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Abstract
Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer-related death worldwide and prognosis 
remains poor. The recent paradigm shifts in management algorithms of such patients have resulted in unique 
challenges in the early identification of HCC, prognosis, surgical outcomes, prioritization of potential transplant 
recipients, donor-recipient matching, and so on. In recent years, advancements in artificial intelligence (AI) 
capabilities have shown potential in HCC treatment.

In this narrative review, we outline first the different types of AI models that are applied in clinical practice and then 
focus on the frontiers of AI research in the diagnosis, prognostication, and treatment of HCC, particularly in 
classification of indeterminate liver lesions, tumor staging, survival prediction, improving equity in transplant 
recipient selection, prediction of treatment response and prognosis. We show that US coupled with AI-driven 
predictive models can provide accurate noninvasive screening tools for early disease. While AI models applied to 
contrast-enhanced CT, MRI and PET studies may appear to have limited clinical utility in disease diagnosis and 
differentials, owing to their accuracy, we highlighted the importance of such models in predicting pathological 
findings preoperatively. Despite the availability of many accurate, sensitive, and specific AI algorithms that 
outperform traditional scoring systems, they have not been widely used in clinical practice. The challenges in AI 
application, including distributional shift and imbalanced data, lack of standardization, and the ‘black box’ 
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phenomenon, are addressed here. The importance of AI in the future of HCC makes it important for clinicians to 
have a good understanding of different AI techniques, their benefits, and potential pitfalls.

Keywords: Hepatocellular cancer, liver cancer, liver imaging, liver surgery, artificial intelligence, machine learning, 
neural network

INTRODUCTION
Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer-related death worldwide, with an 
estimated incidence of 700,000 annually[1]. While the past decade has seen paradigm shifts in the way HCC 
is diagnosed and treated[2,3], prognosis remains poor (5-year overall survival stands at less than 20%[4]) owing 
to multiple factors including the difficulty in identifying HCC in its early stages[5]. Early surveillance of high-
risk patients is done via six-monthly abdominal ultrasound and serum α-fetoprotein (AFP) 
measurements[6], but both confer limited accuracy in identifying early-stage HCC, where nodules are small 
and indeterminate[7,8]. Sensitivity is particularly low in patients with underlying cirrhosis, steatosis, or 
obesity[7,8]. Moreover, the success of liver resection and transplantation for HCC is primarily dependent on 
patient selection, for which existing clinical scores rely heavily on rudimentary quantitative measures such 
as the size and multicentricity of the main nodule[2,9,10]. With mounting evidence to suggest that early 
diagnosis, biological stratification and treatment of HCC drastically improves survival outcomes[5,11,12], it is 
paramount that clinicians identify better tools for such purposes and rethink the way we approach 
diagnostication.

In recent years, advancements in artificial intelligence (AI) capabilities have shown great potential to 
redefine the way we navigate clinical care for HCC patients. AI has the capacity to improve risk prediction 
in chronic hepatitis patients[13], accelerate the diagnostic process with early identification of HCC[14-16], 
increase accuracy in the classification of liver lesions and HCC subtypes[17-20], tumor staging[21], and survival 
prediction[22,23]. Decisions regarding candidate selection and optimal treatment methods may also utilize AI 
in the prediction of treatment response, progression-free and overall survival[24,25] and risk of HCC 
recurrence[26].

Broadly, AI comprises machine learning (ML), deep learning (DL), and neural networks (NN). Each differs 
in terms of how the predictive model is built, the type of input data required, and the interpretability of the 
model itself. ML models are primarily built with the intent of improving predictions and decision-making 
accuracy. These models can be further distinguished into supervised and unsupervised learning[27]. 
Supervised learning algorithms train on sample input data with labeled outcome data, and their goal is to 
learn the relationship between the input data and the outcomes to make accurate predictions about the 
outcome when provided with a new set of input data[28]. Examples of supervised learning algorithms include 
traditional techniques such as linear regression and logistic regression, as well as more sophisticated 
techniques including support vector machines, random forest, and gradient boosting[28]. Unsupervised 
learning algorithms train on unlabeled sample data and analyze the underlying structure or distribution 
within the data to discover new clusters or patterns[29]. Examples of unsupervised learning algorithms 
include various other techniques such as K-means and principal component analysis[29].

Deep Learning (DL) aims to form computing systems that emulate biological neural networks. DL methods 
include the use of multilayered artificial neural networks (ANNs), convolutional neural networks (CNNs), 
and recurrent neural networks (RNNs)[30]. ANNs are formed by a network of perceptrons or neurons 
processed in a feed-forward fashion and are good for mapping nonlinear functions in text, tabular, or image 
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data[31,32]. CNNs have connective patterns resembling the visual cortex and can detect inherent spatial 
features of high-dimensional images[33]. RNNs have connections forming a graph over a temporal sequence, 
thus being useful in time series prediction[34]. In DL models, a significant “black box problem” remains as 
the programs have low interpretability and users may not completely understand how they work[35].

