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Abstract
Asymmetric tetrahedral carbon is the basic structural unit of many organic compounds in life and its molecular 
chirality plays a key role in regulating biological functions. Silica (SiO2) is highly earth abundant and its basic unit is 
also the tetrahedral form of SiO4. However, much less attention has been paid to the molecular-scale chirality of 
SiO2 frameworks with repeating SiO4 units because it is challenging to enantioselectively control the molecular 
structures of SiO2. Research into the chiral molecular structures of SiO2 deserves to be a significant topic for 
understanding widespread chiral phenomena and for exploring the chiral properties hidden in inorganic matter. 
This review highlights the asymmetric synthesis strategies that endow SiO2 with chirality transferred from 
asymmetric carbon at the molecular scale. The chirality transfer ability of SiO2 is also demonstrated for the 
construction of various inorganic and/or organic chiral materials with a wide range of applications in asymmetric 
synthesis, circularly polarized luminescence and Raman scattering-based chiral recognition.

Keywords: Chiral silica, asymmetric SiO4 tetrahedra, chirality transfer, circularly polarized luminescence, 
enantioselective Raman scattering
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INTRODUCTION
Chirality divides matter or light into a pair of non-superimposable enantiomeric forms with a mirror image 
relationship and occurs on a broad length scale from the molecular, to the nano/micro and even cosmic 
levels. In particular, the significance of molecular-scale chirality has been broadly accepted since 1848, when 
Louis Pasteur linked optical activity with the stereostructures of molecules after resolving the structure of 
sodium ammonium (±)-tartrate crystals under a light microscope[1]. It is known that proteins consisting of 
amino acid residues are chiral on all primary, secondary, tertiary and quaternary structural levels, among 
which the primary molecular chirality of amino acids plays a key role in chiral features and biological 
functions at higher levels[2]. Therefore, the chirality of synthesized molecules or materials is a property of 
concern, especially when they are associated with living organisms or chiral light. In this context, chiral 
inorganic materials have received ever-increasing attention over the past two decades, despite the fact that 
inorganic materials are often considered as being achiral[3-6].

As an important and enormous class of inorganic material, silica (SiO2) is highly abundant and widely used 
in many industries and research fields. Studies of the chirality of SiO2 date back to 1812 when Jean-Baptiste 
Biot found that natural quartz (crystalline SiO2) is able to rotate the plane of polarized light, which is an 
optical manifestation of chirality[7]. However, the chirality of SiO2 was not fully appreciated until the end of 
the 20th century. Since 2000, a variety of chiral SiO2 nanomaterials have been reported[8-18], which find many 
applications in chiral separation, biomedical therapy and asymmetric catalysis[19-22]. With modern 
spectroscopic and electron microscopy techniques, the chiral features of such SiO2 materials have been 
demonstrated by: (1) helical outward shapes with pitches of over tens of nm (typical examples shown in 
Figure 1A-C), which are duplicated from the helical structures of organic templates in the sol-gel synthesis 
processes; and (2) inward chiral cavities, which are imprinted by chiral small molecules [Figure 1D]. 
Unfortunately, the chiral structures of SiO2 close to the molecular scale (on the Si-O-Si skeleton) have been 
underexplored, in spite of the long history (over two centuries) of SiO2 chemistry and the aforementioned 
significant progress in artificial chiral SiO2.

To probe the chirality of SiO2 near the molecular scale, the molecular structures of SiO2 must be considered. 
The basic unit of SiO2 is the SiO4 tetrahedra, which are interconnected by -Si-O-Si- bonds to form a three-
dimensional (3D) structure. Consequently, SiO2 is a kind of polymer that uses SiO4 tetrahedra as monomer 
units. Although it is often assumed that the SiO4 units are regular tetrahedra (i.e., the lengths of the four 
Si-O bonds are the same), both the lengths of the Si-O bonds and the -O-Si-O- angles are in fact variable 
[Figure 2A], which influences the arrangements and orientations of SiO4 tetrahedra in 3D space[23]. For 
example, the SiO4 tetrahedra in L-form quartz arrange into a chiral pattern of a left-handed helix (with 
helical pitches of less than 1 nm) along the c axis, while a right-handed one exists in R-form quartz 
[Figure 2B][24]. It is noteworthy that the SiO4 unit in quartz is not a regular tetrahedral group and the 
formation of such helices is a result of energy minimization among these irregular SiO4 units. According to 
the previous characterization results of quartz samples, the SiO4 unit is not a perfect tetrahedron as there are 
two pairs of bonds with different lengths (1.608 and 1.609 Å), two angles of 110.5°, two angles of 108.7°, one 
angle of 109.5° and one angle of 108.8°[25,26].

