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Abstract
Immunotherapy has become integral in cancer therapeutics over the past two decades and is now part of standard-
of-care treatment in multiple cancer types. While various biomarkers and pathway alterations such as dMMR, 
CDK12, and AR-V7 have been identified in advanced prostate cancer to predict immunotherapy responsiveness, the 
vast majority of prostate cancer remain intrinsically immune-resistant, as evidenced by low response rates to anti-
PD(L)1 monotherapy. Since regulatory approval of the vaccine therapy sipuleucel-T in the biomarker-unselected 
population, there has not been much success with immunotherapy treatment in advanced prostate cancer. 
Researchers have looked at various strategies to overcome immune resistance, including the identification of more 
biomarkers and the combination of immunotherapy with existing effective prostate cancer treatments. On the 
horizon, novel drugs using bispecific T-cell engager (BiTE) and chimeric antigen receptors (CAR) technology are 
being explored and have shown promising early efficacy in this disease. Here we discuss the features of the tumour 
microenvironment that predispose to immune resistance and rational strategies to enhance antitumour 
responsiveness in advanced prostate cancer.
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INTRODUCTION
Prostate Cancer has the second highest cancer incidence worldwide and is the 5th leading cause of cancer 
death in men[1]. The cornerstone treatment of locally-advanced and metastatic prostate cancer centres upon 
androgen deprivation therapy. Patients who experience disease progression while having castrate levels of 
testosterone are considered castration-resistant. In the advanced prostate cancer setting, additional 
treatment modalities include novel hormonal agents (NHAs), chemotherapy, radioligand therapy, 
poly(ADP)-ribose polymerase (PARP) inhibitors, and immunotherapy. Successive waves of clinical trials in 
the past decade have brought these treatment modalities forth from the castration-resistant setting into the 
hormone-sensitive setting, showing improved survival with early introduction of chemotherapy, NHAs, or 
combinations of these[2]. Despite these advances in prostate cancer treatment, the 5-year survival for 
metastatic prostate cancer patients in 2022 remains low at 32.3%[3].

Immunotherapy, in the form of sipuleucel-T, received FDA approval in 2010 for the treatment of patients 
with asymptomatic or minimally symptomatic metastatic castration-resistant prostate cancer (mCRPC). In 
patients with deficient mismatch repair or microsatellite-high (dMMR/MSI-H) tumours, pembrolizumab 
and dostarlimab are FDA-approved options[4,5]. However, the prevalence of dMMR/MSI-H in prostate 
cancer is dismal at 1%, with MSH2 being the most frequently implicated (other MMR genes being MSH6, 
MLH1, PMS2)[6]. Owing to an immunologically “cold” microenvironment in unselected acinar prostate 
adenocarcinoma, to date, no other immunotherapeutic agents have shown to be beneficial in the current 
treatment of advanced prostate cancer. In this review, we look at the current treatment paradigm, the role of 
immunotherapy, and existing and up-and-coming methods to overcome immune therapy resistance in 
prostate cancer.

IMMUNE REGULATION IN THE TUMOUR MICROENVIRONMENT (TME) OF PROSTATE 
CANCER
Immuno-oncology has changed the treatment paradigm of multiple tumour types, including melanoma, 
renal cell carcinoma, and lung carcinoma. The cancer-immunity cycle is depicted in Figure 1, explaining 
how the innate immune system fends off cancer cells and the various points at which therapeutic targets act. 
Despite successes in these typically immunogenic tumours, prostate cancer has traditionally been 
considered to have an immunologically “cold” tumour microenvironment (TME) characterized by T cell 
exclusion, low neoantigen load, and a highly immunosuppressive microenvironment comprising a high 
proportion of myeloid-derived suppressor cells (MDSCs)[7,8]. Factors that suggest a maladaptive immune 
response against tumour cells include lack of tumour-infiltrating lymphocytes (TILs), presence of 
M2-polarized tumour-associated macrophages (TAMs) and MDSCs, with evidence that increment in such 
cell populations within the TME is correlated with tumour progression[9]. MDSCs are immune cells that are 
activated in cancers and display potent immunosuppressive effects leading to prostate cancer resistance to 
anti-hormonal therapy[10]. Furthermore, CRPCs frequently exhibit PTEN loss, which is associated with 
increased MDSC infiltration[11] and may interact with the interferon-1 pathway required for innate immune 
activation[12]. Other immune-suppressive factors within the TME, such as soluble tumour necrosis factor 
(sTNF), interleukin-1 beta (IL-1β), TGF-β, and IL-10, promote chronic inflammation and increase myeloid 
cell differentiation into MDSCs[13,14].

Reduced immune stimulatory factors can also contribute to the immunologically cold TME in prostate 
cancer. CRPC patients have decreased peripheral natural killer (NK) cell pools, and this may be due to 
increased NK cell group 2 member D (NKG2D) serum receptor levels from the tumour[15]. This 
phenomenon is more pronounced with metastatic disease[9]. NK cells are lymphocytes that have roles in 
innate and adaptive immunity, whereas NKG2D is an activating cell surface receptor expressed on NK cells, 
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Figure 1. The cancer immunity cycle and where various classes of drugs act on.

