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Abstract
The immune cellular components of the tumour microenvironment are a diverse group of cells that paradoxically 
are now appreciated to have a coordinated opposing duality of either promoting or retarding tumour growth. 
Manipulating this seemingly dynamic interaction for therapeutic benefit is a hotbed of much research. Recent 
findings in tumour immunology (both preclinical and clinical) build on more than a century of insights and provide a 
way forward to improving patient outcomes, long term survival and the predictability of “cures”. This opinion piece 
attempts to summarise some of these historical and contemporary insights with a view to describing eminently 
testable therapeutic solutions.
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INTRODUCTION
In 1926, Morris Fishbein, MD, the editor of the Journal of The American Medical Association (JAMA), 
wrote, “Cancers must be treated early, once a cancer has spread to surrounding tissue all attempts to halt the 
disease are usually hopeless”[1].
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In 2008, the United States Presidential Report on Cancer stated, “The toll of cancer has become simply an 
awful part of life; incidence is rising for several cancers; the most intransigent of malignancies remain 
impervious to treatment; (and) an absolute cure remains elusive”. The report further added, “Despite 
declaring a national war on cancer in 1971 and investing many billions of dollars since then to understand and 
defeat cancer, our success against the disease in its many forms has been uneven and unacceptably slow”[2]. 
Previously in 1996, Director of the Pittsburgh Cancer Centre Michael Lotze said, “Mono and multi-agent 
chemotherapy just do not work in many settings, we should have dispensed with these notions years ago”[3]. 
This echoed the sentiment in Scientific American in a previous 1994 article entitled A War Not Won 
“Despite dramatic scientific gains, cancer remains an undaunted killer”[4].

Clearly, these sorts of concerns led Laurence Baker, MD, senior US oncologist and Chairman of the 
Southwest Oncology Group (SWOG) to state in 2010 in the Journal of the National Cancer Institute (JNCI) “
A cure is the expectation of society, we are not taking that seriously enough; We have a system that doesn’t 
even really try to meet that expectation; I am trying to get people to stop saying how successful the cancer 
research enterprise is. It is not true. It is just not true”[5].

Even today, in the midst of a “transformative” immunotherapy era of checkpoint inhibitor therapy, only a 
minority of patients derive benefits and at the cost of substantial biological and financial toxicity. Despite 
these negative and troubling historic comments, there is room for optimism.

“Nature often gives us hints to her profoundest secrets” - William B Coley[6]

For more than a century and since William Coley and his bacterial toxins, the notion that the immune 
system can be harnessed to treat cancer has met with limited and sporadic clinical success and much 
controversy[7]. And like cancer therapy today, it has been hit and miss. Those occasional spectacular 
“miracles” under various “immune tweaking” treatment modalities has intrigued clinicians and scientists 
alike and fuelled the relentless enthusiastic pursuit to make these random minority of successes and long 
term survival a reality in most patients. How can we translate/duplicate/amplify the efficacy at least seen in 
the mouse experiments? A broad explanation of why these sporadic successes occur infrequently was 
articulated by Prof Lloyd Old in 1993.

“
Why hasn’t Coley’s approach been forged into a widely available therapy with a predictable benefit for cancer 
patients? The best reason is, - the cellular and molecular language of inflammation and immunity had to be 
understood before the forces that Coley unleashed could be predictably translated into tumor cell destruction”. 
- Lloyd Old 1993[7].

His words back then actually described the way forward, detailed aspects of which are in the process of 
being elucidated today for clinical utility. Clearly, the correct sequence of therapeutic events already 
happens, at least randomly in some patients, even with the crudest approaches such as those used by Coley. 
The fundamental understanding (language) of the intimate interactions of the tumour with the immune 
system, particularly in the tumour microenvironment (TME), is providing answers to why some very 
different modalities can work effectively but only occasionally.

The cellular and molecular language of inflammation and immunity
A major advance in recent years has been the realisation that the immune system is not ignorant to the 
presence of cancer, and in particular, the cellular interactions of the TME collectively are “shielding” the 
cancer from immune destruction[8]. Specifically, the immune system is suppressing itself, tolerant to the 
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growing tumour burden and creating substantial multilayered barriers to therapeutic success[9]. Remove or 
interfere with the mechanistic components of these immune circuits; these barriers can be broken down and 
can lead to tumour destruction, complete responses and improved survival[10]. Arguably, the most important 
critical lesson learnt with respect to the TME induced immune suppression is the realisation that this 
suppression has been caused by normal immune homeostasis. This homeostatic impasse is an intentional 
part of the way the immune system processes antigens and stops unwanted inflammation and damage to 
surrounding “normal” tissue. Importantly and recently, this impasse is being appreciated as being 
reversible[11]. Understanding a few simple rules of this homeostatic process has the potential to remove the 
“hit and miss” randomness that currently exists in cancer therapies.

