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Abstract
The integration of artificial intelligence (AI) into spine surgery presents a transformative approach to preoperative 
and postoperative care paradigms. This paper explores the application of AI within spine surgery, focusing on 
diagnostic and predictive applications. AI-driven analysis of radiographic images, facilitated by machine learning 
(ML) algorithms such as convolutional neural networks (CNNs), potentially promises enhanced accuracy in 
identifying spinal pathologies and deformities; by combining these techniques with patient-specific data, predictive 
modeling can guide and inform diagnosis, prognosis, surgery selection, and treatment. Postoperatively, AI can 
leverage data from digital wearable technology to enhance the quantity and quality of outcome measures surgeons 
use to define and understand treatment success or failure. Still, challenges such as internal and external validation 
of AI models remain pertinent. Future directions include incorporating continuous variables from digital biomarkers 
and standardizing reporting metrics for AI studies in spine surgery. As AI continues to evolve, transparent 
validation frameworks and adherence to reporting guidelines will be crucial for its successful integration into 
clinical practice.
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INTRODUCTION
The integration of artificial intelligence (AI) into spine surgery has given rise to significant improvements in 
patient safety, peri-operative decision making, and clinical outcomes[1]. As new technological innovations 
herald faster, more efficient, and more accurate AI models, it is imperative for surgeons to understand the 
impact of AI on current treatment paradigms and where spine surgeons’ focus should lie as we assist in the 
development of AI-enabled personalized and precision medicine.

At the cornerstone of clinical advancement with AI are machine learning (ML) models, capable of 
identifying and extracting patterns from large datasets and making predictions based on learned trends. As 
the availability of data grows, ML model performance continues to improve; therefore, the advancement of 
AI in medicine is uniquely tied to our ability to provide these models with accurate and pertinent 
datapoints. In this perspective, we provide a brief historical outline of current ML and AI applications in 
spine surgery. We then offer our thoughts on where the future of AI and spine surgery lies, and how the 
unique relationship between model accuracy and data volume will shape the future of how AI is 
implemented in clinical contexts.

CURRENT AI APPLICATIONS IN SPINE SURGERY
One of the earliest and most compelling uses of ML in spine surgery has been the use of models to 
automatically decipher radiographic images. For example, the classification of lumbar disc degeneration 
from 2-dimensional magnetic resonance image (MRI) using ML has now reached levels comparable to 
expert radiologists[1-3]. The morphology of the discs is first described according to their pathological features 
and classified according to the standardized grading system proposed by Pfirrmann et al.[4]. A convolutional 
neural network (CNN) is then used to extract image features from the training data set to make predictions 
based on the radiologists’ interpretations. CNNs, a specialized subtype of deep learning (DL) algorithms, 
parallel the architecture of human visual cortex processing and rely on unsupervised pattern recognition to 
classify images. CNN-based models for image classification are typically validated through a combination of 
k-fold cross-validation on training data and then tested on independent and external datasets to ensure 
generalizability. Other groups have also explored the use of generative models to create image-to-image 
translations of the musculoskeletal system[5,6]. Clinically, this can provide a means to correct poor image 
resolution or blurriness due to patient motion during image acquisition.

As DL algorithms became more prevalent, they have gradually been implemented to automatically 
determine spinal landmarks to calculate deformity parameters. DL models are trained on large datasets to 
identify and classify complex phenomena through non-linear analysis in artificial neurons, similar in 
structure to the mammalian brain[7]. The automated analysis of the Cobb angle to describe the severity of 
scoliotic curvature has been addressed through several DL techniques[8-10]. Korez et al. also used DL to 
identify anatomical landmarks in X-ray images and measure spinopelvic parameters, finding no difference 
between DL and manual identification[11].