In this narrative review, we will outline the frontiers of AI research in the diagnosis, prognostication, and 
treatment of HCC.

DIAGNOSIS OF HCC
There have been remarkable advances in the application of AI to aid traditional diagnostic techniques for 
HCC in recent years. This is primarily due to the use of DL algorithms using CNN, which is a multilayer 
ANN interconnected such that all input data is processed through multiple layers to produce valuable 
output data[36]. CNN algorithms trained on various imaging modalities such as ultrasound (US), computed 
tomography (CT), magnetic resonance imaging (MRI), or positron emission tomography (PET) have been 
shown to increase the diagnostic yield in terms of identification, classification, staging and survival 
prediction in HCC[37]. All findings are summarized in Table 1.

Prediction of cirrhosis and HCC development
HCC often occurs on a backdrop of longstanding cirrhosis[49], yet cirrhotic changes can remain elusive until 
its later stages[50]. Standard radiological features on imaging include a nodular hepatic contour, changes in 
volume distribution with enlargement of the caudate lobe and the left lateral segment, atrophy of the right 
and left lobe medial segments, widening of the fissures and the porta hepatis, and the formation of 
regenerative nodules[50]. In response to this problem, Liu et al. designed an algorithm to determine the 
presence or absence of cirrhosis in US images with an area under the curve (AUC) of 0.968[38]. Using their 
analysis of liver capsule morphology, the DL program could identify early cirrhotic changes often invisible 
to the human eye. Expanding on this, a novel ML model by Ksiazek et al. forecasted the risk of HCC 
development based on 23 quantitative and 26 qualitative features gleaned from biochemistry, and clinical 
factors like viral status and comorbidities, ultimately achieving 88.5% accuracy[39]. Such predictive models, 
when coupled with other noninvasive methods in predicting fibrosis and cirrhosis, are likely to be 
developed further and be seen routinely in clinical practice in early disease detection.

Radiological identification
Ultrasound
Current clinical guidelines recommend regular abdominal US surveillance for the identification of HCC in 
high-risk patients with chronic viral hepatitis or cirrhosis[51]. US is, therefore, usually the primary tool to 
evaluate early liver disease and detect new lesions. However, image interpretation is subject to limitations 
such as inter-observer variability and patient body habitus, resulting in a sensitivity of only 63%[51]. For 
example, liver neoplasms can be difficult to distinguish from liver parenchyma, particularly with small 
indeterminate lesions[52] or diffuse HCC in the setting of cirrhosis[53]. To address this, several studies have 
proposed AI algorithms with data from various imaging modalities to improve the diagnostic accuracy of 
HCC.

To delineate HCC from background cirrhosis, Bharti et al. devised an ANN to classify US images into four 
stages of liver disease (normal liver, chronic liver disease, cirrhosis, and HCC) with an accuracy of 96.6%[14]. 
More recently, Brehar et al. also proposed a CNN model built on two independent datasets of US images 
that outperformed conventional ML methods (SVM, RF, multilayer perceptron, and AdaBoost)[40].



Page 51 Xu et al. Art Int Surg 2023;3:48-63 https://dx.doi.org/10.20517/ais.2022.33

Table 1. Diagnosis of HCC

Study Title Study aim Diagnostic 
technique AI tool Performance

Liu et al.[38] Learning to diagnose Cirrhosis with liver capsule Guided 
ultrasound image classification

Early identification of cirrhosis US ML AUC: 0.968

Ksiazek et al.[39] A novel machine learning Approach for early detection of 
hepatocellular carcinoma Patients

Prediction of HCC risk US ML Accuracy: 88.5%

Bharti et al.[14] Preliminary study of chronic liver classification on 
ultrasound images using an ensemble model

Classification of liver disease into four 
stages (normal liver, chronic liver 
disease, cirrhosis and HCC)

US ANN Accuracy: 96.6%

Brehar et al.[40] Comparison of deep-learning and conventional machine-
learning methods for the automatic recognition of the 
hepatocellular carcinoma areas from ultrasound Images

Differentiate HCC from cirrhotic 
parenchyma

US CNN AUC: 0.95 
Accuracy: 0.91 
Sensitivity: 94.4% 
Specificity: 88.4%

Schmauch 
et al.[15]

Diagnosis of focal liver lesions from ultrasound using deep 
learning

Classification of liver lesions as benign 
or malignant

US DL AUC: 0.93 for benign lesions, 0.92 for malignant lesions

Guo et al.[41] A two-stage multi-view learning framework-based 
computer-aided diagnosis of liver tumors with contrast 
enhanced ultrasound images