NKT cells, and subsets of γδ T cells. Although initially thought to enhance immune responses against 
cancer, it appears that when NKG2D ligands are expressed chronically, this can instead lead to inhibition of 
immune cell function[16]. Low tumour mutational burden (TMB) in prostate cancer is associated with 
reduced neoantigen load recognised by the immune system[17]. These mechanisms enable immune evasion 
by cancer cells and directly impact the therapeutic response to anti-PD(L)1/anti-CTLA4 immune 
checkpoint inhibitors (ICIs)[18]. Figure 2 illustrates the interplay amongst the immune cells, cancer cells and 
vascular supply within the TME.

Potential biomarkers for ICI response include dMMR/MSI-H as mentioned above and tumours with DNA 
damage repair (DDR) pathway deficiencies. Tumours with DDR pathway deficiencies have increased 
mutational load as a result of decreased DNA repair capacity, leading to genomic instability[19]. Patients with 
somatic alterations in genes involved in DNA replication or repair have been shown to express higher 
neoantigen load, higher mutational burdens, higher levels of CD3+ and CD8+ TILs and higher PD-1/PD-L1 
levels, all of which correlate with sustained ICI responses[20-24]. Despite this, dMMR and CDK12-altered 
prostate cancers have more aggressive biology[25,26]. A retrospective study of prostate cancer patients from 
the Royal Marsden Hospital showed that 8.1% of the patients had dMMR, which was correlated with 
decreased survival (median OS 4.1 years for dMMR vs. 8.5 years for proficient MMR)[26]. CDK12 alterations 
were found in 6% of advanced prostate cancer in one study[25], and were typically linked to poor prognosis as 
well as insensitivity to PARP inhibitors[27]. However, these tumours have increased neoantigen load and 
tumoural lymphocyte infiltration, which may increase their response to ICIs[27].

ICI MONOTHERAPY IN THE UNSELECTED PROSTATE CANCER PATIENT
Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) is a receptor found on the surface of 
T lymphocytes. When APCs activate T cells in response to the presence of foreign antigens, there is 
involvement of costimulatory molecules such as CD28 and B-7, which enhance the immune response. 
CTLA-4 acts as an immune checkpoint by binding to B-7, counteracting the costimulatory effect of CD28 
and overall cause suppression of the immune response[28,29]. Cancer cells can downregulate the immune 
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Figure 2. The immunologically “cold” tumour microenvironment in prostate cancer.

response by exploiting CTLA-4, and this forms the basis of targeting CTLA-4 with monoclonal antibodies 
such as ipilimumab. Inhibition of CTLA-4 activity causes activation and proliferation of cytotoxic T cells 
against tumour cells[30,31]. To date, two phase 3 trials have looked at the activity of ipilimumab in mCRPC 
patients. The first study, CA 184-043, recruited 799 mCRPC patients with at least one bone metastasis and 
have progressed on docetaxel chemotherapy. Patients were randomised to receive either one fraction of 
bone-directed radiation therapy followed by ipilimumab at 10 mg/kg or placebo. There was no overall 
survival benefit seen in this study (median OS 11.2 vs. 10 months, HR 0.85, 95% CI 0.72-1.00), but a 
progression-free survival (PFS) benefit (4.0 vs. 3.1 months, HR 0.70, 95% CI 0.61-0.82) was seen[32]. The 
second study by Beer et al. (2017) randomised 602 mCRPC patients who were chemotherapy-naive and had 
no visceral metastases to ipilimumab at 10 mg/kg vs. placebo. The study showed no overall survival benefit 
(median OS 28.7 vs. 29.7 months; HR 1.11, 95% CI 0.88-1.39), although a PFS benefit (median PFS 5.6 vs. 3.8 
months; HR 0.67; 95% CI 0.55-0.81) was observed. Exploratory analyses further showed a higher prostate-
specific antigen (PSA) response rate with ipilimumab (23%) than with placebo (8%)[33]. Taken together, the 
PFS and PSA response with ipilimumab suggests antitumour activity despite the lack of survival benefit.

PD-1 is a transmembrane glycoprotein found on the surfaces of activated cytotoxic T cells, B cells, dendritic 
cells, NK cells, and macrophages[34]. The binding of PD-1 to its ligands programmed death ligands 1 and 2 
(PD-L1 and PD-L2) found on cancer cells delivers inhibitory signals for T-cell activation, suppressing an 
immune response[35,36]. Monoclonal antibodies targeting PD-1/PD-L1, such as nivolumab and 
pembrolizumab, have shown activity in multiple cancer types, leading to regulatory approval for their 
use[37,38]. Pembrolizumab was studied in the phase 1b KEYNOTE-028 and phase 2 KEYNOTE-199 trials as 
monotherapy in mCRPC, showing poor responses[39,40]. The objective response rate (ORR) was 5% in PD-L1 
combined positive score (CPS) ≥ 1 patients in KEYNOTE-199, compared with 3% for patients with a 
negative PD-L1 expression[39]. Three phase 1 dose-escalation trials of nivolumab monotherapy in mCRPC 
patients likewise showed no objective response[41-43]. As mentioned, the paucity of PD-L1 expression in the 
TME in prostate cancer patients could account for this. Despite the glaringly low response rates for 
anti-PD(L)1/anti-CTLA4 monotherapies in unselected prostate cancer, the expression of immune 
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checkpoints has been reported to be dynamic, and various agents such as ipilimumab, sipuleucel-T and 
enzalutamide can increase T cell infiltration into the TME and modulate response to anti-PD(L)1 
therapy[44]. This sets the stage for combination of various therapies with ICIs to improve immunotherapeutic 
response in prostate cancer.