The transformative capability of AI can expedite diagnosis and treatment planning, and has the potential to 
standardize surgical treatment strategies for various spinal pathologies after taking patient-specific factors 
into account. Widespread implementation, however, faces substantial ethical challenges as the prospect of 
removing human interpretation may lead to more patient distrust in conclusions. It is unlikely, then, that 
human radiologists will be replaced by AI technology; instead, their diagnostic accuracy will be improved as 
models continue to advance.
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The advent of AI-powered predictive modeling also holds immense promise in the realm of personalized 
precision medicine. By assimilating vast repositories of patient data, including demographic information, 
comorbidities, and procedural specifics, AI algorithms can generate prognostic models tailored to individual 
patients, ushering in a new era where therapeutic decisions are guided by each patient’s unique physiology. 
This is particularly important for patient risk stratification, where clinical variables can be used as inputs 
(predictors) for the potential of operative complications. Pellisé et al. trained a random forest algorithm 
with clinical variables from 1,612 patients with adult spinal deformity (ASD) and identified age, surgical 
invasiveness, and deformity magnitude as potential risk factors for major complications[12]. Predictive 
models, such as random forest algorithms for complication risk stratification, undergo internal validation 
through cross-validation and are, at times, externally validated using datasets from different clinical settings 
to evaluate model transferability. In the study by Pellisé et al., internal validation was performed with an 
80%/20% split between training/testing groups, measuring model performance through the observed area 
under the receiver operating characteristic curve (AUC) and the Brier score[12]. Ames et al. augmented this 
approach by applying unsupervised hierarchical clustering to classify ASD based on patient demographics 
and radiographic measurements with the goal of constructing a risk-benefit grid as a preoperative tool for 
decision making[13].

Current work continues to build upon existing outcomes prediction and postoperative prognostication. ML 
has been implemented to assess the likelihood of surgical site infection, major intra-operative 
complications, hospital length of stay, or the necessity of blood transfusion after surgery[14-17]. This has led to 
the development of universal prediction models trained retrospectively on large patient registries, such as 
the American College of Surgeons National Surgical Quality Improvement Project (ACS-NSQIP) database. 
The ACS-NSQIP developed an online calculator for morbidity and mortality risk, but reports demonstrated 
poor predictive performance[18]. Other groups have used the available ACS-NSQIP patient data as a resource 
to train their own models, with early indications of clinical efficacy at predicting outcomes[19,20]. Fully 
unsupervised models have extensive utility to revolutionize personalized care and stratify risk; however, 
deploying under-validated AI tools can lead to inaccurate diagnoses or inappropriate treatment 
recommendations, so caution is needed to ensure patient safety.

Lastly, an emerging implementation of ML and AI has been in the realm of outcomes assessment. 
Traditionally, evaluation of surgical outcomes relies on physician interpretation of radiographic imaging 
combined with patient questionnaires assessing changes in patient mobility, pain, and quality of life. These 
patient-reported outcome measures (PROMs) offer valuable insight into patients’ own interpretation of 
their health status and physical function. However, these methods contain inherent subjectivity and often 
lack the precision and reliability needed for precise and actionable insights[21,22]. More recently, there has also 
been a trend toward utilizing digital biomarkers and data-driven outcomes measurements in conjunction 
with traditional PROMs. Objective measurements of patient mobility obtained from patient smartphones, 
smartwatches, or other biometric wearables can add additional unbiased insight into patient function[23-26]. 
The quantitative and continuous features of these data are well suited for integration with data-driven 
statistical and ML techniques, and they have enabled surgeons to better quantify changes in patient mobility 
after surgery and to predict which patients may be better suited to recover from a particular pathology[24,25].

FUTURE DIRECTIONS
The use of accelerometer and GPS information is a relatively novel concept, and more complex ML 
predictive models have yet to be applied. The incorporation of such models could significantly improve the 
accuracy of patient assessments by providing real-time, continuous data that captures a patient’s functional 
mobility in their everyday life. This can lead to a more detailed understanding of a patient’s functional 
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baseline status and postoperative recovery, resulting in tailored personalized medicine. While many analyses 
of mobility data have been retrospective in nature, upon the growth of adequate datasets, predictive models 
may be able to accurately identify subtle changes in mobility-related complications or improvements earlier 
than would be possible with traditional assessments.

Further, advanced mobility metrics can add potential value for patient prognostication. As previously 
mentioned, groups are beginning to engineer universal prognostic models for outcome prediction trained 
on large data registries[19,20]. Although still in their infancy, accurate prognostic models could transform 
patient management by offering more realistic recovery trajectories, customizing patient care, or identifying 
high risk for adverse outcomes. There are still challenges that limit the widespread implementation of such 
models, ranging from access to generalizable datasets, cost-effectiveness for stable implementation, or 
ethical concerns.

Mobility metrics are not the only AI application that is challenged with limited data availability. Access to 
high-quality, standardized data sets is one of the greatest challenges to overall AI and ML implementation, 
especially within spine surgery, given the varied and nuanced model inputs spanning complex patient 
presentations, operative courses, and radiographic imaging. To address this challenge, there is a growing 
movement toward the creation of standardized, multi-center datasets that include patients from several 
geographic areas and socioeconomic groups. Other groups such as the ACS are refining their existing 
patient registries to integrate additional data from the electronic health record. Together, these datasets and 
registries aim to provide a foundation for training more accurate and generalizable AI models that can be 
deployed across various clinical settings.