Classification of liver lesions as benign 
or malignant

CEUS ML Accuracy: 90.41% 
Sensitivity: 93.56% 
Specificity: 86.89% 
Youden index: 79.44% 
False positive rate: 13.11% 
False negative rate: 6.44%

Yang et al.[42] Improving B-mode ultrasound diagnostic performance for 
focal liver lesions using deep learning: A multi-center study

Classification of liver lesions as benign 
or malignant

US CNN AUC: 0.924 (external validation)

Streba et al.[43] Contrast-enhanced ultrasonography parameters in neural 
network diagnosis of liver tumors

Classification of focal liver lesions US ANN Accuracy: 87.12% 
Sensitivity: 93.2% 
Specificity: 89.7%

Hassan et al.[44] Diagnosis of focal liver diseases based on deep learning 
technique for ultrasound images

Classification of focal liver lesions US Auto-
encoder

Accuracy: 97.2% accuracy 
Sensitivity: 98% 
Specificity: 95.70%

Shi et al.[45] Deep learning assisted differentiation of hepatocellular 
carcinoma from focal liver lesions: choice of four-phase and 
three-phase CT imaging protocol

Classification of focal liver lesions CT CNN AUC: 0.925

Yasaka et al.[46] Deep learning with convolutional neural network for 
differentiation of liver masses at dynamic contrast-
enhanced CT: A Preliminary Study

Classification of focal liver lesions CT CNN AUC: 0.92

Sun et al.[21] LiSNet: An artificial intelligence -based tool for liver imaging 
staging of hepatocellular carcinoma aggressiveness

Prediction of MVI in HCC, and scoring 
HCC aggressiveness

CT ML AUC: 0.668 for predicting histopathological MVI 
Agreement rate of LiSNet with subspecialists: 0.658, 0.595 
and 0.369 for scoring HCC aggressiveness grades I, II, and III

Hamm et al.[47] Deep learning for liver tumor diagnosis part I: development 
of a convolutional neural network classifier for multiphasic 
MRI

Classification of focal liver lesions MRI CNN AUC: 0.992 for HCC identification 
Sensitivity: 90% for classifying FLLs 
Specificity: 98% for classifying FLLs
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Preis et al.[48] Neural network evaluation of PET scans of the liver: a 
potentially useful adjunct in clinical interpretation

Identify metastatic liver disease PET CNN AUC: 0.905 for CNN incorporating lesion data, compared to 
0.786 for blinded observers; 0.896 for CNN independent of 
lesion data, compared to 0.796 for blinded observers

AUC: area under the curve; ANN: artificial neural network; CT: computed tomography; CNN: convolutional neural networks; CEUS: contrast-enhanced US; DL: deep learning HCC: Hepatocellular carcinoma; MVI: 
microvascular invasion; MRI: magnetic resonance imaging; ML: machine learning; PET: positron emission tomography; US: ultrasound.

Beyond distinguishing liver lesions from background tissue, AI also has demonstrable utility in classifying these lesions as benign or malignant. Schmauch 
et al. built a supervised DL model using a training dataset of 367 US images with their corresponding radiological reports, achieving a mean AUC of 0.93 and 
0.92, respectively, in determining benign versus malignant masses[15]. Guo et al. also established that DL can be applied to contrast-enhanced US (CEUS) to 
discriminate benign and malignant liver neoplasms[41]. Recently, Yang et al. designed a large CNN incorporating clinical features and radiomic features like 
lesion size and liver background echo. Their model is one forerunner in AI-based US interpretation, achieving an AUC of 0.924 in an external validation 
cohort, with diagnostic capabilities comparable to contrast-enhanced CT (CECT) and exceeding that of skilled radiologists with 15 years of experience in 
diagnosing focal liver lesions[42].

The preoperative pathological classification of HCC and liver parenchyma is important to the determination of tumor extent and treatment planning. Streba et 
al. prospectively studied CEUS images of 112 patients to train an ANN that classified five different types of liver tissue (HCC, hypervascular or hypovascular 
liver metastasis, hepatic hemangioma, or focal fatty changes) and achieved promising results. Their automatic classification process achieved 93.2% sensitivity, 
89.7% specificity, 94.42% positive predictive value, and 87.57% negative predictive value, which was comparable to human interpretation[43]. Hassan et al. 
reported using an unsupervised DL technique, the stacked sparse auto-encoder, to segment and classify liver lesions on US images with a classification 
accuracy of 97.2%[44]. Optimizing an AI solution on US findings in accurately detecting HCC will prove a less invasive manner in which screening could be 
meaningful (negating the use and access to CECT).