ONGOING STRATEGIES TO OVERCOME IMMUNE RESISTANCE
Several strategies have been examined to modulate antitumour immunity in advanced prostate cancer.

PARP inhibitors and ICIs
PARP inhibitors are small molecules that prevent the repair of single-strand DNA breaks. Pathogenic DDR 
gene alterations are found in 23% of mCRPCs[45], with BRCA2, ATM, CHEK2, and BRCA1 being the most 
frequently implicated genes[46]. The resulting homologous recombination deficiency (HRD) leads to 
sensitivity to PARP inhibition as a result of synthetic lethality[47]. Presently in mCRPC patients, the FDA has 
approved rucaparib for use in those with germline/somatic BRCA mutation and olaparib for those with 
germline/somatic homologous recombination repair (HRR) gene mutations. This is based on a high ORR of 
50.8% seen with rucaparib use in the phase 2 TRITON2 study and improved radiologic PFS with olaparib 
use over enzalutamide/abiraterone in the phase 3 PROfound study[48,49]. The phase 3 TRITON3 study 
showed similar results[50]. Furthermore, efforts made in examining PARP inhibition in unselected patients 
have been successful as well, with the phase 3 PROpel trial showing improvement in radiologic PFS with 
combination abiraterone plus olaparib over abiraterone plus placebo as first-line treatment of mCRPC 
patients, overall suggesting an increasing role in PARP inhibition[51].

Increased micronuclei and cytosolic double-stranded DNA release after PARP inhibitor treatment as a 
result of PARP-DNA trapping and DNA damage leads to increased neoantigen formation, increased PD-L1 
expression, increased intra-tumoural CD8 T cell infiltration and increased interferon production in the 
TME, forming the basis for ICI-PARP inhibitor combinations, and potentially expanding the benefit of 
PARP inhibitors beyond tumours harbouring alterations[52,53]. A phase 2 open-label clinical trial combining 
durvalumab with olaparib in men with mCRPC showed a response (radiographic or biochemical) in 9 out 
of 17 patients. Five of the 9 responders were found to have dysfunctional DDR genes based on genomic 
analysis and the presence of mutated DDR genes was associated with significantly higher 12-month PFS 
than those without (83.3% vs. 36.4%). Interestingly, patients with fewer peripheral MDSCs were more likely 
to respond[54]. This study showed early evidence of combining PARP inhibitors and ICIs, and other ongoing 
studies looking at similar combinations are listed in Table 1.

As mentioned, CDK12-altered prostate cancers typically carry poor prognosis and do not respond well to 
PARP inhibition, yet they present increased neoantigen load and lymphocytic infiltration, which may 
increase responsiveness to anti-PD1 therapy[25,27]. A retrospective study of 60 men with CDK12-altered 
advanced prostate cancer showed that of the 9 men who received PD-1 inhibitor therapy, 33% had a PSA 
response and the median PFS was 5.4 months[27,55]. Similarly, the ongoing phase 2 IMPACT trial has shown a 
21.4% PSA response with ipilimumab-nivolumab combination in these patients[55].

Vaccines and ICIs
Anti-cancer vaccines can be classified into four groups: cell-based, viral-based, DNA/RNA-based, and 
peptide-based vaccines[56,57]. The goal of vaccine therapy is to stimulate the host’s adaptive immune response 
against tumour-associated antigens (TAA). Prostate cancer is suitable for vaccine therapy because it has 
many TAAs such as PSA, prostate-specific membrane antigen (PSMA), prostate acid phosphatase (PAP), 
prostate stem cell antigen (PSCA), prostate cancer antigen 3 (PCA3), mucin-1, and six-transmembrane 
epithelial antigens of the prostate (STEAP)[58].
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Table 1. Trials looking at ICI combinations in treatment of advanced prostate cancer

Trial number Phase Intervention arm(s) Population Outcome Status

NCT02484404 2 Durvalumab + Olaparib mCRPC after progression with 1 
NHA or Docetaxel

ORR, safety, DOR, 
PSA response

Completed

NCT04336943 2 Durvalumab + Olaparib Recurrent prostate cancer with 
immunogenic signature

