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Abstract
Aim: Pneumonia is the most frequent early postoperative complication in liver transplantation (LT) recipients. 
Inflammation may provide a favorable environment for tumor implantation, so we aimed to evaluate the impact of 
pneumonia on pulmonary metastasis of hepatocellular carcinoma (HCC) and reveal its underlying mechanism.

Methods: A training cohort with 234 LT recipients were recorded and analyzed. Using the propensity-score 
method, we matched covariates between patients with and without pneumonia. A model for predicting pulmonary 
metastasis was built and validated in an independent validating cohort containing 179 subjects. A mouse model 
was built to mimic HCC pulmonary metastasis. The potential pathway was revealed by cytokine array analysis and 
validated in vitro.

Results: Pneumonia was an independent risk factor for pulmonary metastasis in liver transplant recipients. It 
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promoted pulmonary metastasis in both the clinical setting and the mouse model. In vitro, LPS-stimulated VEGF 
secretion from macrophages in the lung significantly reduced cell apoptosis and activated PI3K/AKT/cas-9 
signaling. Administration of VEGF receptor2 inhibitor Vatalanib could reduce metastasis and improve prognosis in 
pneumonia mice.

Conclusion: Pneumonia promotes HCC pulmonary metastasis by activating PI3K/AKT/Cas-9 signaling in HCC 
cells via macrophage-originated VEGF. Vatalanib might be efficient in reducing HCC pulmonary metastasis in liver 
transplant recipients with pneumonia.
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INTRODUCTION
Hepatocellular carcinoma (HCC) is the fifth most common lethal cancer and ranks third among cancer-
related deaths worldwide[1]. A net increase of 62% in HCC-related annual death rate was seen in the past two 
decades[2]. Liver transplantation (LT) provides a possible cure for both HCC and underlying liver disease[3]. 
However, HCC metastasis is a major obstacle to long-term survival after LT. Although candidate selection 
criteria such as Milan Criteria[4] were introduced, and various strategies such as donor liver preservation, 
down-staging and targeted therapy were recently developed for reducing the recurrence risk, the 5-year 
recurrence rates were not dramatically improved, ranging from 10.0% to 23.6%[5-7]. Looking deeper into the 
recurrence/metastasis type, we know that typically, HCC recurrence occurs intrahepatically after partial 
hepatic resection. In contrast, extrahepatic metastasis, particularly pulmonary metastasis, is the major 
pattern after LT. The incidence of pulmonary metastasis was 8.0%-26.7%[8,9], accounting for roughly half of 
all recurrences/metastases in liver transplant recipients[10]. Nevertheless, the underlying mechanism of 
pulmonary metastasis after LT is elusive.

Recently, the impact of inflammation on cancer metastasis has received increasing attention. Previous 
studies showed that lung inflammation promoted pulmonary metastasis of several types of tumors[11-14]. 
Inflammation-induced lung metastasis could be attenuated by aspirin or antibiotics[12,15]. The global 
incidence of early postoperative infections is estimated to be over 20%. Among them, pneumonia is the 
predominant form for LT recipients[16,17]. Because of transplant-specific risk factors such as 
immunosuppression, the incidence of pneumonia is much higher in LT recipients than patients receiving 
partial hepatectomy (8%-48% vs. 2%-5%)[18,20]. Therefore, in this study, we aimed to assess the association 
between pneumonia and HCC pulmonary metastasis after LT and to elucidate the possible mechanisms.

METHODS
After excluding patients with incomplete information, loss to follow-up, or perioperative death, 234 adult 
HCC patients receiving primary LT from donation after citizens’ death from January 2015 to February 2019 
in our center were enrolled as a training cohort, and another independent cohort of 179 subjects from 
Shulan Hospital Affiliated to Zhejiang Shuren University between 2017 to 2019 was designated for further 
validation of the predictive model. 212 patients in the training cohort and 163 patients in the validating 
cohort were within Hangzhou Criteria as we previously reported[5]. All cases were in accordance with the 
Regulations on Human Organ Transplant and national legal requirements. No organs from executed 
prisoners were used. Patients received triple immunosuppressant therapy incorporating tacrolimus, 
mycophenolate, and a steroid, as we previously reported[21]. This study complies with the guidelines of 
China Ethical Committee and the Declaration of Helsinki. Informed consents were obtained from all 
participants. Demographic and pathological information including cirrhosis, Child-Pugh score, and 
ischemia time were collected retrospectively. Based on their microscopic appearance, the pathologist 
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classified HCC into four grades: well-differentiated (Grade 1), moderately differentiated (Grade 2), poorly 
differentiated (Grade 3), or undifferentiated (Grade 4). Pneumonia was diagnosed based on chest imaging 
showing infiltrates, accompanied by fever (temperature > 38.3 °C or < 36 °C), leukocytosis (white blood cell 
count > 10 or < 4 g/L), and clinical symptoms such as a new or worsening cough, dyspnea, and purulent 
secretions[22]. To exclude the possibility that pneumonia was induced by lung metastatic tumors, pneumonia 
in this study was defined as a lung infection that occurred before the detection of metastasis. Pulmonary 
metastasis was suspected by imaging and finally confirmed by pathology.