CT, MRI, PET
A noteworthy advancement in CT imaging is the creation of a CNN by Shi et al. that enabled accurate HCC identification using a three-phase CT protocol. 
Their model achieved similar diagnostic accuracy when compared to a four-phase protocol, potentially allowing patients to receive lower doses of radiation[45]. 
To categorize liver lesions identified on CT, Yasaka et al. designed a model to differentiate liver lesions on CT into five categories: HCC, other malignant 
tumors, indeterminate masses, hemangiomas, and cysts, with a median AUC of 0.92[46]. Most recently, the LiSNet AI tool was developed for staging of HCC 
aggressiveness using CT images, where Sun et al. showed results comparable to subspecialist analysis[21]. A human-AI partnered diagnosis was also attempted, 
combining experience-based binary diagnosis and LiSNet, resulting in the best predictive ability for certain parameters such as microvascular invasion (MVI) 
with AUC 0.705[21].
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Hamm et al. used MRI images from 494 patients to train a CNN which can classify hepatic lesions into six 
different categories (benign cysts, cavernous hemangiomas, focal nodular hyperplasia, HCC, intrahepatic 
cholangiocarcinoma, and colorectal metastasis, even outperforming expert radiologists in HCC detection 
(90% vs. 60%-70% sensitivity)[47]. Preis et al. improved this study and reported that incorporating lesion data 
from PET-CT into an ANN achieved high sensitivity and specificity in detecting liver cancer unidentified 
visually, with an AUC of 0.905[48]. While such endeavors in AI models for CT, MRI and PET are laudable, 
the real-world clinical utility of this is likely to be limited for a clinician as a combination of these scans 
already achieves high accuracy in diagnosis. However, the human-AI algorithms, such as LiSNet 
(highlighted above), that can predict biology better (microvascular invasion in this instance) would be of 
important clinical utility and we highlight this below.

PROGNOSTICATION
Staging
Besides serving as efficient tools in the detection and classification of liver tumors, AI models can utilize 
data for staging and prognostication. One of the key prognostic factors in HCC is vascular invasion[54]. Jiang 
et al. developed two predictive models using DL and XGBoost, a distributed gradient-boosted decision tree 
ML library, to detect MVI using CT images from 405 patients, with an AUC of 0.952-0.980[55]. Zhang et al. 
also developed a 3D-CNN model to predict MVI in HCC, with an AUC of 0.81[56]. Findings are summarized 
in Table 2. However, in a real-world context, the prediction of MVI preoperatively in resectable or 
transplantable (within criteria) HCC remains a contentious one. The rapidly expanding neoadjuvant and 
peri-operative systemic treatment options in the field may result in better case selection and preoperative 
treatment of patients with MVI prior to resection or transplantation.

Liver segmentation
Many developed imaging modalities such as CT, MRI, PET and US are used for the liver’s morphological 
and volumetric analysis and diagnosis of associated diseases[59]. They are useful for their capability of giving 
surgeons insights into the current state of organs non-invasively. With the existence of such modalities, 
computer-aided detection (CAD) systems have become significantly more important[60]. Furthermore, CT, 
MRI and PET can generate 3-dimensional (3D) holistic organ volumes for more informative image slices 
with accurate anatomical information. These modalities are utilized extensively for clinical applications 
including cancer diagnosis, tumor burden quantification, surgical planning and organ transplantation[60]. 
Additionally, such modalities are used for adaptive radiation therapy, which is a radiation treatment plan 
that is customized based on the patient’s functional changes during a course of radiation[61]. In another 
clinical procedure, a pre-procedural CT or MRI scan can help in interventional endoscopy for pancreatic 
and biliary diseases, as image guidance can be supportive in intra-procedural navigation to specific 
gastrointestinal positions[62]. All the aforementioned reasons demonstrate the importance of segmenting the 
liver to aid in disease diagnosis and prognosis.

Survival prediction
Beyond detecting HCC on imaging, several studies have proposed AI algorithms for survival prediction. 
Using CEUS images taken prior to treatment, Liu et al. devised a DL radiomics model to project post-
treatment progression-free survival (PFS) in HCC patients as a future selection tool between treatment 
options (see section 4.4)[57]. Zhang et al. built a DL-based model predicting overall survival using CT images 
from 201 patients with unresectable HCC treated with TACE and sorafenib, which achieved superior 
predictive performance compared to the clinical nomogram (C-index 0.730)[58].
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Table 2. Prognostication of HCC

Study Title Study aim Diagnostic 
technique

AI 
tool Performance

Jiang et al.[55] Preoperative identification of microvascular invasion in 
hepatocellular carcinoma by XGBoost and deep learning

Identification of MVI in HCC CT CNN AUC: 0.906

Zhang et al.[56] Deep learning with 3d convolutional neural network for 
noninvasive prediction of microvascular invasion in 
hepatocellular carcinoma

Prediction of MVI in HCC MRI CNN AUC: 0.72 
Sensitivity: 55% 
Specificity: 81%

Liu et al.[57] Deep learning radiomics based on contrast-enhanced 
ultrasound might optimize curative treatments for very-
early or early-stage hepatocellular carcinoma patients. liver 
cancer