In addition to quartz, chiral distorted AB4 (A = Si; B = O, Si or Al) structures are common in many natural 
and synthetic silicate zeolites[27]. In quartz and zeolites, even if the deviation of the elementary SiO4 unit 
from a regular tetrahedron is small, the distortion will become amplified in larger tetrahedral units, such as 
SiSi4 [i.e., Si-(O-Si)4 without oxygen atoms]. Consequently, the distortion of AB4 units plays a significant role 
in the chirality of SiO2 and zeolite frameworks, and experimentally it was confirmed that these chiral 
zeolites are capable of the enantioselective absorption of amino acid enantiomers. Moreover, based on the 
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Figure 1. Typical synthesized chiral SiO2 nanomaterials. (A) Schematic models for left- (left) and right-handed (right) chiral 
mesoporous silica derived from the helical propellerlike packing of chiral amphiphilic molecules. This figure is used with permission 
from the American Chemical Society[10]. (B) TEM images of self-assemblies of amphiphilic surfactants of 16-2-16 and their transcription 
into twisted and helical SiO2. This figure is used with permission from the American Chemical Society[13]. (C) A schematic model for 
chiral nematic mesoporous SiO2 films templated from the nematic ordering of nanocrystalline cellulose (NCC). This figure is used with 
permission from John Wiley and Sons[14]. (D) Imprinted chiral SiO2 nanotubes synthesized using a chiral N-stearoyl L-serine (C18Ser) 
anionic surfactant template. This figure is used with permission from the American Chemical Society[16].

Figure 2. (A) Basic SiO4 tetrahedra in SiO2 framework [angles (α, φ) and bond lengths d are variable]. (B) Crystal structures of L- and R-
quartz. This figure is used with permission from the American Physical Society[24]. (C) Schematic models of a pair of AB4 tetrahedral 
enantiomers with clockwise or counter-clockwise patterns.

variety of bond lengths and angles in AB4 structures, Yogev-Einot et al.[26] proposed chirality assignment 
rules for AB4 tetrahedral enantiomers [Figure 2C]. Firstly, the perimeter length of the four triangle faces of 
the B4 pyramid is calculated. Secondly, the triangle with the largest perimeter is placed in the plane of the 
page and the fourth substituent behind the page. Finally, a right-handed AB4 tetrahedron is assigned if the 
direction from the longest edge (L1) to the shortest one (L3) in the plane of the page is clockwise, whereas a 
left-handed tetrahedron is assigned for a counterclockwise direction. In spite of the concepts proposed 
above and some simulation models of chiral Si centers[28], it is not straightforward to detect the chirality of 
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SiO2 down to the molecular level, possibly due to the racemic state where two SiO4 tetrahedral enantiomers 
co-exist in equal amounts. Moreover, it is still difficult to design and confirm molecular-scale chirality for 
synthesized SiO2 from an experimental perspective.

Traditionally, SiO2 is formed in solutions using a sol-gel process with controllable structures and 
morphologies of SiO2 gel on a relatively high length scale (over 10 nm). In contrast, in many biosilicification 
processes in diatoms and sponges, bio-SiO2 is usually deposited on the solid surfaces of many biomolecular 
templates, where the formation of SiO2 sol (less than 10 nm) is well directed by organic templates due to 
organic-inorganic interactions[29,30]. Since the sizes of SiO2 sol are closer to the molecular scale than SiO2 gel, 
it is possible to endow SiO2 with molecular-scale chirality if chirality communication occurs between SiO2 
sol and suitable chiral sources in the early stage of the sol-gel process. Since 2004, we have reported the use 
of a bioinspired method to construct SiO2 nanofibers using crystalline assemblies of linear 
polyethyleneimine (PEI) as catalytic templates[31-33]. This method is also a solid-state template-assisted 
process, where SiO2 is site-selectively produced on PEI surfaces but rarely in the solution. Furthermore, 
when PEI is complexed with chiral sugar acids (e.g., tartaric and glucaric acids), the as-formed crystalline 
aggregates with a pair of -HNH···OC=O are still effective in prompting silicification, accompanied by 
chirality transfer from organic templates to SiO2

[34,35]. Surprisingly, even after removing the organic 
templates, the as-obtained SiO2 displays unique chiral properties associated with their asymmetric siliceous 
molecular structures, which are corroborated by many experimental results, as shown below. Therefore, 
such chiral SiO2 structures offer us a good platform to understand the molecular-scale chirality of SiO2.

This mini-review focuses on recent research into these chiral SiO2 nanofibers. We firstly show the 
preparation procedures of SiO2 and provide spectroscopic evidence of their chirality, which is further 
supported by the power of SiO2 to transfer chirality information to other inorganic nanoparticles (NPs) and 
organic polymers. In the subsequent sections, the potential of SiO2 in manipulating chiral light emissions 
[circularly polarized luminescence (CPL)] and achiral light scattering (enantioselective Raman scattering for 
chiral recognition) is discussed. Finally, a short conclusion and perspectives are given.

CHIRAL SIO 2 NANOFIBERS WITH ASYMMETRIC SIO 4-BASED POLYMERIC NETWORKS
The typical preparation route using tartaric acids (tart) for chiral SiO2 nanofibers is described in Figure 3A. 
The crystalline complexes composed of PEI and tart are prepared by dissolving the PEI and tart in hot 
water, followed by a cooling-induced crystallization process. After the addition of tetramethoxysilane 
(TMOS) into the PEI/tart dispersion in water, the hydrolysis and polycondensation of TMOS into SiO2 
around the PEI/tart templates rapidly finishes, resulting in PEI/tart@SiO2 hybrids. SiO2 nanofibers are 
obtained by removing the PEI and tart after calcination at a high temperature (500-900 °C) in air. The 
handedness tags (D-, L- and DL-) of PEI/tart, PEI/tart@SiO2 and SiO2 are consistent with those of the tart 
used. As shown by scanning electron microscopy (SEM) images, the morphologies of the PEI/tart templates 
are kept on PEI/tart@SiO2 [Figure 3B and C] and both D-PEI/tart@SiO2 and L-PEI/tart@SiO2 appear as 
nanofibers in the high-magnification SEM images [Figure 3D and E]. Unlike most helical SiO2 
nanomaterials, it is difficult to observe chiral features on the exterior of SiO2 nanofibers based on electron 
microscopy.