So who is the real enemy here, the cancer or the immune system?
After decades of failure of tumour-centric approaches to cancer therapy, attention has gradually now turned 
to our immune system to do the “heavy lifting”.

Irrespective of tumour morphology, patients with advanced cancer exhibit simultaneous immune activation 
and suppression[12]. While the TME consists of both cancerous and non-cancerous cells, most of these 
subpopulations cooperate synergistically to drive via positive feedback loops that are conducive to 
tumourigenesis. Further, the resultant local inflammatory environment appears to be a consistent 
component of malignant tumours and displays increasing concentrations of cytokines locally and 
systemically, particularly with rising disease burden[13]. Malignant tumours can significantly interfere with 
the patient’s immune system, leading to fevers, paraneoplastic autoimmunity and sepsis[14,15]. Thus, despite a 
general environment of immune stimulation, evidence suggests that anti-tumour immune responses are 
being continuously attenuated, and this appears universal across the tumour types[16,17].

The immune system has evolved the ability to recognise, destroy and remember foreign or corrupted 
peptides and antigens that are detrimental to our survival. Estimates suggest that the somatic 
hypermutation/recombination mechanisms to generate antigen-specific receptors in T cells can program for 
as many as 1015 possible unique receptors[18]. This diverse repertoire suggests that a functional immune 
system should be able to accommodate cancer adaptability and mutational drift. In support of the 
aforementioned, laboratory assays can detect T and B cell responses (autoantibodies etc.) to tumour-
associated antigens and therapy-induced neoantigens[19-21]. Also, assays can detect attenuating antigen-
specific regulatory T cell responses and indicative pro-inflammatory and immune-suppressive 
cytokines/inflammatory markers[22,23].

The immune cells of the TME and their function
The TME can consist of a diverse immune cellular presence, including T and B lymphocytes, natural killer 
(NK), natural killer T (NKT) cells and regulatory T cells (Tregs). Tregs comprise diverse subsets of 
immunosuppressive cells that play critical roles in not only maintaining immune homeostasis and self-
tolerance, but also suppressing antitumour responses of cytotoxic lymphocytes. Other important cells 
include tumour-associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCS). All these 
cells can account for circa 10% of the total tumour cell population and can also be found in substantial 
concentrations within the tumour and in the tumour periphery. Collectively, they are major drivers of an 
immunosuppressive TME. TAMs exhibit both anti- and pro-tumoural effects. The high density of TAMs is 
a characteristic of most tumours and has been correlated to poor clinical outcomes[24-26].

Within the TME, TAMs can polarise to M1-like pro-inflammatory interferon-γ phenotype or the anti-
inflammatory/immunosuppressive M2-like phenotype, which induces the secretion of IL-10 and TGF-β to 
limit inflammation, enhances tissue repair, and promotes vascularisation. While these two TAMs are 



Page 4 of Ashdown. J Cancer Metastasis Treat 2022;8:6 https://dx.doi.org/10.20517/2394-4722.2022.019

dominant, there is a high degree of plasticity and intermediaries. Macrophage M1/M2 polarisation appears 
to be transient, time and tissue-associated[27]. The M1/M2 phenotypes can shift in response to stimuli in the 
TME. As the “vanguard” antigen processor of the host immune response, TAMs offer the possibility to use 
their plasticity to modulate the underlying immune suppression, break tolerance and potentially improve 
clinical outcomes[28]. MDSCs can inhibit antitumour activities of T and NK cells and stimulate Treg, leading 
to tumour progression through the production of cytokines IL-10 and TGF-β[29].

In concert, all these aforementioned diverse immune cell types homeostatically maintain a “tumour-
friendly” microenvironment both locally and systemically under a growing tumour burden. This all points 
to an underlying tightly controlled, dynamic “three-way conversation” between tumour cell populations, the 
pro-inflammatory and the immunosuppressive immune response circuits. Individually and collectively, 
these cells offer opportunities as therapeutic targets.

The positive and negative roles of cytokines within the immune response
Cytokines are produced by a plethora of immune other cells. Both APCs and T and B lymphocytes produce 
various cytokines cells in response to antigen processing and recognition. The amount of cytokine produced 
is dependent on the amount of antigen encountered and/or its antigenic potential. Interestingly, a number 
of specific cytokines play a major role paradoxically in both pro-inflammatory and immunosuppressive 
immune cellular pathways, either initiating or homeostatically terminating that immune response. In 
addition, another physiological/mechanistic insight is the transient actions of cytokine/receptor cellular 
interactions together with normal short half-life restrictions. This temporal aspect contributes to the ability 
of cytokines to have selective loco-regional/systemic effects[30-32].