Prediction of 2-year progression-free survival (PFS) of 
radiofrequency ablation (RFA) and liver resection prior to 
treatment; Optimize treatment selection for patients with very 
early and early-stage HCC

CEUS DL C-index: 0.726 for RFA, 0.741 for liver 
resection

Zhang et al.[58] Deep Learning predicts overall survival of patients with 
unresectable hepatocellular carcinoma treated by 
transarterial chemoembolization plus Sorafenib

Prediction of overall survival in HCC after treatment with 
TACE and Sorafenib

CT CNN C-index: 0.717 in training set, 0.714 in 
validation set

Simsek et al.[23] Artificial intelligence method to predict overall survival of 
hepatocellular carcinoma

Prediction of overall survival in HCC Clinical, 
Biochemical

ML AUC: 0.92 for >6 months, 0.81 for >1 year, 
0.78 for >2 years, 0.81 for >3 years, 0.82 for 
>5 years, 0.81 for >8 years, and 0.66 for >10 
years

AUC: Area under the curve; CT: computed tomography; CNN: convolutional neural networks; CEUS: contrast-enhanced US; DL: deep learning HCC: hepatocellular carcinoma; MVI: microvascular invasion; MRI: 
magnetic resonance imaging; ML: machine learning; TACE: transarterial chemoembolization.

Recently, Simsek et al. reported a DL model studying non-radiological features (age, bilirubin, AFP, smoking status, alcoholic liver disease etiology, and GGT) 
predicted overall survival of HCC patients at short and long-term intervals (AUC 0.92)[23]. With the established role of immunotherapy in the management 
algorithm of HCC[63], these studies at present may have limited clinical applicability. However, at present, it must be noted that standard molecular markers of 
sensitivity to immunotherapy, such as microsatellite instability, tumor mutational burden and mismatch repair, have a limited role in predicting responders to 
immunotherapy in HCC[64,65]. The principles of radiomic and DL methods, as described above, may indeed prove to be the mainstay of such predictions prior 
to HCC treatment in the future. All findings are summarized in Table 2.

TREATMENT OF HCC
Liver resection
Survival outcomes after resection
Liver resection is recommended as first-line therapy for patients with HCC, but there is a paucity of outcome prediction models to aid in patient selection and 
postoperative tumor recurrence remains high. Traditionally, the decision for surgery is guided by treatment pathways such as the Barcelona Clinic Liver 
Cancer (BCLC) algorithm[2]. With the emergence of AI tools that combine clinical, biochemical, and multimodal radiological features, there is potential for 
more accurate preoperative identification of HCC patients at higher risk of recurrence.



Page 55 Xu et al. Art Int Surg 2023;3:48-63 https://dx.doi.org/10.20517/ais.2022.33

Ji et al. designed an ML framework that identified a three-feature radiomic signature of contrast-enhanced 
CT images. To further boost prediction performance, clinical factors and biochemical measures like the 
serum AFP level and albumin-bilirubin grade were included. Their model achieved a C-statistic of 0.73 and 
outperformed conventional metrics of prognostication like BCLC scoring[66]. Wang et al. devised a similar 
combined model using multiphasic CT features and clinical factors, yielding promising results with an AUC 
of 0.82. In a similar vein, Saillard et al. employed a DL model based on digitized histological slides that 
could predict post-resection survival more accurately than relevant clinical, biological, and pathological 
factors[67]. However, these findings were not upheld when subjected to external validation. Post-resection 
features predicting survival have had limited clinical impact due to the lack of adjuvant treatment options in 
HCC previously. With continued expansions and trials in adjuvant treatment in HCC, such features may 
have relevance when incorporated into survival prediction post-resection.

Liver transplantation
Recipient selection 
The Model for End-Stage Liver Disease (MELD) score, originally devised to prognosticate patients after a 
transjugular intrahepatic portosystemic shunt (TIPS) procedure for portal hypertension, has been used 
since 2002 for prioritizing donor liver allocation in liver transplantation in a “sickest-first” approach[68]. This 
logarithmic score comprises biochemical factors like the International Normalized Ratio (INR), serum 
creatinine, and total serum bilirubin. While regional allocation policies may differ, the final MELD score 
given to a patient on the waiting list usually gives additional ‘exception points’ after considering the etiology 
of cirrhosis as well[69]. This model has served patients around the world well for many years, but it is 
gradually being superseded by more updated listing criteria. The MELD score has been critiqued for being 
disadvantageous to female patients because of its inclusion of serum creatinine (typically lower in females) 
without correction for gender. While the new MELD 3.0 score promises to correct for gender bias, the 
question remains – could AI-based models outperform this, either supervised on unsupervised?