PSA response Active, 
recruiting

NCT03834519 3 Pembrolizumab + Olaparib 
NHA (Abiraterone or Enzalutamide)

mCRPC after progression with 1 
NHA and chemotherapy

OS, rPFS Active, not 
recruiting

NCT02861573 1/2 Pembrolizumab + Olaparib 
Multiple cohorts

mCRPC ORR, safety, PSA 
response

Active, 
recruiting

NCT05568550 2 Pembrolizumab + Olaparib + RT 
Pembrolizumab + RT

High-risk localised PC PSA response Not yet 
recruiting

NCT03338790 2 Nivolumab + Rucaparib 
Nivolumab + Docetaxel 
Nivolumab + Enzalutamide

mCRPC ORR, PSA response Active, not 
recruiting

NCT04592237 2 Maintenance Cetrelimab + Niraparib 
Maintenance Niraparib

Aggressive variant mPC given 
induction Cabazital + Carboplatin 
+ Cetrelimab

PFS Active, 
recruiting

ICIs + vaccines

NCT03024216 1 Atezolizumab + Sipuleucel-T mCRPC Safety Completed

NCT01832870 1 Ipilimumab + Sipuleucel-T CRPC eligible to receive 
Sipuleucel-T in accordance to 
FDA-approved labeling

Antigen-specific T 
cell response, 
antibody response

Completed

NCT00113984 1 MDX-010 (anti-CTLA-4) + PROSTVAC-
V/TRICOM (virus vaccine)

mCRPC after progression with 
anti-androgens and ≤ 1 
chemotherapy

Safety Completed

NCT02933255 1/2 Nivolumab + PROSTVAC-V/F mCRPC 
Neoadjuvant therapy for localised 
PC planned for surgery

Safety, changes in T-
cell infiltration

Active, 
recruiting

NCT03315871 2 M7824 (anti-PD-L1/TGFβ) + PROSTVAC + 
CV301 (virus vaccine)

CRPC PSA response Active, 
recruiting

NCT03532217 1 Ipilimumab + Nivolumab + PROSTVAC-V/F 
+ Neoantigen DNA vaccine

mHSPC DLT, safety, immune 
response

Completed

NCT03493945 1/2 M7824 (anti-PD-L1/TGFβ) + BN-Brachyury 
(virus vaccine)+ N-803 (IL-15 superagonist 
complex) + Epacadostat (IDO1 inhibitor)

CRPC CBR Active, 
recruiting

NCT02325557 1/2 Pembrolizumab + ADXS31-142 (bacteria 
vaccine)

mCRPC after progression on ≤ 3 
systemic therapies

Safety Unknown

NCT02499835 1/2 pTVG-HP + concurrent Pembrolizumab 
pTVG-HP + sequential Pembrolizumab

mCRPC ORR, safety, PSA 
response, PFS

Active, not 
recruiting

NCT04090528 2 Pembrolizumab  + pTVG-HP (DNA vaccine) 
+ pTVG-AR HP (DNA vaccine) 
Pembrolizumab + pTVG-HP

mCRPC PFS Active, 
recruiting

NCT04382898 1/2 Cemiplimab + BNT112  
BNT112 (RNA vaccine)

mCRPC after progression on 2-3 
therapies including NHA and/or 
chemotherapy 

DLT, ORR, Safety Active, 
recruiting

ICIs + tyrosine kinase inhibitors

NCT04446117 3 Atezolizumab + Cabozantinib + NHA 
(Abiraterone or Enzalutamide)

mCRPC after progression on 1 
NHA

PFS, OS Active, 
recruiting

NCT03170960 1/2 Atezolimab + Carbozantinib mCRPC after progression on ≤ 1 
NHA

DLT, ORR Active, not 
recruiting

NCT04477512 1 Nivolumab + Cabozantinib + Abiraterone mHSPC DLT Active, 
recruiting

NCT04159896 2 Nivolumab + ESK981 (Pan-VEGFR/TIE2 TKI) mCRPC after progression on 1 
NHA and 1 chemotherapy

Safety, PSA response Unknown

Combination ICIs

NCT04717154 2 Ipilimumab + Nivolumab mCRPC with immunogenic 
signature

DCR Active, 
recruiting

Active, not NCT03570619 2 Ipilimumab + Nivolumab mCRPC with CDK12 aberration ORR, PSA response

ICIs + PARP inhibitor

recruiting



Sooi et al. Cancer Drug Resist 2023;6:656-73 https://dx.doi.org/10.20517/cdr.2023.48                                                Page 662

NCT03061539 2 Ipilimumab + Nivolumab mCRPC with immunogenic 
signature after progression on 1 
systemic therapy

ORR, PSA response Active, not 
recruiting

NCT02985957 2 Ipilimumab + Nivolumab 
Ipilimumab 
Cabazitaxel

mCRPC ORR, rPFS Active, not 
recruiting

NCT03333616 2 Ipilimumab + Nivolumab Non-adenocarcinoma PC ORR Active, 
recruiting