For the mouse model, six-week-old male Balb/c mice were used for the experiments. Each experimental 
group comprised ten randomly assigned animals. All animals were treated humanely in accordance with the 
guidelines detailed in the “Guide for the Care and Use of Laboratory Animals” by the National Academy of 
Sciences, as published by the National Institutes of Health. Institutional and national guidelines for the care 
and use of laboratory animals were followed. Mouse pneumonia model was induced as reported in[11]. 1 × 
106 H22 cells in 100 μL PBS were injected into the tail vein, and immediately thereafter, 20 μg of LPS in 50 μ
L PBS were intra-nasally administered. Controls received PBS only. To deplete macrophages, clodronate 
liposomes (1.4 mg/20 g body weight) or an equal volume of PBS liposomes were injected intraperitoneally 
every other day. Vatalanib was administrated by gavage at a dose of 50 mg/kg per day as recommended[23]. 
Mice were sacrificed and lung tissues were fixed in 4% formaldehyde.

Hematoxylin-eosin staining
Preparation of lung sections and histopathological techniques was performed according to standard 
protocols[24]. Paraffin-embedded tissues were sectioned at 4 μm for histological and immunohistochemical 
analysis. The sections were stained with hematoxylin-eosin and evaluated under a microscope for 
histological examination. Two independent observers performed all histological assessments in a blinded 
fashion.

Immunocytochemistry
Cells were seeded on slides, incubated for 24 h, and then fixed with paraformaldehyde for 30 min at 4 °C. 
After rinsing three times in PBS, nonspecific proteins were blocked with serum for 30 min at room 
temperature. The cells were then incubated overnight at room temperature with the anti-VEGF receptor 2 
antibody and subsequently washed twice in PBS. Following this, the cells were incubated for 1 hour with 
goat anti-rabbit immunoglobulin G-conjugated horseradish peroxidase diluted at 1:1,000, followed by a PBS 
wash. Finally, the cells were stained with diaminobenzidine.

Immunohistochemistry, and immunofluorescence staining
Specimens were sliced into 4 μm sections, de-waxed with xylene, and rehydrated using graded ethanol. 
Antigen retrieval was conducted in a microwave at 95 °C for 20 min, followed by cooling to room 
temperature. To block nonspecific binding sites, sections were treated with 5% bovine serum albumin (BSA) 
for 1 h. Subsequently, the sections were incubated with anti-VEGF and anti-CD31 antibodies. 
Representative fields were selected from each section.

Cell culture
The human HCC cell lines Huh-7 and SK-Hep-1, mononuclear cell line THP-1, lung fibroblasts HFL-1 and 
epithelium-derived lung adenocarcinoma cell line A549 were cultured in the supplier-recommended 
complete growth medium. All cells were maintained at 37 °C in a humidified incubator with 5% CO2. To 
induce monocyte-macrophage differentiation, THP-1 cells were treated with 150 nM phorbol 12-myristate 
13-acetate (PMA) for 48 h. Cells were washed with cold PBS and then cultured with medium containing 50 
ng/mL LPS or an equal volume of PBS for another 48 h. The supernatant was filtered and centrifuged at a 
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speed of 3,000 g to remove cells and cell debris. The supernatants (LPS-conditioned and Control-
conditioned) were then used to culture HCC cells for 48h. The VEGFR2 inhibitor Vatalanib[25,26], PI3K 
inhibitor LY294002[27,29], and AKT inhibitor MK-2206 2HCl[30] were provided by Sellleck (Selleck Chemicals, 
Houston, TX, USA), and used at recommended concentrations.