The Optimized Prediction of Mortality (OPOM) model employs ML optimal classification tree models to 
more accurately predict three-month mortality compared to the MELD score. Specifically, a model was 
calibrated based on optimal classification trees (or OCTs), which represented a ML prediction method that 
afforded interpretability and high prediction accuracy. This predictive model was trained on historical data 
of patients in the United States from 2002 to 2016 (comprising 1,618, 966 patient observations) obtained 
from the Scientific Registry of Transplant Recipients (SRTR) in a Liver Simulation Allocation Model 
(LSAM). The end product was a classification tree that predicted the probability of a patient dying or 
becoming unsuitable for transplant within 3 months (the dependent variable), given observations of certain 
patient characteristics (the independent variables). Bertsimas et al. showed that OPOM allocation reduced 
mortality by 417.96 deaths per year compared to MELD[70]. Indeed, although a simple method to stratify 
candidates awaiting liver transplantation, the MELD score is a linear regression method that does not 
accurately predict mortality for all candidates who can benefit from liver transplantation. This is especially 
demonstrated in the significant deterioration in MELD predictive capabilities with increasing disease 
severity compared to OPOM. In contrast to MELD, which demonstrated decreasing AUC values as sicker 
patient strata are considered, OPOM maintained significantly higher AUCs, especially within the sickest 
candidate population, thus allowing for a more accurate prediction of waitlist mortality. A recent study by 
Yu et al. using ML in a Korean cohort also showed superior outcomes of its random forest model (AUC 
0.80-0.85) compared to using the MELD score (AUC 0.70)[71].

Unfortunately, the OPOM experimental model has yet to be validated in other centers with HCC patient 
cohorts. It should be noted that LSAM analysis is also limited in that it only allows for an accurate 
assessment of waitlist deaths, as waitlist removals include not only candidates with deterioration in their 
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condition, but also those removed due to improvement in their condition. It should be noted that OPOM 
allocation does not address the issues in liver distribution, nor the resultant geographic disparity that exists 
between the united network for organ sharing (UNOS) regions and donor service areas (DSAs)[66]. Similarly, 
for the Korean random forest ML model, despite its superior outcomes, organ shortage is the main hurdle 
for organ transplantation and liver allocation remains a major issue[71].

Donor matching
Liver transplantation has traditionally relied on MELD score and (in living donors) volumetric matching 
between donor and recipient to achieve an ideal pairing. Beyond simply using AI algorithms to derive a 
“better MELD score”, there has been a fundamental shift away from recipient selection and ranking alone to 
donor-recipient (D-R) matching models. One of the most widely debated models for D-R matching is an 
ANN by Briceno et al. analyzing 64 different variables and their effects on the probability of graft survival 
and reduction of graft loss[72]. They found that utilizing their ANN yielded superior results compared to 
current validated scores, including MELD, D-MELD, DRI, P-SOF, SOFT, and BAR[72].

However, the use of AI in D-R matching is also not without its limitations. A recent 2021 study by Gujio-
Rubio et al. compared modeling techniques using standard statistical methods (including logistic regression 
and naive Baynes) to standard machine learning methods (including multilayer perceptron, random forest, 
gradient boosting and support vector machines) and standard scores (MELD, SOFT and BAR)[73]. Of note, 
the study concluded that logistic regression (AUC 0.654) outperformed ML techniques (AUC 0.599-0.644) 
and also outperformed standard scores[73]. This adds further uncertainty to the true utility of AI techniques 
in liver transplantation, which will be discussed below.

Transarterial chemoembolization
Transarterial Chemoembolization (TACE) is typically used to treat Stage B HCC following the BCLC 
guidelines. Patient selection is key to ensuring that patients suitable for upfront resection do not delay 
definitive curative treatment. Several models have been developed based on clinical data and CT or MRI 
imaging features. These include the ML and DL models developed by Peng et al.[74], Morshid et al.[75], Liu 
et al.[76] amongst others - these models have produced fairly satisfactory results, with an AUC of 0.93-0.97 
for predicting TACE response.

Radiofrequency ablation 
RFA is used to treat both early-stage HCC and unresectable diseases. In selected patients, this treatment 
modality aims for curative treatment that confers lower morbidity than traditional liver resection and/or 
transplantation would. Liang et al. proposed an ML model in 2014 looking at recurrence after RFA, 
attaining an AUC of 0.69. In this study, high-risk patients could be identified and followed up closely after 
RFA treatment for surveillance. In 2020, Liu et al. further developed a novel DL-based radiomic strategy to 
predict 2-year PFS among 419 patients with very early and early-stage HCC, using CEUS images taken one 
week prior to liver resection (n = 205) or RFA (n = 214). Their updated model achieved accurate pre-
treatment predictions of future PFS (C-index 0.741 for liver resection, 0.726 for RFA), potentially serving as 
a future tool for patient selection between the two options[57]. All findings are summarized in Table 3.