NCT02788773 2 Durvalumab + Tremelimumab mCRPC with prior exposure to 1 
NHA

ORR Active, not 
recruiting

ICIs + androgen receptor antagonist

NCT03016312 3 Atezolizumab + Enzalutamide 
Enzalutamide

mCRPC with prior exposure to 1 
NHA and 1 chemotherapy

OS Completed

NCT02787005 2 Pembrolizumab + Enzalutamide mCRPC progressing on 
Enzalutamide

ORR Completed

NCT04191096 3 Pembrolizumab + Enzalutamide 
Enzalutamide

mHSPC rPFS, OS Active, not 
recruiting

NCT03834493 3 Pembrolizumab + Enzalutamide 
Enzalutamide

mCRPC, allows for prior 
Abiraterone exposure

rPFS, OS Active, not 
recruiting

NCT02312557 2 Pembrolizumab + Enzalutamide mCRPC after progression on 
Enzalutamide

PSA response Active, not 
recruiting

NCT03338790 2 Nivolumab + Rucaparib 
Nivolumab + Docetaxel 
Nivolumab + Enzalutamide

mCRPC ORR, PSA response Active, not 
recruiting

NCT01688492 1/2 Ipilimumab + Abiraterone mCRPC Safety, PFS Active, not 
recruiting

ICIs + chemotherapy

NCT03338790 2 Nivolumab + Docetaxel mCRPC ORR, PSA response Active, not 
recruiting

NCT04100018 3 Nivolumab + Docetaxel 
Nivolumab

mCRPC after progression on 1-2 
NHAs

rPFS, OS Active, 
recruiting

NCT03834506 3 Pembrolizumab + Docetaxel 
Docetaxel

mCRPC with prior exposure to 1 
NHA

rPFS, OS Active, not 
recruiting

NCT02861573 1/2 Pembrolizumab + Docetaxel 
Multiple cohorts

mCRPC ORR, safety, PSA 
response

Active, 
recruiting

NCT03409458 1/2 Avelumab + PT-112 (Platinum + 
Pyrophosphate ligand)

mCRPC Safety, PSA response Active, not 
recruiting

NCT02601014 2 Nivolumab + Ipilimumab AR-V7-expressing mCRPC PSA response Completed

NCT02788773 2 Durvalumab + Tremelimumab 
Durvalumab

mCRPC with prior exposure to 1 
NHA

ORR Active, not 
recruiting

ICIs + radiopharmaceuticals

NCT02814669 1 Atezolizumab + Radium-223 mCRPC after progression on 1 
NHA and 1 chemotherapy

ORR, safety Completed

NCT04109729 1/2 Nivolumab + Radium-223 mCRPC with symptomatic bone 
metastases

Safety, ctDNA 
reduction

Active, 
recruiting

NCT03658447 1/2 Pembrolizumab + 177Lu-PSMA mCRPC after progression on 1 
NHA

Safety, PSA response Completed

CBR: Clinical benefit rate; CRPC: castration-resistant prostate cancer; DCR: disease control rate; DLT: dose limiting toxicity; DOR: duration of 
response; ICIs: immune checkpoint inhibitors; mCRPC: metastatic castration-resistant prostate cancer; mPC: metastatic prostate cancer; NHA: 
novel hormonal agent; ORR: objective response rate; OS: overall survival; PARP: poly(ADP)-ribose polymerase; PC: prostate cancer; PFS: 
progression-free survival; PSA: prostate-specific antigen; rPFS: radiologic progression-free survival; RT: radionuclide therapy.

Sipuleucel-T is a therapeutic dendritic cell-based vaccine that has received FDA approval for use in the 
treatment of patients with asymptomatic or minimally symptomatic mCRPC, based on overall survival (OS) 
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benefit seen from the phase 3 IMPACT trial[59]. It is prepared from autologous peripheral blood 
mononuclear cells obtained by leukapheresis, and pulsed ex vivo with PAP2024, a unique fusion protein of 
granulocyte-macrophage colony-stimulating factor (GM-CSF) and prostatic acid phosphatase (PAP). 
GM-CSF fosters the maturation of dendritic cells and other APCs to present PAP to the patient’s T cells, 
resulting in PAP-specific T-cell proliferation targeting the PAP-expressing prostate cancer cells for killing. 
Both humoural and cellular responses have been reported, with peripheral immune responses to PAP and 
measures of APC activation correlating with improvements in OS[60,61]. Despite success with the use of 
sipuleucel-T, other vaccines studied have not been as successful. G-VAX is another cell-based GM-CSF-
secreting vaccine that utilises irradiated TAAs[62]. The TAAs are derived from two cell lines: one hormone-
sensitive (LNCaP) and one hormone-resistant (PC3)[63]. Despite initially promising results in asymptomatic 
mCRPC, the phase 3 VITAL 1 and VITAL 2 trials in asymptomatic mCRPC and symptomatic mCRPC 
patients, respectively, failed to show the OS benefit of G-VAX plus docetaxel against docetaxel alone. Both 
studies were terminated early based on futility assessments. A viral-based vaccine, PROSTVAC, utilizes 
recombinant poxviruses that express PSA with immune-enhancing costimulatory molecules to stimulate 
immune response[64,65]. In addition to induced modified human PSA, they contain three costimulatory 
domains for T cells (B7.1, leukocyte function-associated antigen-3, and intercellular adhesion molecule-1), 
called TRICOM[66]. The phase 3 PROSPECT trial was unable to demonstrate the OS benefit of PROSTVAC 
against placebo control[67].