The chiroptical activity of calcinated SiO2 has been examined by electronic circular dichroism spectroscopy. 
Corresponding to the characteristic absorption bands of SiO2 (from 185 to 195 nm), the negative circular 
dichroism (CD) signal of D-SiO2 is a mirror image of the positive one of L-SiO2, while DL-SiO2 is CD silent 
[Figure 3F][34]. In addition, when some achiral chromophores [e.g., tetrakis(3,5-hydroxyphenyl)porphyrin] 
are physically absorbed onto SiO2, they show antipodal inductive CD signals on D-SiO2 and L-SiO2 but 
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Figure 3. (A) Schematic showing the synthesis of chiral SiO2 nanofibers using PEI/tart templates. (B, C) SEM images of (B) D-PEI/tart 
and (C) D-PEI/tart@ SiO2. (D, E) High-magnification SEM images of (D) D-PEI/tart@SiO2 and (E) L-PEI/tart@ SiO2. (F) CD spectra of 
D-, L- and DL- SiO2. (G) CD spectra of D-, L- and DL-SiO2 absorbed with tetrakis(3,5-hydroxyphenyl)porphyrin. This figure is used with 
permission from John Wiley and Sons[34]. (H) TEM image of D-SiO2 sol derived from D-SiO2 nanofibers: (I) VCD (left) and IR (right) 
spectra of D-SiO2 and L-SiO2 sol. This figure is used with permission from the Royal Society of Chemistry[36]. (J) A schematic proposal 
for the formation of chiral SiO2 on PEI/tart templates. PEI: Polyethyleneimine; SEM: scanning electron microscopy; CD: circular 
dichroism; VCD: vibrational circular dichroism.

remain CD inactive on DL-SiO2 [Figure 3G]. Furthermore, long SiO2 nanofiber bundles can be crushed into 
SiO2 NPs (SiO2 sol) with an average size of ~7 nm by hydrothermal treatment [Figure 3H][36]. According to 
vibrational circular dichroism (VCD) spectroscopic analysis, D-SiO2 and L-SiO2 sols show opposite Cotton 
VCD signals (within 1000-1200 cm-1) corresponding to the stretching vibrations of Si-O-Si bonds 
[Figure 3I], implying the existence of twisted structures between asymmetric Si centers. Moreover, achiral 
molecules physically absorbed onto SiO2 sol also display inductive VCD signals. Consequently, the CD and 
VCD signals above are in favor of the molecular-scale chirality existing on SiO2 nanofibers. Additional 
related proof is provided in the following sections using SiO2 as a chirality source to construct a series of 
chiral nanomaterials.

Nevertheless, it is difficult to clarify the chirality transfer mechanism from PEI/tart to SiO2 due to a lack of 
effective analysis protocols. As confirmed in previous reports, charged pairs consisting of amines and 
carboxylic acids are efficient to accelerate the transformation of alkoxysilanes into SiO2

[37]. Based on nuclear 
magnetic resonance (NMR), X-ray diffraction and elemental analysis of the crystalline PEI/tart aggregates 
formed in water, the molar ratio of NH/COOH/H2O is estimated as 1:1:1[34]. Thus, the crystalline surface is 
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densely covered by many -HNH···OC=O pairs, which act as catalytic sites for the silicification of TMOS. We 
proposed previously a tentative chirality transfer scenario from PEI/tart to the resulting silica[38], as shown in 
Figure 3J. The carboxylate group in the -HNH···OC=O pair nucleophilically attacks the Si of TMOS to give a 
pentacoordinated structure and a silane moiety bonded by the secondary alkoxy group of tartrate is then 
generated and anchored on PEI/tart with the removal of the methoxy group. Subsequently, the group of Si-
OH on the silane moiety is activated by -NH- and reacts further with other TMOS molecules, resulting in 
the formation of an -O-Si-O- network. Such a reaction occurs simultaneously here and there around whole 
the surface of PEI/tart. Because the initial anchor moiety is located in the chiral domain of PEI/tart, the 
lengths of the Si-O bonds and the angles of the O-Si-O bonds will be influenced by the chiral spatial 
structures of PEI/tart and the following polymerization and cyclization can be regulated through 
enantiomerical enrichment to generate asymmetric polysilicate structures. With an increasing amount of 
SiO2 shell, the PEI/tart templates become covered by SiO2 and their chiral influences are weakened. 
However, the early formed SiO2 layer can be used as a chiral seed to maintain the following SiO2 deposition 
through epitaxial growth with self-amplification of the chirality. In brief, these three steps (anchoring, 
polymerization and epitaxial growth) are key for the generation of chiral structures on SiO2.

CHIRALITY TRANSFER FROM SIO 2 TO INORGANIC NANOMATERIALS
It has been confirmed that molecules or NPs, which are either physically attached to or chemically formed 
in chiral SiO2 nanomaterials, can become chiroptically active in CD spectra. However, the as-observed 
optical activity is a result of induced CD and does not mean structural chirality. For example, silver NPs in-
situ formed in helical mesoporous SiO2 are CD active but return to being CD inactive after removing the 
SiO2 host, suggesting that chirality transfer is inefficient from helical SiO2 to metal NPs[39]. It is reasonable to 
propose that the chirality in many previously reported chiral SiO2 materials disappears when their outward 
helical morphologies or inward chiral cavities are destroyed[40].

