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Abstract
This paper studies the course tracking control problem of unmanned surface vessels under the influence of uncertain
dynamics, external unknown disturbances, constraints, and actuator attacks. In the design of the control scheme,
adaptive technology is applied to approach the uncertain dynamics of the system, and a nonlinear finite-time distur-
bance observer is established to reconstruct the actuator attack signal and the unknown time-varying disturbances
online. Combining disturbance compensation and adaptive technology, a finite-time course tracking control scheme
is designed. The control scheme does not need to obtain the prior knowledge of the model in advance, and it has
good robustness in the face of uncertain dynamics within the system, external disturbances, and actuator attacks. A
rigorous stability analysis is provided for the control scheme based on the Lyapunov stability theory. Finally, the sim-
ulation shows that the proposed control scheme can effectively resist the influence of actuator attacks and external
uncertain disturbances.

Keywords: Actuator attacks, course tracking, unmanned surface vessel, finite-time disturbance observer

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0
International License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, shar-

ing, adaptation, distribution and reproduction in any medium or format, for any purpose, even commercially, as long as you
give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate
if changes were made.

www.comengsys.com

https://creativecommons.org/licenses/by/4.0/
www.comengsys.com
OAE
图章

http://crossmark.crossref.org/dialog/?doi=10.20517/ces.2023.18&domain=pdf


Page 2 of 11 Meng et al. Complex Eng Syst 2023;3:12 I http://dx.doi.org/10.20517/ces.2023.18

1. INTRODUCTION
With the continuous development ofmarine economy, unmanned surface vessels (USV) have become themost
economical and effective means of marine transportation and have received special attention in the field of ma-
rine engineering [1,2]. At the same time, the course tracking control of USV is a classic basic research topic, and
many researchers have published important research results in this field. The goal of course tracking control is
to overcome various internal and external disturbances and realize the high-precision tracking target course
of USV [3,4]. In order to complete the control task, many control methods, such as neural networks (NNs),
sliding modes, self-adaptation, event-triggered control (ETC), nonlinear feedback, and nonlinear decoration,
are applied in the design of the control scheme [5].

In course tracking control, PID has been widely used in engineering because of its simple control structure and
good control effect [6]. Witkowska et al. [7] combined backstepping and genetic algorithm to propose a course
tracking control scheme. However, this scheme does not consider the disturbance of the environment. In
addition, PID is in the face of disturbances, such as wind, waves, and currents. Its robustness also fails to meet
further demands. In order to further solve the problem of external interference, Le et al. [8] combined PID and
fuzzy logic control to develop an automatic driving scheme for surface vessels and verified the feasibility of
the control scheme through simulation. Annamalai et al. [9] developed a robust USV adaptive course keeping
control scheme combined with the gradient descent algorithm. Yang et al. [10] proposed a robust adaptive
nonlinear control algorithm for ship steering based on the projection method and Lyapunov stability theory,
which simultaneously solved the uncertain dynamics inside and outside the system. Li et al. [11] and Zhang
et al. [12] combine Radial Basis Function NNs (RBFNNS) and dynamic surface control (DSC) technology to
further discuss the problem of ”differential explosion” in backstepping.

In practice, there is often the challenge of controlling signal transmission, which can lead to channel over-
load [13]. This problem ismore prominent inmany control systems, especially when long-distance transmission
is required or when operating under harsh environmental conditions [14]. Factors such as bandwidth limita-
tions, signal delays, and others all bring great challenges to the reliability of the control scheme. ETC adopts
an event-driven approach, which triggers the controller to send a control signal only when the system state
reaches a certain condition [15]. This means that signals are only sent when adjustments or corrective control
actions are required, saving communication bandwidth. Zhang et al. [16] combined ETC technology and pro-
posed a heading tracking fault-tolerant control (FTC) scheme. This scheme effectively improves bandwidth
efficiency and saves computing resources.

