 
the cause of the disease and to predict the risk for 
developing the disease. However, at least two factors 
have to be simultaneously considered before defining 
such mutations as biomarkers: the penetrance of the 
mutations and the variability of AAO of PD caused 
by the mutations. Mutations that confer high risk of 
developing a disease usually display a high penetrance 
(> 80%), and the variability of AAOs of patients 
carrying such mutations is usually low. In autosomal 
dominant form of PD, the most affirmatively causative 
mutations are those within the SNCA and LRRK2 
genes. Point mutations, duplications, and triplications 
of SNCA cause PD with high penetrance. However, the 
AAO of each mutation type in this gene is associated 
with a fairly high variability among cases (ranging 
from mid- 30s to late 80s), making it difficult to use 
these mutations to predict the onset and course. On the 
other hand, although the causative role of the LRRK2 
G2019S mutation is not in question, and the AAO is less 
variable (usually at 60s), it is clear that the penetrance 
of this gene is only 30-40%. Therefore, carrying this 
mutation does not unequivocally predict development 
of PD during a lifetime.[145] The situation for the risk 
variants associated with the onset and progression of 
sporadic PD are even more complicated and puzzling 
as it may involve multiple independent and interactive 
factors. Thus, the value of a genetic biomarker in 
predicting an individual’s risk of developing the disease 
is questionable at the current stage.

Can genetic variations help in molecular classification of 
Parkinsonian disorders?
Parkinsonian disorders are a group of clinically and 
pathogenically diverse disorders. For diagnostic and 
therapeutic purposes, it has long been expected to 
classify this clinical complex further. Currently, the 
classification of these disorders is mainly based on 
pathological findings. According to autopsy findings, 
the histological characteristics in the patients’ 
brain have been classified as α-synucleinopathies 
and non-α-synucleinopathies, the latter including 
tauopathies, TDP-43 proteinopathies and nonspecific 
degeneration in the pars compacta of the substantia 
nigra (SNPc).[146] However, this classification is made 
postpartum and, therefore, less useful for preclinical 
and clinical diagnosis. Interestingly, studies have 
demonstrated that similar pathologies might result 
from the influence of mutations in genes that are part 
of the same pathways.[11,147] For example, PD cases 
with mutations in SNCA, LRRK2 and GBA genes 
usually display a common α-synuclein pathology, 
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while those with mutations in the MAPT gene tend 
to possess both α-synuclein and tau pathologies. In 
contrast, except for nonspecific neuronal loss and 
gliosis, no histopathological hallmark was revealed 
in most of the AR-JP patients caused by mutations 
in the parkin gene.[146] Moreover, many variations in 
these genes are not only associated with increased 
risk for PD, but strongly correlate with certain profiles 
of the disease. Hence, it is reasonable to assume that 
genetically determined loci, especially when combined 
with pathological and clinical information, can help 
in establishing a classification for PD. In a recent 
study, we have investigated clinical profiles of PD 
related to LRRK2 (LRRK2-PD), GBA (GBA-PD) variant, 
or none of the variants (idiopathic PD, IPD).[148] As 
a result, LRRK2-PD is largely similar to IPD, while 
GBA-PD patients had an earlier onset and more 
frequent and severe nonmotor symptoms. These results 
favor the feasibility of genetic classification of PD. 
However, since much of our knowledge about the 
genetic-pathologic-clinical axis of parkinsonism is 
quite limited so far, there is still a long way ahead before 
a rational nosology for parkinsonian disorders linked 
to their genetic underpinnings is made and before the 
classification becomes a practice guideline.

CONCLUDING REMARKS AND FUTURE 
RESEARCH CONCERNS

The past decade has been an exciting time for 
investigators involved in genetic research in PD. The 
rapidly emerging evidences of the genetic contribution 
to PD have changed the way we think about the disease. 
However, we are still not able to see a complete genetic 
picture of the disease. Many concerns remain to be 
addressed. First, the highly genetic heterogeneity among 
populations reminds us that the genetic information of 
a gene or locus provided by current studies for certain 
populations is limiting and segmentary. For example, 
although the link of the LRKK2 G2019S mutation to 
PD in multiple populations has been well-established, 
it provides little information for Eastern Asians. The 
emerging evidences for the contribution of another 
variant, G2385R, residing in a different domain of 
the protein may suggest a yet-unknown, but sharply 
different story of LRRK2 from that of the G2019S 
mutation. Thus, before characterizing the roles played 
by G2385R or other potential significant variants, a 
complete genetic behavior of LRRK2 should not be 
described merely by the G2019S information, nor 
should it be applied extensively to clinical practice. 
Similarly, it is not reasonable to overestimate the 
genetic contribution of the H1 haplotype of MAPT gene 
because the homozygous H1 allele is dominant while 
the H2 haplotype lacks in Asians. These problems 
necessitate clinical and genetic studies surrounding 

the population-specific variants. Second, most of 
the current genetic studies are focused on sequence 
variations (i.e. point mutations or SNPs) and much less 
have been directed to copy-number variations (CNVs), 
whose pathogenic or predisposing effects sometimes 
are even more evident and important. Dosage mutations 
of the parkin gene, for instance, have been suggested 
to be more pathogenic than the sequence mutations for 
familial PD among Europeans. Therefore, large-scale 
and multi-central analysis of CNVs are urgently needed 
to improve the image of risk genetic variants for PD. 
Third, the work on genetic mechanisms underlying 
PD is far away from just identifying mutations or risk 
variants. We have to figure out how these variants 
act on the disease, e.g. how they interact with other 
genes and/or environmental factors, and how they are 
linked to pathophysiological pathways involved in PD. 
In addition, prospective studies of presymptomatic 
carriers of mutations or risk genetic variants of PD 
genes are necessary to confirm their genetic roles in 
the disease development and progression.
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