Given the increase in T cell infiltration and inflammation within TME with sipuleucel-T[60,61], it is therefore 
postulated that synergy might be observed with the combined use of vaccines and ICIs. Ipilimumab and 
PROSTVAC were combined in a phase 1 dose-escalation trial, showing evidence of improved clinical and 
immunologic outcomes. The median OS was 34.4 months[68], which appears to be numerically larger than 
PROSTVAC alone in its original study[67]. There was a PSA reduction in 54% of patients and a PSA decline 
of more than 50% was seen in 25% of patients. ADXS31-142 is a live, attenuated, bioengineered listeria-
based vaccine targeting PSA. It is being studied as part of the KEYNOTE-046 trial, with current results 
showing a median OS of 33.7 months for patients treated with combination vaccine and pembrolizumab[69]. 
Other ongoing studies of vaccine therapy with ICIs are listed in Table 1.

Tyrosine kinase inhibitors and ICIs
Prostate cancers have dysregulated vasculature that promotes an immunosuppressive TME[7,8]. These 
include promoting a shift in TAMs toward M2-like immunosuppressive phenotype, reduced maturation of 
dendritic cells which results in reduced antigen presentation, and increased PD-L1 expression[70]. Vascular 
endothelial growth factor (VEGF) overexpression has been found to prevent the differentiation of 
monocytes into dendritic cells[71]. Meanwhile, an improvement in the regulation of local vascular in 
preclinical models was associated with the assimilation of TAMs with M1-like immune-stimulatory 
phenotype, increased CD4+ and CD8+ T-cell infiltration into the TME, and reduction of MDSCs[72-75]. These 
suggest that targeting angiogenesis in tumours can inhibit tumour-induced dysregulation of local 
vasculature and promote immunogenicity in the TME, forming the basis of combining antiangiogenesis 
agents with ICIs. Indeed, it has been shown in renal cell carcinoma that anti-VEGF therapy leads to a 
reduction in immune inhibitory stimuli such as regulatory T-cells and MDSCs[76,77]. Aside from VEGFR 
targeting, the TAM family of receptor tyrosine kinases comprising TYRO3, AXL and MER has been shown 
to promote immune suppression as well, making it an attractive target[78,79].

Cabozantinib is a multi-kinase inhibitor targeting MET, VEGFR-1, -2 and -3, AXL, RET, ROS1, TYRO3, 
MER, KIT, TRKB, FLT-3, and TIE-2[80]. Preclinical data suggests that it has an effect on the TME by 
reprogramming M2 TAMs to “pro-inflammatory” M1 macrophages, in addition to reducing MDSCs and T 
regulatory cells[81]. A dose-expansion cohort in the phase 1b COSMIC-021 trial evaluated the combination 
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of cabozantinib with atezolizumab (anti-PD1) in mCRPC patients who have had disease progression 
following treatment with novel hormonal agents such as abiraterone or enzalutamide. An ORR of 32% was 
observed in 132 patients treated with the combination, with a disease control rate (DCR) of more than 80%. 
This effect was consistent in patients with visceral disease as well[82]. Due to promising results from this 
study, this combination is now being evaluated in a phase 3 clinical trial for mCRPC patients. Other 
ongoing studies looking at combination anti-VEGF therapy with ICIs are listed in Table 1.

Combination ICIs
CheckMate-650 is a phase 2 study looking at various dosing combinations of nivolumab with ipilimumab in 
asymptomatic or minimally symptomatic mCRPC patients who have progressed on novel hormone therapy 
in two cohorts (chemotherapy-naive and chemotherapy-exposed). In the chemotherapy-naive cohort, 
nivolumab/ipilimumab achieved an ORR of 25% with a median radiological PFS of 5.5 months and a 
median OS of 19.0 months. In the chemotherapy-exposed cohort, the ORR was 10%, with a median 
radiological PFS of 3.8 months and a median OS of 15.2 months[83]. Exploratory analyses revealed that 
PD-L1 ≥ 1%, the presence of DDR or homologous recombination deficiency (if at least one gene in the 
relevant gene panel had a deleterious mutation/homozygous deletion) were associated with higher ORR[83]. 
In this study, 44 patients had quality-controlled whole-exome sequencing data, giving rise to a median TMB 
of 74.5 mutations/patient. Tumours harbouring TMB exceeding this median were associated with higher 
ORR, PSA response rate, radiologic PFS, and median OS[83].