In contrast, chiral SiO2 nanofibers with sturdy chiral structures close to the molecular scale possess an 
excellent ability of chirality transfer. For example, Au NPs were firstly in-situ synthesized on chiral SiO2 
nanofibers via thermal reduction at high temperatures (500-800 °C)[41]. Surprisingly, after dissolving SiO2 
nanofibers by hydrothermal treatment or etching using NaOH solutions, the as-isolated Au NPs [Figure 4A 
and B] remain CD active and are able to make other achiral molecules to present inductive CD signals. 
Compared with common Au NPs, the lattices of chiral Au NPs are distorted, as shown by scanning 
transmission electron microscopy (STEM) images [Figure 4C and D], which is indicative of the intrinsic 
structural chirality of Au NPs at the atomic scale. Based on Raman spectra, the chirality of the Au NPs is 
proven by their enantioselective recognition toward chiral small molecules. In another study by Wei et al.[42], 
wavelike lattices [Figure 4E and F] are also found on Ag nanohelices (NHs) prepared by glancing angle 
deposition and these chiral lattices can affect the orientation of molecules to achieve enantioselective 
synthesis with enantiomeric excess up to 5%.

In organic chemistry, chiral pool synthesis is straightforward and can be used to prepare optically active 
products that are transformed from chiral starting materials. The basic unit in crystalline Si is also a regular 
SiSi4 tetrahedron with one central Si atom connected to four Si atoms at the corners. Due to the high 
symmetry of crystal structures, it is difficult to produce chiral Si. However, asymmetric SiO4 tetrahedra may 
be used as chiral pools to generate asymmetrically distorted SiSi4 tetrahedra. On this basis, via a solid-state 
magnesiothermic reaction at 500-600 °C, chiral SiO2 nanofibers (with an average diameter of ~10 nm) were 
reduced by magnesium and transformed into Si nanoplates of several hundreds of nm in size [Figure 5A 
and B][36]. Despite the morphological change, the chiroptical activity of Si is confirmed in their CD and UV-
Vis absorption spectra [Figure 5C and D]. Moreover, achiral molecules physically absorbed on these Si 
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Figure 4. (A) Photograph of aqueous solution of L-Au NPs after hydrothermal treatment of L- Au@SiO2. (B) TEM image of L-Au NPs. 
(C) CD and UV/Vis spectra of D-Au and L-Au NPs. (D) Low magnification STEM image (viewed along the direction of {111}) of D-
Au@SiO2-500. (E) Atomic resolution STEM image of the square region in (D). (F) Enlarged image of (E) showing the non-straight 
arrangement of the atomic array. This figure is used with permission from the Royal Society of Chemistry[41]. NPs: Nanoparticles; TEM: 
transmission electron microscopy; CD: circular dichroism; STEM: scanning transmission electron microscopy.

nanoplates show induced VCD signals. This provides a special self-directed chirality transfer mechanism 
from amorphous silica to crystalline silicon. These two examples indicate that SiO2 nanofibers can impart 
inherent chiral structures to products in-situ synthesized on the surfaces of SiO2.

CHIRALITY TRANSFER FROM SIO 2 TO ORGANIC POLYMERS
Synthesis of chiroptically active cross-linked polymers
Polymers with chiroptical activity are widely used for various purposes, including chiral discrimination, 
sensing and optical devices. Usually, the chirality of polymers is controlled using chiral organic substances 
(e.g., monomers, catalysts and auxiliaries). However, from the perspective of the origins of life, there are 
arguments that inorganic minerals enrich monomer precursors and then direct their polymerization into 
larger chiral biological polymers during the formation of early cells[43,44]. Therefore, research on the chirality 
transfer from inorganics to organics is a vitally important topic. With the above success in the induced 
chirality of small inorganic NPs by chiral SiO2 nanofibers, the feasibility of the chiral synthesis of polymers 
on SiO2 surfaces is also demonstrated below.
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Figure 5. TEM images of (A) D-SiO2 and (B) D-Si. (C) CD (left) and (D) UV/Vis absorption (right) spectra of D- and L-Si. This figure is 
used with permission from the Royal Society of Chemistry[36]. CD: Circular dichroism.

The first example is the synthesis of phenolic resin (RF) using achiral monomers of resorcinol (R) and 
formaldehyde (F). At first, the polymerization of R and F was conducted using PEI/tart@SiO2 as the chiral 
template[45]. Although the as-obtained RF shows obvious CD signals, it is difficult to judge whether the 
chiroptical activity of RF is induced by chiral tart or chiral SiO2. The tart in PEI/tart@SiO2 were removed via 
treatment of the as-prepared sample using HCl (aq), with only PEI left in the SiO2 nanofibers[46]. Because the 
polymerization of R and F can take place under a basic catalyst, the basic amine groups on PEI act as 
catalysts to initiate the polymerization. Indeed, RF is successfully deposited on SiO2 nanofibers and shows 
chiroptically activity in the CD spectra.