ELISA
The concentration of VEGF in the supernatant was measured using the Human ELISA Kit (Raybiotech, 
ELH-VEGF-1), following the manufacturer's instructions. Results were read at 450 nm with an Absorbance 
Reader (BIO-TEK ELX800). Each sample was tested in triplicate, and the average value was used for 
analysis.

Western blot
Total proteins were extracted from cells. Anti-β-actin antibody (Abcam, ab8226, 1:2,000), 
anti-PI3Kantibody (CST, #3358, 1:1,000), anti-PI3K p85 (19H8) (CST, #4257, 1:1,000), anti-AKT (CST, 
#4691, 1:1,000), anti-Phospho-AKT (Ser473) (CST, #4060, 1:1,000), anti-Caspase 9 (CST, #9508, 1:1,000), 
and anti-Cleaved Caspase-9 (Asp330) (CST, #7237, 1:1,000) were used. Immunodetection was carried out 
using an EZ-ECL chemiluminescence detection kit (BeitHaemek, Israel).

Tumor migration and invasion assay
For migration assay, polycarbonate membrane transwell and Matrigel were used. A total of 1 × 104 HCC 
cells were suspended in 200 μL of serum-free medium and seeded into the upper chamber. The lower 
chamber was added with 700 μL of MEM containing 10% FBS. For invasion assay, 40 μL 1:8 diluted Matrigel 
was placed into the inserts and medium was removed without disturbing the layer of Matrigel on the 
membrane after rehydration. After incubation at 37 °C for the specified duration, cells remaining on the 
upper surface were removed using cotton swabs. The membranes were then fixed in paraformaldehyde and 
stained with 0.5% crystal violet. Cells on the lower surface were counted in randomly selected fields under a 
microscope (100X). The experiments were repeated independently three times.

Cell cycle and apoptosis assay
For cell cycle analysis, cells were harvested and fixed in ice-cold 75% ethyl alcohol at 4 °C overnight. After 
incubation with DNA PREP kit solution in the dark for 30 min, the cell cycle was detected by FACS and 
analyzed using ModFit LT 3.1 software. Apoptosis was assessed using an FITC Annexin V Apoptosis 
Detection Kit II and analyzed with a flow cytometer. All experiments were performed in triplicate.

Statistical analysis
Continuous variables were analyzed using Student's t-test, while categorical variables were evaluated using 
Pearson's chi-square test. Univariate analysis was performed for the potential prognostic factors, and the 
parameters that exhibited statistical significance were then included in multivariate logistic regression to 
identify the most critical characteristics of pulmonary metastasis. SPSS for Windows version 22.0 was used 
for all statistical analyses, and p value less than 0.05 was considered statistically significant. R software 
(version 4.0.2) was applied to integrate independent predictors of pulmonary metastasis into a nomogram 
in the training cohort. Propensity scores were estimated using a logistic model with the SAS software 
package 9.4.

RESULTS
Pneumonia independently increased the pulmonary metastasis risk in liver transplant recipients
For the training cohort, the median follow-up time was 31.6 months (ranging from 8 to 55 months). Among 
75 patients with recurrence/metastasis, 48 had pulmonary metastasis (16 had sole pulmonary metastasis, 32 
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had both pulmonary and other site recurrence/metastasis, including liver graft, bone and other sites). As 
seen in Table 1 and [Supplementary Table 1], Patients with pneumonia had a higher rate of pulmonary 
metastasis when compared with recipients without  pneumonia (38.6% vs. 10.6%, P < 0.001).

As shown in Table 2, tumor number, AFP level, microvascular invasion (MVI), and pneumonia were 
significantly associated with pulmonary metastasis and overall survival (P < 0.05). History of ICU stay was 
correlated only with recipients’ overall survival (P < 0.05). Multivariate analysis showed that history of ICU 
stays, AFP level, and pneumonia impacted overall survival. AFP level, MVI, and pneumonia were 
independent risk factors for pulmonary metastasis [Table 3]. Recipients with post-LT pneumonia exhibited 
an increase in pulmonary metastasis (P <0.001, Figure 1A) and a significant reduction in overall survival 
(P < 0.001, Figure 1B). To reduce the impact of bias, a propensity analysis was achieved using SAS, 
incorporating preoperative variables. Matching based on propensity scores yielded 72 patients in each group 
for analysis of postoperative outcomes. Consequently, pneumonia was found to exacerbate pulmonary 
metastasis (P < 0.001, Figure 1C) and adversely impact overall survival (P = 0.015, Figure 1D) in this selected 
cohort.