In theoretical research, nonlinear feedback [17] and nonlinear decoration [18] have also been widely used in
course tracking control. In Ref. [19], a course tracking control algorithm is designed by establishing the error
driving function to address unknown time-varying disturbance, uncertain ship model parameters, and input
saturation. Zhang et al. [20] introduced a nonlinear function of heading error in the feedback loop to replace
the heading error itself and designed an improved compact backstepping controller based on the Lyapunov
candidate function. Zhang et al. [21] adopted PID technology, introduced a bipolar sigmoid function, and
designed a nonlinear feedback algorithm. Finally, the effect of the algorithm is analyzed using the theory of
closed-loop gain shaping. Cao et al. [22] proposed an active disturbance rejection control algorithm based on
nonlinear feedback to solve the problems of external disturbance, internal model uncertainty, and rudder angle
energy input in the process of ship course keeping.

Robustness is an important performance index of the ship control system, which plays a vital role in ensuring
the safe and effective operation of the ship [23]. FTC technology is widely used in the field of ship control
because of its good control effect. Compared with traditional control methods, FTC techniques focus on
achieving the control objectives of the system within a predetermined finite time. Through the research of the
above reference, this paper designs a USV robust adaptive finite-time course tracking control scheme under
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actuator attacks. The main contributions of this paper are as follows:

(1) Using the features of adaptive online approximation and high reconstruction accuracy of nonlinear finite-
time disturbance observer (NFTDO), a robust adaptive tracking control scheme based on depth information
robust adaptive method is developed. The scheme not only overcomes internal and external uncertainties but
also effectively resists the impact of actuator attacks.

(2)TheFTC technology is introduced to further improve the control performance of the course tracking system
so that the errors of the system can be converged within a finite time. Compared with traditional control
schemes, the steady-state performance and transient response of the system are improved.

2. PROBLEM FORMULATION AND PRELIMINARIES
The nonlinear ship course tracking mathematical model can be expressed in the following form [24]:

¥𝜓 + 1
𝑇
𝐹 ( ¤𝜓) = 𝐾

𝑇
𝛿 + 𝜉 + 𝜕 (1)

where 𝑇 and 𝐾 are the maneuverability index of the ship, respectively. 𝜉 is the unknown environmental dis-
turbances. 𝜕 is the actuator attack signal. 𝐹 ( ¤𝜓) = 𝑎 ¤𝜓 + 𝑏 ¤𝜓3 is a nonlinear function of ¤𝜓, where 𝑎 and 𝑏 are
constants.

Let 𝑥1 = 𝜓, 𝑥2 = ¤𝜓 = 𝑟 , 𝑢 = 𝛿, and then it can be obtained from Eq. (1)

¤𝑥1 = 𝑥2 (2)

¤𝑥2 = 𝜃𝑇 𝑓 (𝑥2) + 𝜔𝑢 + 𝜉 + 𝜕 (3)

𝑦 = 𝑥1 (4)

where 𝑦 ∈ 𝑅 is the output of the system, 𝑢 is the control input of the system, 𝜔 = 𝐾
𝑇 , 𝑓 (𝑥2) = [−𝑥2,−𝑥3

2]
𝑇 ,

𝜃 =
[
𝑎
𝑇 ,

𝑏
𝑇

]𝑇 .
Assumption 1 The external environment disturbances 𝜉 and the actuator attack signal 𝜕 are unknown and
bounded; that is, there is a constant a greater than 0, s satisfying |𝜉 | ≤ 𝜉𝑑 , |𝜕 | ≤ 𝜕𝑑 .

Assumption 2The reference course 𝑦𝑑 is smooth guideable, and ¤𝑦𝑑 and ¥𝑦𝑑 are available.

Assumption 3 Both model parameters 𝜃 and 𝜔 are unknown.