Not limited to PEI, other amine group-bearing surface modifiers have also proven to be effective. In a 
recent study, the powders of PEI/tart@SiO2 were firstly treated under high temperature (600 °C) in air to 
remove the organic species of PEI and tart. As shown in Figure 6A, four types of silane coupling agents 
(SCAs) were selected, namely, 3-(trimethoxysilyl)propylamine (with a primary amino group of NH2-, 1°P), 
N-methyl-3-(trimethoxysilyl)propylamine (secondary NHMe-, 2°P), N,N-dimethyl-3-(trimethoxysilyl)-
propylamine (tertiary NMe2-, 3°P) and N-(3-triethoxysilylpropyl)-4,5-dihydroimidazole (with an imidazole 
group, Im)[47]. These SCAs were used as surface modifiers to prepare amine-modified chiral SiO2 (i.e., 1°P-
SiO2, 2°P-SiO2, 3°P-SiO2 and Im-SiO2). Due to the base nature of SCAs, the polymerization of R and F 
occurs site selectively on the surface of SiO2 nanofibers when heating at 60 °C. All these four kinds of SCAs 
can induce the formation of RF based on NMR analysis. For example, the tertiary amino-modified SiO2 
(3°P-SiO2) possesses the lowest nitrogen content but shows the highest yield of RF, with a mass ratio of 51.5 
(SiO2):40.3 (RF):8.2(SCA) in the 3°P-SiO2@RF composites. Although these amino residues are not chiral, 
the inductive CD signals with mirror image relationships are observed in the absorption range of each 
amino residue chemically anchored on D- and L-form SiO2, implying the chirality penetration from SiO2 to 
amino residues. The chirality information is further permeated to RF resins, with a pair of opposite CD 
signals in D- and L-form 3°P-SiO2@RF appearing in the range between 300 and 800 nm [Figure 6B], which 
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Figure 6. (A) Synthesis of RF resin on SCA-modified chiral SiO2. (B) CD and UV-Vis absorption spectra of 3°P-SiO2@RF (left) and 
3°P@RF (right). (C) Molecular structures of R4 and R4F. (D) CD and UV-Vis absorption spectra of 1°P-SiO2@R4F (left) and 
1°P@R4F(right). (E) A proposed polycondensation reaction of R with F on the chiral SiO2 surface chemically bonded with amine 
residues. This figure is used with permission from the Royal Society of Chemistry[47]. SCA: Silane coupling agent; CD: circular dichroism; 
R: resorcinol; F: formaldehyde.
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are attributed to the π-electron conjugation and π-π interaction of RF. Similar to the cases of chiral Au NPs 
and Si nanoplates, the isolated RF still maintains its chiroptical activity even after the removal of SiO2 using 
a hydrogen fluoride solution [Figure 6B], indicating that the inherent chirality is steadily endowed on RF.

Furthermore, through the condensation reaction between resorcinol and acetaldehyde, resorcinol was 
transformed into achiral resorcinarene (R4). After the absorption of R4 onto 1°P-SiO2 (1°P-SiO2@R4), a 
rescorcinarene (R4)-based phenolic resin (R4F) is synthesized by the cross-linking between the aromatic 
rings of R4 with the addition of formaldehyde [Figure 6C]. The D- and L-1°P-SiO2@R4F also exhibited 
antipodal CD signals between 250 and 700 nm [Figure 6D]. These CD signals are still found on R4F peeled 
from SiO2 [Figure 6D], although the CD signals became weaker compared with those of 1°P-SiO2@R4F. The 
chiral discrimination ability of R4F toward racemic mandelic acid was revealed by CD spectroscopy, with 
D-1°P-SiO2@R4F favoring the adsorption of D-MA while L-1°P-SiO2@R4F preferred L-MA.

Because no chiral carbon centers exist in the molecular structures of R, R4 and F, the origin of chirality in 
RF and R4F may be associated with their cyclic residues in the network backbone. It is possible that the 
cyclic residues resembling calixarene derivatives are deformed with the non-equivalent substitution in the 
periphery of the cyclic residues to generate axial asymmetry. A mechanism is proposed [Figure 6E] where 
the amine residues can interact with the chiral sites of Si*-OH via hydrogen bonds to form loop-like 
domains with potential chirality, which facilitates the chiral transfer to resorcinol and the following 
intermediates, thus regulating the polymer growth and inducing the axial asymmetry of cyclic residues.