Nomogram constructed was effective in predicting pulmonary metastasis
Based on risk factors including pneumonia, a nomogram predicting pulmonary metastasis of LT recipients 
was  constructed  [Figure 1E], and th i s  nomogram worked e f fec t ive ly  (C- index  0 .776 ,  
Supplementary Figure 1). This model was further verified in an independent validating cohort containing 
179 subjects from another LT center, and the C-index reached 0.794 when predicting pulmonary metastasis 
[Figure 1F].

Pneumonia promoted pulmonary metastasis of HCC cells in mice model
To better illustrate the association between pneumonia and pulmonary metastasis, we established an LPS-
induced mouse pneumonia model [Supplementary Figure 2] and injected H22 cells into the tail vein to 
mimic the HCC recurrence. The preliminary experiment showed a median survival of 13 days of the H22 
cells-injected mice. Therefore, we performed Magnetic Resonance Imaging 10 days after cell injection to 
evaluate the tumor growth in the lung. We found significantly exacerbated pulmonary metastasis in the 
pneumonia group as compared with control [Figure 2A]. The following pathology confirmed the results 
that pneumonia mice had higher tumor burden in the lung [Figure 2B and C].

Pneumonia increased VEGF secretion in pulmonary macrophages
Since angiogenesis is a key process in regulating tumor metastasis[31-33], we assessed the microvessel density 
using CD31 staining and found significantly higher CD31 intensity in the pneumonia group compared with 
control [Figure 2D and E]. We further examined the expression of VEGF and TGF-β, cytokines regulating 
angiogenesis. In the mice lung, we found a time-dependent elevated VEGF level after LPS stimulation 
[Figure 2F], while the intensity of TGF-β remained almost constant [Supplementary Figure 3]. To reveal the 
origin of VEGF, we tested the concentration of VEGF in the supernatants of THP-1-derived macrophages, 
lung fibroblasts HFL-1, and lung epithelium-derived cell line A549 stimulated with LPS or not. Although 
they produced comparable levels of VEGF in normal conditions, when stimulated with LPS, only THP-1-
derived macrophages produced dramatically elevated VEGF [Figure 3A]. Consistently, in vivo, macrophage-
depleted mice [Supplementary Figure 4] showed significantly decreased VEGF intensity in the lungs when 
instilled with LPS [Figure 3B]. Taken together, VEGF was mainly originated from macrophages following 
LPS instillation.

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202406/hr4050-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202406/hr4050-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202406/hr4050-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202406/hr4050-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202406/hr4050-SupplementaryMaterials.pdf
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Table 1. Clinicopathological features of LT recipients

Pneumonia (-) Pneumonia (+) P value

male 131 78Gender

female 20 5

0.087

Age 52.61 ± 9.23 52.89 ± 9.04 0.826

- 13 3HBV

+ 138 80

0.148

- 6 2Cirrhosis

+ 145 81

0.715

single 66 30Tumor number

multiple 85 53

0.270

Diameter (cm) 5.22 ± 4.52 6.41 ± 5.2 0.330

WIT (min) 9.63 ± 7.49 8.77 ± 5.89 0.335

CIT (h) 9.43 ± 3.28 9.52 ± 3.06 0.824

AFP level (ng/mL) 4028.6 ± 14074.1 3344.8 ± 11683.1 0.708

ICU stay (days) 222.7 ± 104.7 242.6 ± 179.7 0.359

MELD score 15.61 ± 10.49 14.96 ± 9.27 0.640

- 91 53MVI

 
+ 

60 30

0.689

1 17 11

2 78 41

3 54 30

HCC Differentiation

4 2 1

0.971

I 46 25

II 49 24

III 53 32

TMN stage

IV 3 2

0.932

Tacrolimus  
(ng/mL)

7.94 ± 2.51 7.71 ± 2.46 0.791

- 135 51Pulmonary metastasis

+ 16 32

< 0.001

Macrophage-derived VEGF promotes carcinogenesis via inhibition of apoptosis through 
PI3K/AKT/Cas-9 signaling besides angiogenesis
We found HCC cells expressed abundant VEGF receptor 2 (VEGFR2) [Figure 4A]. When cocultured with 
LPS-conditioned medium, HCC cells presented significantly reduced cell apoptosis [Figure 4B], although 
there were no significant changes in proliferation, migration, or invasion after co-culturing 
[Supplementary Figures 5-7]. The KEGG analysis based on the cytokine array indicated that PI3K/AKT 
signaling was significantly affected [Figure 5A]. Moreover, we also observed increased expression of PI3K 
p85, phosphorylated AKT (Ser473), Caspase-9, but decreased expression of cleaved caspase-9 in HCC cells 
cocultured with LPS-conditioned medium [Figure 5B]. The VEGFR2 inhibitor Vatalanib, PI3K inhibitor 
LY294002, or AKT inhibitor MK-2206 2HCl reversed the effect caused by coculture [Figure. 5B and C]. The 
decrease in apoptosis was also attenuated by Vatalanib [Figure 5D].