Lemma 1 [25] For system 𝑥 = 𝑢𝑐 + 𝜉, where 𝑢𝑐 is the control input, 𝜉 is the external unknown and bounded
disturbances, satisfying

�� ¤𝜉�� ≤ 𝜉𝑑 , and 𝜉𝑑 is a positive definite constant. If there are parameters 𝜆1, 𝜆2, 𝜆3
satisfying 0 < 𝜆3 < 1, 𝜆1, 𝜆2, 𝜆3 > 0, and then the disturbance observer shown in Eq. (4) can converge in a
finite time. { ¤̂𝑥 = 𝑢𝑐 + 𝜉

𝜉 = 𝜆1𝑠𝑖𝑔
𝜆3 (𝜋) + 𝜆2

∫ [
𝑠𝑖𝑔𝜆3 (𝜋)

]
𝑑𝑡

(5)

where 𝑥 and 𝜉 are estimates of 𝑥 and 𝜉, 𝜋 = 𝑥 − 𝑥, 𝑠𝑖𝑔𝜆3 (𝜋) = |𝜋 |𝜆3sgn (𝜋).

Lemma 2 [26] Assuming that there is a positive definite Lyapunov function 𝑉 (𝑥): Ω0 → 𝑅 and any scalars
𝑎 > 0, 𝑏 > 0, and 0 < 𝜅 < 1, such that the inequality ¤𝑉 (𝑥) + 𝑎𝑉 (𝑥) + 𝑏𝑉 𝜅 (𝑥) ≤ 0 holds, then the system is
finite-time stable, and its adjustment time satisfies:

𝑇 ≤ 1
𝑎(1 − 𝑡) ln

𝑎𝑉1−𝜅 (𝑥0) + 𝑏
𝑏

(6)
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Figure 1. The designed procedure of control law.

where 𝑉 (𝑥0) is the initial value of 𝑉 (𝑥).

3. CONTROL DESIGN AND STABILITY ANALYSIS
The designed procedure of control law is shown in Figure 1. First, define the error variable

𝑒𝜓 = 𝜓 − 𝜓𝑑 (7)

𝑒𝑟 = 𝑟 − 𝑟𝑑 (8)

where 𝜓𝑑 is the reference course, and 𝑟𝑑 is the virtual control variable.

Define the following virtual control variables

𝛼 = −𝛾11𝑒𝜓 − 𝛾12𝑠𝑖𝑔
𝛾13

(
𝑒𝜓

)
− 𝛾14

∫ [
𝑠𝑖𝑔𝛾13

(
𝑒𝜓

) ]
𝑑𝑡 + ¤𝜓𝑑 (9)

where 𝛾11, 𝛾12, 𝛾13, and 𝛾14 are positive definite parameters.

Then, using the following DSC technique, we can obtain the derivative of the virtual control

𝛾𝑟 ¤𝑟𝑑 + 𝑟𝑑 = 𝛼 (10)

where 𝛾𝑟 is a positive definite parameter.

Taking the derivative of Eq. (6), we can get

¤𝑒𝑟 = 𝐹 (𝑥2) + 𝜔𝑢 + 𝜉𝜕 − ¤𝑟𝑑 (11)

where 𝐹 (𝑥2) = − 𝑎
𝑇 𝑥2 − 𝑏

𝑇 𝑥
3
2, 𝜉𝜕 = 𝜉 + 𝜕.

According to Eq. (9), it can be further obtained

¤̂𝑒𝑟 = �̂� (𝑥2) + 𝜔𝑢 + 𝜉𝜕 − ¤𝑟𝑑 (12)

where �̂� (𝑥2) and 𝜉𝜕 are estimated values of 𝐹 (𝑥2) and 𝜉𝜕 , respectively.
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Define a new variable 𝛽 = 𝑒𝑟 − 𝑒𝑟 , and according to Lemma 1, we can get

𝜉𝜕 = 𝛾31𝛽 + 𝛾32𝑠𝑖𝑔
𝛾33 (𝛽) + 𝛾34

∫
[𝑠𝑖𝑔𝛾33 (𝛽)] 𝑑𝑡 (13)

where 𝛾31, 𝛾32, 𝛾33, and 𝛾34 are positive definite parameters, and 0 < 𝛾33 < 1.