Combination nivolumab and ipilimumab has been examined in AR-V7 expressing mCRPC patients as well. 
Androgen receptor splice variant 7 (AR-V7) expression is found in approximately 20% of mCRPC patients 
and is associated with alterations in a greater number of DDR genes, which could increase susceptibility to 
ICIs[84]. The STARVE-PC trial is a phase 2 non-randomised study that evaluated the activity of nivolumab 
and ipilimumab in 15 AR-V7 expression mCRPC patients, showing an ORR of 25%, PSA response rate of 
13% and OS of 8.2 months[85]. Responses were more pronounced in six of the patients who were found to 
have mutations in DDR genes (three in BRCA2, two in ATM, and one in ERCC4)[86]. Lastly, an ongoing 
phase 2 randomised study is looking at mCRPC patients following progression on novel hormonal agents, 
randomising them to receive durvalumab or combination durvalumab plus ipilimumab. The ORR with 
combination ICI was 16% vs. 0% with durvalumab monotherapy in this study[87]. Other ongoing trials 
evaluating the efficacy of combination ICIs are listed in Table 1.

Androgen receptor antagonists and ICIs
How prostate cancer treatment impacts the immune response is variable. ADT enhances lymphopoiesis, 
which can mitigate immune tolerance to prostate cancer antigens[88]. On the other hand, androgen receptor 
antagonists have been shown to inhibit T cell responses[89].

ADT and anti-androgens can both target the AR signalling pathway and have been shown to result in an 
increase in the number of TILs, and a decrease in the number of regulatory T cells supporting an 
antitumour response to ADT[90,91]. Animal models confirm that while ADT induces pro-inflammatory 
conditions initially, the subsequent development of castration resistance and immune tolerance to prostate 
cancer antigens reduces this[92,93]. Therefore, the combination of AR-signalling blockade with ICIs, especially 
during its pro-inflammatory state, may be beneficial in the treatment of advanced prostate cancer.

The phase 2 IMbassador250 trial examined 759 advanced CRPC patients who had progressed on 
abiraterone and docetaxel, randomising them to receive combination enzalutamide and atezolizumab vs. 
enzalutamide alone. The study was closed prematurely due to futility (combination therapy vs. 
enzalutamide monotherapy, 15.2 vs. 16.6 months; HR 1.12, 95% CI 0.91-1.37). However, pre-planned 
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exploratory analyses showed a longer PFS with combination therapy in patients with high PD-L1 IC2/3, 
CD8 expression[94]. The study also performed an unbiased RNA sequencing-based analysis of immune-
related gene expression that had previously correlated with mCRPC responses to immunotherapy[95], and 
found longer PFS with combination therapy in patients harbouring genes related to pre-existing immunity 
such as TAP-1, CXCL9, interferon signalling[94]. The multicohort phase 2 KEYNOTE-199 trial examined 
combination pembrolizumab with enzalutamide in mCRPC patients whose disease were refractory to 
enzalutamide. In the cohorts with measurable disease and bone-predominant disease (cohorts 4 and 5), the 
disease control rate was 51% and ORR was 12%. The duration of response was almost 6 months in 60% of 
responders[96]. This strategy is being evaluated further in an ongoing phase 3 trial [Table 1].

Systemic chemotherapy and ICIs
Chemotherapy may potentiate antitumour immunity by various mechanisms, including the release of TAAs 
and enhancing antigen presentation, stimulating the activity of cytotoxic T lymphocytes[97,98]. Importantly, 
chemotherapy may reduce immunosuppressive cell populations such as MDSCs and regulatory T cells, 
known to maintain prostate cancer immune evasion[99,100]. Preclinical studies have suggested that 
chemotherapy does improve antitumour immune responses, showing that the addition of taxanes can cause 
a shift in macrophage populations toward the M1-like (immune-activating) phenotype and reduce 
regulatory T cell and MDSC populations in mouse models[101,102]. The multicohort phase 2 trial CheckMate 
9KD showed that combination nivolumab and docetaxel in 41 chemotherapy-naive mCRPC patients who 
have progressed on novel hormonal agents achieved an ORR of 36.8%, radiologic PFS of 8.2 months and 
PSA response of 46.3%[103]. KEYNOTE-365 is an ongoing multicohort phase 1b/2 study examining 
combination pembrolizumab and docetaxel in mCRPC patients, yielding an ORR of 18%, PSA response of 
28%, radiologic PFS of 8.3 months, and OS of 20.4 months[104]. Ongoing phase 3 trials (CheckMate7DX and 
KEYNOTE-921) evaluating the superiority of combination chemotherapy with immunotherapy over 
chemotherapy alone will shed light in this area [Table 1].

Radiopharmaceuticals and ICIs
177Lu-PSMA-617 has gained regulatory approval for the treatment of mCRPC patients who have been 
treated with androgen receptor (AR) pathway inhibition and taxane chemotherapy, based on positive results 
on a phase 3 trial[105]. In murine models, targeted radionuclide therapy (TRT) may increase PD-L1 
expression on T cells and the combination of TRT with ICIs leads to increased infiltration of CD8 T 
cells[106]. There is, hence, interest in combining radionuclide therapy with ICIs. Despite low clinical response 
(ORR 6.8%, PSA response 4.5%, radiologic PFS 3 months) seen on a phase 1b trial combining Atezolizumab 
and Radium-223 in mCRPC[107], the interim results of another phase 1b/2 PRINCE trial are relatively 
promising. In this study, 37 mCRPC patients who have progressed on a novel hormonal agent and 
docetaxel were treated with pembrolizumab and 177Lu-PSMA-617, yielding an ORR of 78%, PSA response 
of 73%, and 24-week radiologic PFS of 65%[108] [Table 1].