It seems that cross-linked polymers can be endowed with chiroptical activity on these SiO2 nanofibers. To 
further support this point, other two kinds of polymers are synthesized via the radical polymerization of 
achiral divinylbenzene (DVB) or N,N′-methylenebisacrylamide (MBA) around SiO2 [Figure 7A][48]. The tart 
in PEI/tart@SiO2 was firstly removed by HCl to obtain PEI/SiO2. Because PEI can easily react with many 
organics, including alkyl halide, 4,4′-bis(chloromethyl)biphenyl (Bp) was chemically bonded onto the PEI 
fraction to obtain biphenyl group-bearing SiO2 (Bp-PEI/SiO2). On this basis, the hydrophilic surfaces of 
SiO2 become hydrophobic and absorb the DVB (or MBA) monomers. The polymer of polydivinylbenzene 
(PDVB) is synthesized in the presence of azo-initiators when heating at 80 °C, as confirmed by NMR 
analysis [Figure 7B]. In the composites of PDVB-hybridized chiral silica (PDVB@Bp-PEI/SiO2), the mass 
ratio of PDVB is ~32.1%. After removing SiO2 using 5 wt.% NaOH (aq), the liberated PDVB showed a pair 
of opposite CD signals in its absorption band (250-350 nm, Figure 7C). When MBA is used as the 
precursor, the as-prepared polymers of poly(N,N′-methylenebisacrylamide) (PMBA) also show CD signals 
in their absorption bands at ~290 nm. Furthermore, the chirality of PDVB and PMBA is confirmed using an 
achiral porphyrin derivative of tetrakis(4-carboxyphenyl)porphyrin (TCPP) as the probe molecule. By 
mixing TCPP with PDVB (or PMBA), the inductive CD Cotton signals of TCPP with mirror relationships 
are present around the characteristic absorbance at the Soret and Q-bands of TCPP [Figure 7D]. 
Consequently, it can be concluded that these chiral SiO2 nanofibers are powerful in the asymmetric 
synthesis of chiroptically active cross-linked polymers through the rational design of surface modifiers, 
catalysts and monomers.

Enantioselective control of polymer crystallization
SiO2 nanofibers affect not only the polymerization but also the crystallization process of polymers. For 
example, due to the periodic helical twist of lamellar, the crystalline polymer of poly(ε-caprolactone) (PCL) 
can form banded spherulites when blended with poly(vinylbutyral) (PVB), where both right- and left-
handed twists of PCL lamellae are produced randomly. When SiO2 nanofibers are employed as nucleating 
agents to mediate the crystallization of PCL/PVB blends, it is found that SiO2 can accelerate the nucleation 
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Figure 7. (A) Synthesis of chiral cross-linked polymers of PDVB and PMBA via radical polymerization of divinyl monomers around 
biphenyl group-bearing SiO2 nanofibers. (B) 13C NMR spectra of L-form Bp- SiO2, DVB@Bp-PEI@SiO2 and isolated PDVB. Solid-state CD 
and UV-vis absorption spectra of (C) chiral isolated PDVB and (D) TCPP@PDVB. This figure is used with permission from John Wiley 
and Sons[48]. DVB: Divinylbenzene; MBV: N,N′-methylenebisacrylamide; PDVB: polydivinylbenzene; PMBA: poly(N,N′-
methylenebisacrylamide); NMR: nuclear magnetic resonance; CD: circular dichroism; TCPP: tetrakis(4-carboxyphenyl)porphyrin.

of PCL after 3 min, while it took over 50 min without SiO2 [Figure 8A and B][49]. More importantly, the twist 
handedness of PCL lamellae is controlled by the chirality of SiO2. When rotating the samples around the 
axis from the observer toward the microscope, the extinction rings moving upward along the rotation axis 
indicate the right-handed twist, while downward movement represents the left-handed twist [Figure 8C]. 
Without SiO2, the ratio between left- and right-handed twist (L:R) is close to 1:1 [Figure 8D]. However, 
favorable handedness of twisting is observed in the presence of chiral SiO2, with right-handed twists being 
more common than left-handed ones (L:R ≈ 1:2) with D-SiO2, while left-handed ones increased obviously 
(L:R ≈ 2:1) with L-SiO2. It seems that the alignment of the chain folds of PCL may be influenced by chiral 
silica and thus a given handedness of twist is preferred.

CIRCULARLY POLARIZED LUMINESCENCE FROM SIO 2-CONTAINING NANOMATERIALS
CPL is another chiroptical phenomenon and is referred to as the difference between left-handed circularly 
polarized light (LCP) and right-handed circularly polarized light (RCP) in the emission from a chiral 
luminescent system. A CPL spectrum is collected by measuring the value of “IL-IR” (where IL and IR is the 
intensity of LCP and RCP, respectively) at a given emission wavelength. A dissymmetry factor of glum is used 
to assess the differences between LCP and RCP in the total emission: glum = 2 × (IL - IR)/(IL + IR). Different 
from CD spectra associated ground states, CPL is related to the excitation states and provides an important 
spectroscopic method for chirality analysis. Moreover, CPL is useful in many areas including circularly 
polarized light sources, optical storage, sensing and anti-counterfeiting[50]. A CPL active system contains two 
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Figure 8. Polarized optical micrographs of PCL spherulites in PCL/PVB blends showing (A) nucleation of PCL on the silica particles and 
(B) PCL spherulites. (C) Upward (left) and downward (right) displacement of the extinction bands of PCL spherulites (the vertical and 
round arrows indicating the rotation axis and direction, respectively). (D) Fractions of left- and right-handed twists without silica (top), 
with D-SiO2 (middle) and L-SiO2 (bottom). This figure is used with permission from the American Chemical Society[49]. PCL: Poly(ε-
caprolactone); PVB: poly(vinylbutyral).

functional units: one is the luminescent part for emission and the other is the chiral one to disequilibrate 
LCP and RCP. As testified in the examples below, chiral SiO2 nanofibers are good chiral sources to 
synthesize CD active materials, which are extended to design CPL active systems by incorporating 
luminescent guests.