The design control law is as follows
𝑢 = 𝜔−1𝜅

𝜅 = −𝛾21𝑒𝑟 − 𝛾22𝑠𝑖𝑔
𝛾23 (𝑒𝑟 ) − 𝛾24

∫
[𝑠𝑖𝑔𝛾23 (𝑒𝑟 )] 𝑑𝑡 − 𝜉𝜕 + ¤𝑟𝑑 − 𝑒𝜓 − �̂� (𝑥2)

¤̂𝐹 (𝑥2) = 𝜀1
[
𝛽 − 𝜀2�̂� (𝑥2)

] (14)

where 𝛾21, 𝛾22, 𝛾23, 𝛾24, 𝜀1, and 𝜀2 are positive definite parameters.

Construct the Lyapunov function as follows

𝑉 =
1
2
𝑒𝜓

2 + 1
2
𝑒2
𝑟 +

1
2
𝛽2 + 1

2
�̃�2(𝑥2) (15)

where �̃� (𝑥2) = �̄� (𝑥2) − �̂� (𝑥2). �̃� (𝑥2), �̂� (𝑥2), and �̄� (𝑥2) are the estimated error, estimated value, and upper
bound of 𝐹 (𝑥2), respectively.

Deriving Eq. (13) and substituting Eqs. (7)-(12), one can get

¤𝑉 ≤ 𝑒𝜓
[
−𝛾11𝑒𝜓 − 𝛾12

��𝑒𝜓 ��𝛾13sgn
(
𝑒𝜓

)
− 𝛾14

∫ [��𝑒𝜓 ��𝛾13sgn
(
𝑒𝜓

) ]
𝑑𝑡
]

+ 𝑒𝑟
[
−𝛾21𝑒𝑟 − 𝛾22 |𝑒𝑟 |𝛾23sgn (𝑒𝑟 ) − 𝛾24

∫
[|𝑒𝑟 |𝛾23sgn (𝑒𝑟 )] 𝑑𝑡

]
+ 𝛽

{
−𝛾31 |𝛽 |𝛾33sgn (𝛽) − 𝛾32

∫
[|𝛽 |𝛾33sgn (𝛽)] 𝑑𝑡 + 𝜉𝜕

}
+ 𝜀2�̃� (𝑥2)�̂� (𝑥2) + 𝑒𝜓𝛼𝑒

(16)

where 𝛼𝑒 = 𝑟𝑑 − 𝛼. There exists a constant 𝜆𝛼 greater than zero, which satisfies |𝛼𝑒 | ≤ 𝜆𝛼
[27]. According to

Assumption 2 and Lemma 1, we can get A=B, where 𝜆𝜉𝜕 is a constant greater than zero. Then

𝛽

{
−𝛾31𝛽 − 𝛾32 |𝛽 |𝛾33sgn (𝛽) − 𝛾34

∫
[|𝛽 |𝛾33sgn (𝛽)] 𝑑𝑡 + 𝜉𝜕

}
≤ −𝛾31𝛽

2 − 𝛾32 |𝛽 |𝛾33+1 + 𝛽𝜆𝜉𝜕 (17)

Substituting Eq. (15) into Eq. (14), one can get

¤𝑉 ≤ −
(
𝛾11 − 1

4

)
𝑒𝜓

2 − 𝛾12
��𝑒𝜓 ��𝛾13+1 − 𝛾21𝑒

2
𝑟 − 𝛾22 |𝑒𝑟 |𝛾23+1 − 𝛾31𝛽

2 − 𝛾32 |𝛽 |𝛾33+1 + 𝛽𝜆𝜉𝜕
+ 𝜀2�̃� (𝑥2)𝐹 (𝑥2) − 𝜀2�̃�

2(𝑥2) + 𝜆𝛼2
(18)