Three cytokines, in particular, are now appreciated to have opposing duality or bimodal attributes and have 
a long history in cancer immunotherapeutics. They are interleukin-2 (IL-2), interferon-γ (IFN-γ) and 
tumour necrosis factor-α (TNF-α). Normally, all have relatively short physiologic half-lives[33-35].

This apparent temporal duality or paradox has confounded their clinical utility of knowing how to 
administer these cytokines (with respect to dose and duration) for the best clinical effect. In particular, IL-2 
has an extensive 30-year history in treating advanced malignant melanoma (MM) and renal cell carcinoma 
RCC. In both incidences, on average, ~7% of patients treated with IL-2 achieve complete responses and 
long-term survival after limited treatment[36].

Known as the “master cytokine” IL-2, when this agent works successfully, it is clearly modulating an 
underlying/pre-existing tumour-specific immune response. The paradox arose in the mid-1990s when it 
was discovered that IL-2 also stimulates Tregs and can suppress an immune response[37]. Thus, this provided 
an explanation for its limited and random efficacy. Similar duality opposing activity over Tregs was later 
elucidated for IFN-γ and TNF-α[34,35]. More recently, similar attributes have been reported for PD-1 & 
CTLA4 monoclonal antibodies (Mabs) as their targets are also expressed on Tregs, and blockade can cause 
tumour hyperprogression and self-limit efficacy[38,39].

Antigen load, recognition and tolerance induction - a critical insight
Improved understanding of the immune system’s role in cancer has reinvigorated research on the interplay 
between antigen load and immune tolerance induction. Indeed, elegant work by Gratz et al.[40] and 
Pinheiro et al.[41] has shown that initial low levels of antigen promote Tregs and subsequently control the 
balance between T-effector lymphocytes & Tregs and thus the balance between responsiveness and 
tolerance. This is a critically important insight into the fundamental nature of cancer immune suppression 
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and antigen as a “prime mover” in the immune response. Moreover, this immune balance is mediated by an 
IL-2 centric feedback loop. Importantly, plasticity exists at the cytokine level between these two states[42,43]. A 
concept allergists are familiar with is the introduction of low dose antigens to promote tolerance to an 
otherwise vigorous response. There exist parallels with tumourigenesis, as presumably, cancer would start 
with a single cell with certain mutations and then proliferate, initiating a low tolerising dose of tumour-
associated antigens (TAAs)[44]. The discontinuity theory of immunity, as articulated by Pradeu and 
Vivier[45], Pradeu and Cooper[46], and Matzinger’s earlier danger signal hypothesis, provides a supporting 
theoretical framework to the experimental observations of Gratz et al.[40] and Pinheiro et al.[41]. Together, this 
helps contextualise the influence of complex, slow, low-dose continuous TAA recognition and how sudden 
(perhaps therapy-induced) changes in antigen levels within the TME may subvert immune suppression and 
break tolerance in certain circumstances.

Further, interesting parallels in human pregnancy and cancer have also been drawn between the early 
immune response and subsequent induction of immune tolerance.

A number of studies have demonstrated that tumour and placenta tissue use the same mechanisms to 
suppress host immunity[47]. The immune privilege offered to develop neoplasms by Tregs mirrors that of a 
developing embryo, representing a highly effective and evolutionarily conserved immune tolerance 
mechanism that is co-opted by tumours. In midtrimester pregnancy and advanced cancer, systemic 
alterations in immunity are also detectable, particularly with respect to a helper T cell type 2 polarisation, 
NK induction of tolerogenic/angiogenic dendritic cells and NK permissiveness, despite low levels of major 
histocompatibility complex I expression[48].

Another reproductive analogy in the context of cytokine cancer therapy is the introduction of the 
contraceptive pill. The “pill” came about as a result of detailed research and understanding of the menstrual 
cycle’s orchestrated temporal dynamic interaction of reproductive hormones, their levels, cellular receptors 
and the various cell types in the female reproductive organ systems. Essentially, the effect of the pill (in part) 
was to “trick” the female physiology into thinking she was pregnant. This “trickery” was achieved by 
exogenously adding a little bit more of the same hormones (albeit now synthetic) into the system. This 
hormonal addition changed the “normal” sequence of events, modulated the reproductive homeostasis and 
allowed predictable and successful control of this dynamic system[49].