CURRENT CHALLENGES IN THE APPLICATION OF AI
In his celebrated thesis ‘The Critique of Pure Reason’, Immanuel Kant asks: “What can we know?” “What 
should we do?” “What is reasonable to hope for[77]?” In the application of AI to clinical practice, this is a 
relevant framing for us to consider its further development and its applicability. The current exponential 
development of AI and its accompanying hardware has resulted in landmark scientific discoveries to date, 
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Table 3. Management of HCC

Study Title Study aim Diagnostic technique AI 
tool Performance

Ji et al.[66] Machine-learning analysis of contrast-enhanced CT radiomics 
predicts recurrence of hepatocellular carcinoma after resection: a 
multi-institutional study

Prediction of HCC recurrence CECT ML C-index: 0.733-0.801 
Integrated Brier score: 0.147-0.165

Saillard et al.[67] Predicting survival after hepatocellular carcinoma resection using 
deep learning on histological slides

Prediction of survival in HCC patients after 
surgical resection

Histopathology CNN C-index: 0.75-0.78

Bertsimas 
et al.[70]

Development and validation of an optimized prediction of mortality 
for candidates awaiting liver transplantation

Prediction of candidate's 3-month waitlist 
mortality or removal

Standard Transplant 
Analysis and Research 
(STAR) dataset

ML Compared to MELD, OPOM 
allocation reduced mortality by 
417.96 deaths per year

Yu et al.[71] Artificial intelligence for predicting survival following deceased 
donor liver transplantation: retrospective multicenter study

Prediction of survival following liver 
transplantation using traditional statistical 
models versus ML approaches

Deceased donor liver 
transplant recipients 
variables

ML AUC: 0.80-0.85

Briceño et al.[72] Use of artificial intelligence as an innovative donor-recipient 
matching model for liver transplantation: results from a multicenter 
spanish study

Donor-recipient (D-R) matching in liver 
transplantation, comparison of ANN accuracy 
with validated scores of graft survival

D-R variables ANN Prediction of probability of graft 
survival (90.79%) and -loss 
(71.42%)

Gujio-Rubio 
et al.[73]

Statistical methods versus machine learning techniques for donor-
recipient matching in liver transplantation

Analyze how several ML techniques behave in the 
largest liver transplant database

United Network for Organ 
Sharing database

ML AUC: 0.654 for logistic regression 
AUC: 0.599-0.644 for ML

Peng et al.[74] Residual convolutional neural network for predicting the response of 
transarterial chemoembolization in hepatocellular carcinoma from 
CT imaging

Prediction of response to TACE CT CNN AUC: 0.97 
Accuracy: 84.3%

Morshid 
et al.[75]

A machine learning model to predict hepatocellular carcinoma 
response to transcatheter arterial chemoembolization. radiology 
artificial intelligence

Prediction of response to TACE CT ML Accuracy: 74%

Liu et al.[76] Accurate prediction of responses to transarterial chemoembolization 
for patients with hepatocellular carcinoma by using artificial 
intelligence in contrast-enhanced ultrasound

Prediction of response to TACE CEUS DL AUC: 0.93

AUC: area under the curve; ANN: artificial neural network; CT: computed tomography; CNN: convolutional neural networks; CEUS: contrast-enhanced US; CECT: contrast-enhanced CT; DL: deep learning HCC: 
Hepatocellular carcinoma; MELD: the model for end-stage liver disease; OPOM: the optimized prediction of mortality; TACE: transarterial chemoembolization.

including the discovery of a novel protein folding structure and a new clinically approved antibiotic, firmly establishing its role in translational sciences[78,79]. 
However, the “AI chasm”, a term coined to reflect the gulf between AI development and deployment[80], remains an important practical challenge in clinical 
utility. Despite the multifold benefits of using AI as an adjunct in clinical decision-making, its application has been relatively slow to be adopted across the 
clinical arenas.



Page 58Xu et al. Art Int Surg 2023;3:48-63 https://dx.doi.org/10.20517/ais.2022.33

Existing barriers to the use of AI approaches include the lack of standardized algorithms and software used 
across institutions, difficulty justifying AI-based predictions given the “black box” phenomenon, and poor 
generalizability outside the training set. ML algorithms require external validation in independent datasets 
with patient populations of substantial size and diversity for successful training[81,82]. There are also 
considerable differences between experimental algorithms written for proof-of-concept studies and those 
required for producing a marketable healthcare product. The latter must be done following Good 
Manufacturing Practice guidelines by the Food and Drug Administration[83], often requiring immense labor 
and experience.

Distributional shift and imbalanced data
Distributional shift is a critical problem in model creation[84]. ML models perform best when index cases and 
control cases are similar in the training set[85], but this is rarely the case with HCC. Disease patterns in 
cirrhosis and cancer also evolve drastically over time (such as the current epidemic of non-alcoholic fatty 
liver disease), resulting in mismatches between training and operational data. Imbalanced datasets can be 
“re-balanced” with under-sampling or over-sampling, but a failure to correct inherent biases will result in a 
model that over-diagnoses rare cases[86].