In vivo, Vatalanib administration dramatically improved the prognosis of the pneumonia mice [Figure 5E]. 
No obvious adverse effects such as diarrhea were observed in mouse model. Moreover, microvessel density 
in the metastatic nodules was also decreased [Figure 5F and G].

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202406/hr4050-SupplementaryMaterials.pdf
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Table 2. Univariate analysis for overall survival and pulmonary metastasis

Overall survival Pulmonary metastasis

Hazard Ratio P value Hazard Ratio P value

Age 1.018 0.170 0.991 0.587

MELD score 1.017 0.078 1.013 0.329

ICU stay 1.002 0.009 0.998 0.295

Tumor number 1.897 0.012 2.308 0.012

Tumor diameter 0.998 0.543 1.001 0.127

Tumor Differentiation 0.900 0.114 0.853 0.087

AFP level 2.204 < 0.001 2.644 < 0.001

CHILD score 1.089 0.074 1.023 0.724

WIT 1.012 0.452 1.020 0.333

CIT 1.064 0.066 1.032 0.481

SEX 0.686 0.375 0.729 0.544

Cirrhosis 1.158 0.804 1.654 0.503

HBV infection 1.862 0.291 NA NA

MVI 2.539 < 0.001 2.215 0.007

Pneumonia 1.857 0.006 5.435 < 0.001

Table 3. Multivariable hazard ratios for overall survival and pulmonary metastasis

Overall survival Pulmonary metastasis

Hazard Ratio P value Hazard Ratio P value

ICU 1.002 0.014 NA NA

AFP 2.204 < 0.001 2.308 0.007

Tumor number 1.274 0.376 1.035 0.079

MVI 1.886 0.008 2.806 < 0.0001

Pneumonia 1.606 0.042 6.360 < 0.0001

DISCUSSION
The ambiguity and complexity of pulmonary metastasis make it difficult to predict or intervene. To the best 
of our knowledge, this is the first study to evaluate the impact of post-LT pneumonia on HCC metastasis. 
We found that pneumonia was a very common phenomenon after LT and an independent risk factor for 
pulmonary metastasis based on two independent cohorts from different LT centers. On the one hand, 
pneumonia itself is one of the leading causes of sepsis and mortality after liver transplantation[18]. On the 
other hand, it increases the risk of pulmonary metastasis. Therefore, we should take intensive care of the 
post-LT recipients to prevent pneumonia. For the recipients already with pneumonia, close follow-up will 
be needed.

Hospital-acquired pneumonia early following LT is predominantly caused by Gram-negative bacteria. This 
group of pathogens induce pneumonia through the secretion of LPS. Therefore, the LPS-induced mouse 
pneumonia model could fully imitate the hospital-acquired pneumonia of the LT recipients during their 
hospital stay. In this study, not only clinical investigation but also in vivo models proved that pneumonia 
promotes HCC pulmonary metastasis. Local inflammation facilitates tumor metastasis through various 
mechanisms, such as triggering the formation of neutrophil extracellular traps and enhancing adhesion 
capacity at the metastatic site[14,34,35]. As is well known, angiogenesis plays a pivotal role in tumor 
metastasis[36-38]. We found that microvessel density in the metastatic nodules of pneumonia mice was 
significantly elevated. Furthermore, VEGF, the key angiogenesis modulator, was remarkably upregulated 



Page 8 of Zhuang et al. Hepatoma Res 2024;10:25 https://dx.doi.org/10.20517/2394-5079.2024.5013

Figure 1. Pneumonia increases pulmonary metastasis and nomogram incorporating risk factors is effective. Liver transplantation 
recipients for HCC with pneumonia had increased pulmonary metastasis (A) and decreased overall survival (B). After PSM, two paired 
groups of patients were formed, with 72 subjects in each. Recipients with pneumonia showed increased pulmonary metastasis (C) and 
shortened overall survival (D); Nomogram incorporating risk factors predicted pulmonary metastasis for LT recipients (E) and was 
externally validated in an independent cohort (C-index 0.794, F)

following LPS instillation.