A first example is to prepare sub-10 nm fluorescent lanthanide oxide NPs on SiO2 nanofibers. Eu3+ (or Tb3+) 
ions absorbed by PEI/tart@SiO2 are transformed into sub-10 nm crystalline Eu2O3 (or Tb2O3) NPs after 
calcination at 900 °C [Figure 9A][51]. Around the characteristic emission bands of lanthanide ions (615 nm 
for Eu2O3 and 545 nm for Tb2O3), the positive CPL signals (i.e., IL > IR) of these NPs on L-SiO2 appear, while 
negative signals (i.e., IL < IR) occur on D-SiO2 [Figure 9B]. According to X-ray photoelectron spectroscopy 
characterization, it is probable that Eu-O (or Tb-O) clusters are asymmetrically distorted in the chiral 
microenvironment of SiO2 nanoreactors.

Other luminophores can also become CPL active once they are embedded within these SiO2 nanofibers[52]. 
For instance, amine group-modified SiO2 (1°P-SiO2, Figure 6A) is used to prepare perovskite (MAPbBr3) 
NPs with CPL signals of ~520 nm [Figure 9C and D]. Moreover, various fluorescent carboxylic molecules 
(5,10,15,20-TCPP, 1-pyrenecarboxyl acid and fluorescein) are easily absorbed by the amine groups on SiO2 
and therefore show CPL signals at their emission wavelengths with glum of 2-5 × 10-3 [Figure 9E]. 
Aggregation-induced emission (AIE) is a fascinating luminescent process and AIE-based CPL is also 
present in chiral SiO2 using the typical AIE luminogens of tetraphenylethane (TPE) as a model. TPE 
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Figure 9. (A) TEM image of Eu2O3 NPs in D-Eu2O3/SiO 2. (B) CPL spectra of SiO2/Tb2O3 (insert, emission photograph of SiO2/Tb2O3 
powders in dark). These figures are used with permission from John Wiley and Sons[51]. (C) TEM image of MAPbBr3 NPs from MAPbBr3

@1°P-SiO 2. (D-F) CPL spectra of (D) MAPbBr3@1°P-SiO 2, (E) TCPP@1°P-SiO2 and (F) TPE@Ph-SiO 2. These figures are used with 
permission from John Wiley and Sons[52]. TEM: Transmission electron microscopy; NPs: nanoparticles; CPL: circularly polarized 
luminescence; TCPP: tetrakis(4-carboxyphenyl)porphyrin.

molecules are enriched in proximity to SiO2 nanofibers modified with phenyl groups and thus display CPL 
activity at ~476 nm in their aggregated state [Figure 9F].

In some recent works, Liu et al.[53] and Harada et al.[54] also used helical silica nanomaterials [Figure 1B] as 
chiral hosts to synthesize lanthanide ion- and perovskite-containing CPL systems. The related CPL signals 
and values of glum obtained using helical SiO2 are comparable to those using SiO2 nanofibers. However, an 
additional assembly process of perovskite NPs along helical SiO2 to form a helical pattern is needed for the 
generation of CPL signals[53]. In contrast, CPL relies on the molecular-scale chirality transfer from SiO2 
nanofibers and shows a weak correlation with the nano/micromorphologies at higher length levels, which 
seems adaptable to many applications.

RAMAN ENANTIOSELECTIVE RECOGNITION ASSISTED BY CHIRAL SIO 2-DERIVED 
NANOMATERIALS
Raman spectroscopy is useful for molecule identification and has high species specificity and sensitivity to 
molecular interactions. Unfortunately, normal Raman spectroscopy is unable to distinguish a pair of 
enantiomers. Many chiral nanomaterials show different interactions toward a pair of enantiomers; however, 
these differences are usually too weak to detect. When a pair of enantiomers interact with a given chiral 
surface, they may generate differential Raman scattering signals[55,56]. Thus, it is possible to develop novel 
chiral recognition methods by the combination between Raman spectroscopy and chiral SiO2-based 
nanomaterials.
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To improve the affinity between SiO2 nanofibers and the target chiral molecules, D- (or L-)SiO2 is firstly 
modified by polydopamine (PDA), which is known to be a versatile surface modifier, to obtain D- (or L-)
SiO2/PDA [Figure 10A][57]. The PDA layers on SiO2 become chiroptically active in the CD spectra. The 
chiral recognition performance of SiO2/PDA has been checked using D- and L-cysteine (Cys) enantiomers 
as the models. After mixing D-SiO2/PDA with D-Cys (or L-Cys), the as-formed “D-SiO2/PDA & D-Cys” (or 
“D-SiO2/PDA & L-Cys”) mixture is subjected to Raman spectroscopy. As shown in the Raman spectra 
[Figure 10B], the Raman signals for “D-SiO2/PDA & D-Cys” and “D-SiO2/PDA & L-Cys” share the same 
Raman shifts but show different signal intensities. Typically, the signal from D-Cys at 498 cm-1 (denoted as 
I498) is ~2.8 times as strong as that from L-Cys [Figure 10C]. However, when L-SiO2/PDA is used, the I498 
from L-Cys is ~2.2 times that of D-Cys. As a control experiment, racemic DL-SiO2 was used to synthesize 
DL-SiO2/PDA. However, the Raman signals from D-Cys are almost the same as those from L-Cys when 
mixed with DL-SiO2/PDA, indicating a poor chiral discrimination. Similar enantioselective results are found 
when other enantiomers are used (e.g., cystine, phenylalanine and tryptophan).