Lack of standardization
In pursuit of safety and efficacy in AI use, standardization is key. As described above, comparability and 
reproducibility remain poor across studies due to gross inconsistencies in data management, imaging and 
data processing equipment used, and the reporting of methods and results. Common metrics used in 
reporting the results of AI prediction, such as area under the curve, sensitivity and specificity, do not 
reliably show clinical efficacy[87]. Biomedical researchers should strongly consider following standardized 
guidelines for reporting published by Luo et al. in 2016[88]. Their seminal work highlights how most pitfalls 
of applying ML in medicine originate from a small set of common issues like data leakage and overfitting. 
They have thus generated guidelines for developing predictive models and a minimum list of reporting 
items, including information on independent variables, negative or positive examples and modeling 
technique selection[89]. The majority of clinical studies reported here fail to reach such reporting standards. 
Scientific publications should stipulate such reporting standards in AI-based studies as part of quality 
assurance and, therefore, potential clinical consideration, something the scientific community “should do”.

Overfitted data and generalizability
Following the initial success of various models trained and tested on small datasets, few have translated to 
any real-world impact because of problems with data overfitting and difficulty generalizing results to other 
patient populations[89]. The application of AI in HCC remains an emerging field and most algorithms 
require training on diverse datasets, as well as testing with external validation or prospective trials. Several 
studies discussed have managed to maintain high accuracy rates in independent external validation cohorts. 
For instance, the AI model for predicting HCC risk in chronic hepatitis B patients developed by Kim et al. 
using a Korean cohort (C-index: 0.79) remained accurate in testing against both an independent external 
Korean validation cohort (C-index: 0.79) and an independent external Caucasian validation cohort (C-
index: 0.81)[13]. Notably, the training/derivation cohort, external Korean validation cohort and external 
Caucasian validation cohorts differed in their baseline characteristics and had significant differences in age 
and prevalence of cirrhosis[13]. Other AI models that have achieved similar results include the ML analysis of 
contrast-enhanced CT radiomics for HCC recurrence by Ji et al[66]. The inclusion of such external national 
and international cohorts would rapidly advance generalizability.
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Black box phenomenon
With the use of “black-box” algorithms in NNs, even developers do not fully understand the underlying 
mechanisms for automated decision-making[90], thus making it difficult to explain results to doctors and 
patients. In HCC research, programs like DeepDream have been applied to aid NN visualization in tumor 
segmentation of CT liver images[91]. Nonetheless, such post-hoc models have been criticized out of concerns 
regarding the fidelity and logicality of explanations provided; Rudin et al. recommend the creation of 
inherently explainable models instead[92]. Accepting that AI has already demonstrated greater efficacy in 
recognizing novel patterns and relationships than supervised standard mathematical modeling, the question 
remains: is transparency ethically imperative in clinical decision making even if that model far outperforms 
any previous modeling? Is this what we should “reasonably hope for” in the future of NN studies in clinical 
practice?

Moving towards clinical use 
The models developed have shown their potential to add great value to patient care. However, a concerted 
effort is required for meta-analyses to sieve out front-runner models and for clinicians to validate those 
models both locally and internationally. Secondly, when the models are mature enough, collaboration with 
ethics review boards and local government will be crucial for deployment into actual clinical practice. Lastly, 
the end-users of the product being clinicians, we should also seek to understand the science behind AI 
algorithms, overcome the ‘black-box’ uncertainty of AI, and be confident in using them in practice. As a 
community, this is something “we should do”. In order to overcome this, more so in AI-based algorithms 
than standard formulae, there is a great necessity for external validation of such models with global 
collaborative studies. To this end, the opacity of the AI model requires stringent data entry and quality 
assurance that will require careful central control and data monitoring.

CONCLUSION
The utilization of AI in the care of HCC patients is a field that has grown exponentially in the past few 
years, with particular areas of care (e.g., liver transplantation and imaging in HCC) being more hotly 
debated and investigated than others. We summarize in this article that some AI solutions are also more 
acceptable than others - algorithmic approaches may be more easily grasped as compared to NN and DL 
models. In addressing the three questions posed by Kant mentioned above, it is clear that AI has established 
itself as a tool with limitless learning ability. However, addressing what we should do with this data and 
what is reasonable to hope for remains critical to its adoption. Efforts to establish collaborative datasets and 
sound external validation in the global scientific and clinical communities will be integral to this. With 
sound validation studies in well-curated clinical cohorts and clear reporting standards, some of the five 
concerns we put forward are likely to be allayed; thereby, AI application become mainstream in the care of 
HCC.
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