Patient selection is another area of current clinical practice that stands to benefit from future AI and ML 
integration. The art of understanding which patients will benefit from certain procedures is not easily 
replicated with frameworks and rules that can be directly input into computerized programs. However, as 
CNNs and ML algorithms continue to grow in computational ability, they can potentially identify 
relationships between datapoints that are otherwise unnoticeable to the un-aided human mind; in this way, 
future AI and ML models can augment surgeons’ clinical practice and assist in identifying certain patient 
characteristics that are indicative of patients likely to benefit from specific surgical interventions.

While AI technologies like predictive modeling and image analysis hold promise in decision making, their 
potential intra-operative impact is already apparent[1,7]. AI-assisted intra-operative tools, such as robotics, 
navigation systems, and mixed reality, have the potential to significantly enhance the surgeon’s ability to 
execute procedures with high precision, particularly in minimally invasive and percutaneous surgeries. 
These technologies allow for real-time guidance and adjustment during complex procedures, reducing the 
margin of error. However, while AI can minimize the risk of intra-operative errors, it cannot fully replace 
the human element of adaptability and judgment. Surgeons must remain vigilant in managing unforeseen 
intra-operative variables and complications, as AI systems, though highly advanced, still require human 
oversight to ensure patient safety and the proper handling of unexpected challenges.

Although surgeon experience is regarded as a significant factor in decision making, there have been 
attempts to apply mathematical and data-driven approaches to surgical decision making[27]. Lewandrowski 
et al. recently used the Rasch model to determine the choice of procedure for endoscopic lumbar 
decompression[27]. The Rasch model is a logistic function analyzing categorical data, such as questionnaire 
responses, to find the relative difficulty of a task, and it has been widely established in education, marketing, 
and health economics[28]. However, it was found that there was still disagreement among surgeons regarding 
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the ability to achieve adequate clinical outcomes, indicating that increased granularity through additional 
metrics is needed to overcome the disordered responses[27].

Despite the promising advancements of AI in spine surgery, a significant limitation in the current literature 
is the lack of external validation of many studies. Most models are only internally validated on the same data 
from which they were derived, raising concerns about model generalizability to larger patient populations 
or different clinical settings. It was estimated that only 5% of published articles on prognostic models 
included an external validation framework[29]. Without external validation, it is difficult to ensure that these 
AI models will perform reliably in diverse environments, further limiting their clinical application. This 
issue is compounded by the scarcity of randomized controlled trials (RCTs) investigating AI in spine 
surgery, which are essential for evaluating long-term effectiveness and accuracy.

Due to the lack of standardized reporting metrics for AI studies, it is imperative to create clear guidelines 
through which the risk of bias and the potential utility of these models can be evaluated. AI studies that 
focus primarily on diagnostic applications using medical imaging should adhere to the Checklist for 
Artificial Intelligence in Medical Imaging (CLAIM)[30]. The forthcoming Standards for Reporting of 
Diagnostic Accuracy Studies for AI (STARD-AI), an AI-specific adaptation of the established STARD 
guidelines, is also under development. Upon its release, it is expected to be indexed on the Enhancing the 
QUAlity and Transparency Of health Research (EQUATOR) Network, addressing similar methodological 
issues as those covered by CLAIM[31].

For ML multivariable prediction models, whether diagnostic or prognostic, the recently published 
Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis + 
Artificial Intelligence (TRIPOD + AI) provides a structured protocol for reporting predictive algorithms[32]. 
Despite the advancements since the initial 2015 TRIPOD statement, which has shown promise in improving 
methodological transparency[32,33], substantial gaps persist that hinder the broader integration of AI in 
clinical practice[34]. As AI prediction algorithms become more pervasive in spine surgery, internal and 
external validation frameworks are necessary to appraise model performance, ensuring the variability in 
different patient populations is reflected to enhance surgical precision.

CONCLUSION
The integration of AI and ML into spine surgery represents a transformative shift toward precision 
medicine, offering enhanced diagnostic and prognostic capabilities. With the advances in automated 
radiographic imaging, patient risk stratification, outcomes prediction, and personalized medicine, future 
work promises to tailor treatment to individual patients more accurately. Despite the promising 
achievements so far, the field must address challenges in data accuracy by expanding training datasets and 
implementing robust validation frameworks. As AI becomes more prevalent in spine surgery, successful 
integration has the power to refine surgical decision making and improve patient outcomes.
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