Furthermore, Ag NPs synthesized on SiO2/PDA were isolated after the removal of SiO2 by a HF (aq) 
solution [Figure 10A] to obtain PDA/Ag[58]. Interestingly, D- (or L-) PDA/Ag also exhibits chiral 
discrimination toward tyrosine (Tyr) enantiomers [Figure 10D and E]. In the presence of D-PDA/Ag, the 
characteristic Raman signal intensity at 828 cm-1 (I828) from D-Tyr is over three times stronger than that 
from L-Tyr, while the I828 from D-Tyr is weaker than that from L-Tyr when mixed with L-PDA/Ag. In a 
control experiment, however, the differences in Raman signals are very small when performed on achiral 
PDA/Ag (A-PDA/Ag) and racemic DL-PDA/Ag.

Moreover, chiral Au NPs [Figure 3] liberated from SiO2 nanofibers are also capable of enantioselective 
discrimination between cystine enantiomers with similar Raman scattering differences[59]. These results in 
the cases of PDA/Ag and Au NPs imply that chirality transfer has occurred from SiO2 to PDA/Ag and Au 
NPs. The Raman signals are dependent upon the local concentrations, configurations and orientations of 
target molecules, which can be regulated by the molecular-scale chiral structures on these SiO2-derived 
nanomaterials. As a consequence, enantioselective Raman scattering signals are collected for chirality 
recognition. In addition, the Raman scattering on plasmonic Au and Ag NPs is also controlled by the local 
electromagnetic field resulted from the collective excitation of the electron gas near the metallic surface[60]. 
During chiral interactions, electron redistribution is possible to induce the change in electromagnetic field 
and Raman scattering[61]. Although more research is required to reveal the underlying mechanism, it is 
believed that Raman spectroscopy will find more applications in chirality analysis and provide us with new 
insights on “matter-matter” and “matter-light” chiral interactions.

CONCLUSION AND OUTLOOK
If we perceive SiO2 as a kind of polymer with repeating monomers of SiO4 tetrahedra, it is easy to 
understand its molecular-scale chirality by borrowing the familiar concept of molecular chirality in organic 
and polymer chemistry. In principle, by adjusting the lengths of Si-O bonds and the angles of -O-Si-O- 
bonds, asymmetric SiO4 tetrahedra are allowed to exist in a left-handed geometry and its counter-
enantiomeric form of a right-handed one. The asymmetry of SiO4 units brings about chiral structures of 
SiO2 on a larger scale. With this in mind, an efficient synthesis strategy for enantiomerically enriched SiO2 
has been established with handedness control on the early stage of SiO2 sol formation by chiral PEI/tart 
templates. Although the exact chiral structural information is not currently clear, the chiral properties of 
SiO2 close to the molecular scale have been manifested with significant evidence. Moreover, these SiO2 

structures can activate the chirality of various molecules, nanomaterials and even optical phenomena, which 
are supposed to be achiral traditionally. In this regard, asymmetric silica is a versatile messenger for chirality 
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Figure 10. (A) Schematic description of synthesis of SiO2/PDA and PDA/Ag. This figure is used with permission from the American 
Chemical Society[58]. (B) Raman spectra for “D-SiO2/PDA & D-Cys” and “D-SiO2/PDA & L-Cys”. (C) Relative values of I498 for cysteine 
after mixing with D-, L- and DL-SiO2/PDA; D-SiO2/PDA. This figure is used with permission from the American Chemical Society[57]. 
(D) Raman spectra for “D-PDA/Ag & D-Tyr” and “D-PDA/Ag & D-Tyr”. (E) Relative values of I828 for tyrosine after mixing with D-, L-, 
A- and DL-PDA/Ag. This figure is used with permission from the American Chemical Society[58]. NPs: Nanoparticles; PDA: 
polydopamine.

communication among organics, inorganics and light. Considering the abundance and extensive use of 
silica, a broad chiral world on the molecular scale is anticipated, which may offer chances to unveil 
homochirality in the origin of life and develop innovative techniques.

Although we have established a method of preparing SiO2 nanofibers with molecular-level chiral structures 
and demonstrated their applications in the synthesis of cross-linked polymers and inorganic nanoparticles, 
CPL and Raman scattering-based enantioselective recognition, the following aspects are worthy of study to 
understand the chiral features of SiO2 in the future:

(1) Development of new synthesis methods of chiral SiO2, which is significant to provide more models to 
probe the chiral properties of SiO2.
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(2) Detailed structural analysis of SiO2 to reveal the parameters of Si-O bonds, which requires advanced 
characterization techniques (e.g., synchrotron radiation analysis and neutron diffraction) and simulation 
methods.

(3) Exploration of potential applications of chiral SiO2 in various areas, including: (I) asymmetric synthesis 
of small chiral molecules or simulated prebiotic chemical processes triggered by chiral SiO2; (II) chiral 
separation by using chiral SiO2 as the stationary phase in chromatography; (III) construction of novel chiral 
silicate materials by virtue of the high thermal stability and chirality transfer ability of SiO2; (IV) the 
enantioselective interactions between SiO2 and bio-/drug molecules to improve therapeutic effects; and (V) 
optical phenomena (e.g., absorption, luminescence and scattering)-based applications with chiral responses 
for sensing, 3D displays, information storage and anti-counterfeiting.

(4) Clarification of the mechanism of chirality transfer during the formation of chiral SiO2 and other 
processes regulated by SiO2.
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