For VEGF, there are abundant existing studies concerning the pro-angiogenesis effect of VEGF[39,40]. It is 
capable of leading to leaky vascular networks that facilitate tumor cell invasion and induce EMT[41,42]. In this 
study, we found that macrophage-derived VEGF may inhibit apoptosis by activating PI3K/AKT/Cas-9 
signaling. Elevation of VEGF induced by pneumonia in the lung may thus foster a pro-metastatic niche. The 
high incidence of pneumonia in patients receiving LT may partially explain why lung metastasis is more 
prevalent compared with liver resection or locoregional therapies. Anti-angiogenesis agents targeting the 
VEGF/VEGF receptor pathway have become a crucial component of standard therapy for various cancer 
types[43,45], so we explored the potential of preventing pulmonary metastasis through the administration of 
VEGFR2-specific inhibitor Vatalanib[25,46,47]. We found that prophylactic administration of VEGFR2 
inhibitor Vatalanib could ameliorate HCC pulmonary metastasis for the pneumonia mice. As this 
therapeutic effect was only observed in a mouse model with a small sample size, it is only a hypothesis and 
further validation is needed.
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Figure 2. Pneumonia facilitated HCC pulmonary metastasis and angiogenesis in mouse models. (A) MRI images of the control and 
pneumonia mice; Mean metastatic nodule number (B) and diameter (C); Representative images of CD31 staining of the metastatic 
nodules of control (D) and pneumonia group (E); (F) VEGF was upregulated consecutively in the pneumonia mice lungs for at least 96 
hours following LPS instillation. ***: P < 0.001

Figure 3. VEGF was originated from macrophage. (A) Concentration of VEGF in supernatants of THP-1-derived macrophages, lung 
fibroblast cell line HFL-1, and lung epithelium-derived adenocarcinoma cell line A549 stimulated with LPS or not; (B) 
Immunohistochemistry staining of VEGF of lungs in the control or macrophage-depleted mice.

Immunosuppressants could also influence HCC recurrence after live transplantation. Limiting the use of 
CNI and using m-TOR inhibitors could help reduce HCC recurrence rates[48]. However, owing to 
differences in metabolic rates, equal administration of immunosuppressants could result in different plasma 
concentrations in mice. Therefore, immunosuppressants were not used in the mouse model.
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Figure 4. LPS-conditioned medium ameliorated HCC cell apoptosis. (A) Immunofluorescence staining of VEGFR2 for HCC cell lines 
Huh-7 and SK-Hep-1, with human umbilical vein endothelial cells as positive control; LPS-conditioned medium inhibited apoptosis of 
the Huh-7 (B) and SK-Hep-1 (C) cells.

Figure 5. LPS-conditioned medium activated PI3K/AKT/Cas-9 signaling and prophylactic administration of Vatalanib improved the 
prognosis of the pneumonia mice. (A) KEGG analysis based on cytokine array; (B) Western blot of PI3K/AKT signaling of HCC cells 
cultured in the Control-conditioned and LPS-conditioned medium; (C) Activation of the PI3K/AKT signaling was abrogated with PI3K 
inhibitor LY294002 or AKT inhibitor MK-2206 2HCl; Changes in apoptosis of Huh-7 (D) and SK-Hep-1 (E) was abrogated by 
Vatalanib; (F) Cumulative survival of the pneumonia mice administered with PBS or Vatalanib (P < 0.05); CD31 staining of the 
metastatic nodules of the pneumonia mice administered with PBS (G) or Vatalanib (H).

The primary limitation of this study is that the cohort enrolled is small, especially the number of recipients 
with pulmonary metastasis. We hope to validate this as the number of transplantations increases. It is also 
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limited as the mouse pneumonia model, which was not immunosuppressed, could not adequately reflect the 
clinical practice.

In summary, this study provided a novel explanation for the extremely high incidence of pulmonary 
metastasis after LT. We strongly recommend an early screening and prompt treatment of pneumonia in the 
perioperative period in HCC patients. Anti-angiogenesis agents that target the VEGF/VEGF receptor 
pathway might be a promising strategy in liver recipients with pneumonia for reducing HCC pulmonary 
metastasis risk.
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