Using Young’s inequality, we can get 𝜀2�̃� (𝑥2)𝐹 (𝑥2) ≤ 1
4𝜀2�̃�

2(𝑥2) + 𝜀2𝐹
2(𝑥2), 1

4𝜀2
���̃� (𝑥2)

�� ≤ 1
4𝜀2�̃�

2(𝑥2) +
𝜀2
16 . In addition, for arbitrary variables 𝛿𝑚 , 𝛿𝑛, and arbitrary real numbersℓ1, ℓ2 ℓ3, satisfy |𝛿𝑚 |ℓ1 |𝛿𝑛 |ℓ3 ≤
ℓ1

ℓ1+ℓ3 ℓ2 |𝛿𝑚 |
(ℓ1+ℓ3) + ℓ3

ℓ1+ℓ3 ℓ2
− ℓ1

ℓ3 |𝛿𝑚 | (ℓ1+ℓ3) [28]. So − 𝜀2
4
���̃� (𝑥2)

��2 ≤ − 𝜀2
2(𝜀2+1)

���̃� (𝑥2)
��𝜀2+1 + 𝜀2 (1−𝜀2)

4(𝜀2+1) . Then, one can
get

¤𝑉 ≤ −
(
𝛾11 − 1

4

)
𝑒𝜓

2 − 𝛾12
��𝑒𝜓 ��𝛾13+1 − 𝛾21𝑒

2
𝑟 − 𝛾22 |𝑒𝑟 |𝛾23+1 −

(
𝛾31 − 1

4

)
𝛽2 − 𝛾32 |𝛽 |𝛾33+1 +

��𝜆𝜉𝜕 ��2
− 1

4𝜀2
���̃� (𝑥2)

��2 − 𝜀2
2(𝜀2+1)

���̃� (𝑥2)
��𝜀2+1 + 𝜀2 (1−𝜀2)

4(𝜀2+1) + 1
2𝜀2 |𝐹 (𝑥2) |2 + 𝜆𝛼2

≤ −𝜗1𝑉 − 𝜗2𝑉
1
2 + Ξ

(19)

where𝜗1 = min
{(

2𝛾11 − 1
2

)
, 2𝛾21,

(
2𝛾31 − 1

2

)
, 1

2𝜀2

}
, 𝜗2 = 2

𝛾+1
2 min

{
𝛾12, 𝛾22, 𝛾32,

𝜀2
2(𝜀2+1)

}
,Ξ =

��𝜆𝜉𝜕 ��2+ 1
2𝜀2𝐹

2(𝑥2)+
𝜆𝛼

2 + 𝜀2 (1−𝜀2)
4(𝜀2+1) .
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Figure 2. Research methodology and main design steps.

According to Eq. (17), it can be obtained

¤𝑉 ≤ −𝜄𝜗1𝑉 − (1 − 𝜄) 𝜗1𝑉 − 𝜗2𝑉
1
2 + Ξ (20)

where 0 < 𝜄 < 1. If 𝑉 > Ξ
𝜄𝜗1

, then

¤𝑉 ≤ −𝜄𝜗1𝑉 − (1 − 𝜄) 𝜗1𝑉 − 𝜗2𝑉
1
2 (21)

According to Lemma 2, 𝑉 falls in the residual set Ω𝑉 =
{
𝑉 : 𝑉 ≤ Ξ

𝜄𝜗1

}
, and the stabilization time is

𝑇 ≤ 4
(1 − 𝜄) 𝜗1

ln

[
(1 − 𝜄) 𝜗1𝑉

1
2 (0) + 𝜗2

𝜗2

]
(22)

where 𝑉(0) is the initial value of 𝑉 .

Remark 1 The basic theory of control design is backstepping. As shown in Figure 1, both virtual control
and controller design phases introduce finite-time techniques. At the same time, a finite-time disturbance
observer is further introduced to compensate for actuator attacks and external disturbances. This ensures that
the response speed and steady state of the system are improved compared to the traditional adaptive scheme.