Tricking the system-disturbing immune homeostasis in the TME and breaking tolerance
Numerous mouse models and some translational approaches have shown that tumour immune suppression 
following immune recognition is a significant obstacle to breaking immune tolerance[50]. Importantly and as 
argued above, this suppression/tolerance induction is an intentional antigen-specific process mediated by 
normal aspects of immune homeostasis and not that dissimilar to pregnancy? Consequently, taking 
advantage of our “new” understanding of immune homeostasis and its role in tumour establishment, 
maintenance, and progression, reveals promising therapeutic opportunities. Some of which are already 
available, and may require minor protocol modifications in order to substantially improve efficacy. From 
the immune modulation experience of the past 30 years, it has become apparent that there are several 
positions in the tumour immune circuitry that provide opportunities for selective therapeutic intervention 
points. These include: Treg ablation with chemo and radiotherapy, bolus cytokine therapy, checkpoint 
inhibitor monoclonal antibodies, intratumoural agents, or antigen load modification with various 
modalities[50-53]. The latter is discussed below.
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Transmutability of antigen to cytokine conversion within and the adjacent TME
Perhaps the simplest approach to immune modulation in order to break tumour tolerance appears to be 
using the TME’s (and surrounding tissue’s) own resident APCs to generate endogenous INF dominant 
cytokine production[54]. Causing sufficient tumour cell destruction and complex antigen production, at the 
same time preserving the nearby TME’s APCs, has the potential via STING/ DAMP signalling pathways to 
break tumour tolerance locally and systemically[55]. A number of intratumoural strategies do the same thing; 
they supply a complex “soup” of antigen as a “burst” to the TME, which then is rapidly converted via APCs 
to INFs[56,57]. Modalities such as radiotherapy, high intensity focused ultrasound, radio wave ablation, 
cryotherapy, intratumoural food dye rose bengal, diterpene esters, all cause localised tumour cell 
destruction for immune processing and TME remodelling[58-61]. Similarly, it is now appreciated that the 
principal local and systemic mechanism of action of oncolytic viruses is caused by the lytic induced immune 
response against viral-infected cells[62].

Ground-breaking clinical work by Tubin et al.[63]. and confirmed by Markovsky et al.[64]. in mouse 
experiments, demonstrated that systemic immune modulation and complete abscopal responses could be 
achieved by single/double dose partial tumour irradiation, particularly incorporating the hypoxic segment 
in the radiation field. Partial tumour hypofractionated (1-3 doses) irradiation preserves the TME’s cellular 
immune signalling capabilities in the un-irradiated segment to do the “heavy lifting” locally and systemically 
via an ensuing antigen/cytokine-induced antitumour immune response[63,64].

CONCLUSION
Finally, our relatively recent understanding of the immune cellular components and interactions within the 
TME and their role in tumourigenesis and maintenance provides evidence on how to better use existing 
modalities to improve therapeutic outcomes. Further, these insights explain why earlier crude attempts at 
cancer immunotherapy worked occasionally/randomly and really not better than today’s much more 
sophisticated varied attempts.

We now know the immune system is homeostatically suppressed, with the immune system tightly 
protecting the tumour burden from immune destruction. Normal inflammatory controls by loco-regional 
TAMs, Tregs, MDSCs, together with orchestrating cytokines such as IL2, INF-γ and TNF-α involved in 
physiologic feedback loops, maintain the tumour friendly TME.

The prime mover in this suppression is the antigen load coming from the tumour. An apparent “normal” 
tissue in the eyes of the immune system, the tumour is not that dissimilar to the developing embryo.

We also know that introducing extra therapeutic cytokine into the intratumoural system can destabilise the 
status quo and thus interrupt “a natural course of events”. Rather than attempting to immune modulate 
systemically and “deep” into the immune circuitry with toxic, expensive and inconsistent drugs, the simplest 
emerging and comprehensive solution may be to use therapeutic modalities that utilise the local TME APC 
machinery. Complex antigen loading via the STING/PAMPS pathways can induce endogenous cytokine 
production at sufficient levels to “throw a spanner in the works” of the underlying homeostatic suppression 
and break tolerance locally and systemically.

Further, evidence this can happen with various agents and modalities is appearing in the abscopal/bystander 
literature[65]. Clearly, the spatio-temporal influences of tumour-specific antigen load, the resultant cytokine 
production and the presence of opposing cell populations homeostatically balanced, are waiting to be used. 
In the face of a growing tumour burden, the system can be easily destabilised and thus break the 



Page 7 of Ashdown. J Cancer Metastasis Treat 2022;8:6 https://dx.doi.org/10.20517/2394-4722.2022.01 9

homeostatic nature of tolerance. Put simply. It appears possible to use the TME’s underlying immunology 
to be our best tumour-specific rational drug design factory.
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