4. SIMULATION
This paper takes the Dalian Maritime University practice ship ”Yulong” as the test object for simulation re-
search [19]. The main parameters are shown in Table 1.

http://dx.doi.org/10.20517/ces.2023.18
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Figure 3. Course-keeping.

Table 1. Ship particulars of the ship “Yu Long”

Length between perpendiculars (LBP) 𝐿(m) 126
Molded breadth 𝑏(m) 20.8
Molded draught 𝑑(m) 8.0
Rudder area 𝐴𝑅 (𝑚2 ) 18.8

Block coefficient 𝐶𝑏 0.681
Trial speed 𝑉/Kn 15

The relevant parameters used for simulation are 𝐾 = 0.478, 𝑇 = 216, 𝑎 = 1, 𝑏 = 30, 𝛾11 = 0.15, 𝛾12 = 0.08,
𝛾13 = 0.5, 𝛾14 = 0.003, 𝛾21 = 0.1, 𝛾22 = 0.05, 𝛾23 = 0.5, 𝛾24 = 0.001, 𝛾𝑟 = 0.01, 𝜀1 = 0.1, and 𝜀2 = 0.01.
The time-varying disturbances and actuator attack signal are set as 𝜉 = [1 + 0.3sin(0.25t) + 0.15cos(0.6t)],
𝜕 = 0.15 + 0.1sin(0.2t).

Figure 2, Figure 3, Figure 4 and Figure 5 show the USV under the influence of time-varying disturbances and
actuator attacks, the NFTDO control scheme designed in this paper, the scheme in Ref. [19], and the ship course
tracking effect of the traditional Backstepping control scheme.

The control scheme in Ref. [19] is as follows:
𝛼 = −𝑘1Φ

(
𝑒𝜓

)
+ ¤𝜓𝑑

𝑢 = −𝑘2𝑒𝑟 − 𝑐2Θ̂𝜁 (𝑍)Φ (𝑒𝑟 )
¤̂Θ = 𝑐2𝜁

2 (𝑍)Φ2 (𝑒𝑟 ) − 𝜎Θ̂
(23)

where 𝑘1, 𝑘2, 𝑐2, and 𝜎 are positive definite parameters.

It can be seen from Figure 3 that both the NFTDO control scheme designed in this paper and the comparative
scheme have completed the heading tracking task, but the dynamic adjustment performance of the scheme in

http://dx.doi.org/10.20517/ces.2023.18
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Figure 4. Course-keeping error.
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Figure 5. Rudder angle.

Ref. [19] and the traditional Backstepping control scheme is not as good as that of the NFTDO scheme. It can be
seen from the tracking error duration curve shown in Figure 4 that the tracking accuracy under the NFTDO
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Figure 6. The reconstruction of 𝜉𝜕.
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Figure 7. Time evolution of 𝜉𝜕, 𝜉 , 𝜕.

control scheme is higher than that of the comparison scheme. Figure 5 shows the control input response
for the three control schemes. The control inputs of the three control schemes tend to be stable over time.
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Figure 6 shows the reconstruction effect of the NFTDO scheme on the composite uncertain term composed of
time-varying interference and actuator attack signals. Figure 7 is the change curve of uncertain items over
time. In summary, compared with the control scheme designed in this paper, the tracking effect has been
greatly improved.

5. CONCLUSIONS
In this paper, by combining FTC and disturbance compensation technology, the problems of actuator attacks,
external unknown disturbances, and dynamic uncertainty inUSV course tracking control are effectively solved.
Without any prior knowledge, a finite-time course tracking control scheme is designed. Finally, the effective-
ness is verified by simulation. The simulation results show that the steady-state performance and transient
response of the USV are improved under the control scheme designed in this paper. In addition, since ships
have unstable situations caused by uncertainties, such as mooring forces during offshore operations, it is nec-
essary to systematically deal with such uncertainties and ensure stability. We will explore this area further in
future research.
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