FUTURE DIRECTIONS AND CONCLUSIONS
Research is ongoing to identify more immunogenic targets and pair them with the multiple TAAs that 
prostate cancer expresses. Amongst these, cellular-based therapy is an area that deserves special mention. 
Adoptive cell therapy involves the engineering of patients’ T lymphocytes to target specific viruses or 
tumours. The use of chimeric antigen receptors (CAR) allows for the creation of artificial T-cell receptors 
used in adoptive cell therapy[109]. A first-in-human phase 1 study of 13 CRPC patients tested PSMA-
targeting CAR T cells armoured with a dominant-negative TGF-β receptor. TGF-β is an inhibitory factor 
found at high levels within the prostate TME. In this study, 4 patients had a ≥ 30% reduction in PSA and 1 
patient had a > 98% reduction in PSA. Five patients experienced grade 2 or higher cytokine-release 
syndrome (CRS)[110]. Another CAR T therapy using P-PSMA-101, which targets PSMA, was evaluated in 10 
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heavily-pre-treated CRPC patients, yielding PSA decline in 7 patients, with 4 patients having > 50% 
reduction in PSA. CRS was seen in 60% of patients[111]. Other CAR T products targeting Epithelial cell 
adhesion molecule (EpCAM) and Natural Killer Group 2D (NKG2D) have shown activity in prostate 
cancer patients as well[112,113]. Other potential targets of interest with adoptive cell therapy include PSA, PAP, 
PSCA, and B7-H3[114], and Table 2 shows a list of ongoing clinical trials.

Bispecific T cell engager (BiTE) antibodies is another technology that has been developed to target TAAs 
such as PSMA in prostate cancer cells. Structurally, these are bispecific monoclonal antibodies that can 
crosslink TAAs with the coreceptors on T cells, generating an antitumour immune response. 
Pasotuxizumab is a bispecific monoclonal antibody that crosslinks CD3 and PSMA, and its efficacy has been 
studied in 16 mCRPC patients on a phase 1 trial, showing ≥ 50% decline in PSA in 3 patients, of which two 
were long-term responders treated for 14.0 and 19.4 months, respectively. 81% of the patients had adverse 
events of grade ≥ 3[115]. The efficacy of AMG 160, a BiTE product that binds CD3 on T cells and PSMA on 
cancer cells, was evaluated in mCRPC patients on a phase 1 trial. In the preliminary report, 27% of patients 
had confirmed PSA responses and 84% of patients experienced CRS (10% grade ≥ 3)[116]. The study also had 
a subset of patients who received AMG 160 with pembrolizumab, and such a combination will likely be 
examined in future studies as well. Other potential BITE targets including STEAP, CEACAM5, DLL3, 
HER2 are being studied[117,118], and a list of ongoing trials can be seen in Table 2. Figure 3 shows a schematic 
diagram of BiTE therapy.

On the horizon, relevant and novel targets to modulate antitumour immunity in prostate cancer may 
include the targeting of relevant immune-metabolic pathways, such as the adenosine receptor[119-121], or 
cytokine-directed efforts, such as IL-8 involved in the differentiation of TAM to M2 phenotype (promotes 
immune resistance and tumour metastasis)[122,123], IL-23 which is a cytokine secreted by MDSCs[124] and 
TGF-β which promotes tumour growth and immunosuppression in the TME[81]. Targeting cell signalling 
pathways such as the phosphoinositide 3-kinase/mammalian target of rapamycin (PI3K/mTOR) pathway 
has also been shown to downregulate immunosuppressive cells such as T regulatory cells and may have a 
role in improving ICI efficacy in prostate cancer[125,126]. For example, in prostate cancer mouse models, 
intermittent PI3K inhibition was able to alleviate PTEN-null cancer cell-intrinsic immunosuppressive 
activity and turn “cold” tumours into T cell-inflamed ones[127]. Novel immune checkpoints may be worth 
exploiting in prostate cancer. Increased expression of V domain Ig suppressor of T Cell activation (VISTA) 
was found to promote immune resistance following Ipilimumab treatment, which may serve as a new 
immunotherapeutic target in advanced prostate cancer[128].

There are presently limited biomarkers that can identify prostate cancer patients who may benefit from ICI 
therapy. It appears that combination strategies to promote immunogenicity within the “cold” TME of 
prostate cancer can increase the effect of ICIs. We recognise that the majority of the existing efforts are 
presently in the preclinical or early phase setting and may not be ready for use in the clinics yet. It would 
nevertheless be interesting to monitor this space for future developments.
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Table 2. Trials looking at novel therapies in advanced prostate cancer

Trial number Phase Intervention arm(s) Population Outcome Status

NCT04227275 1 CART-PSMA-TGFβRDN mCRPC after progression on 2 NHAs DLT, safety Active, not 
recruiting

NCT03089203 1 CART-PSMA-TGFβRDN mCRPC after progression on ≥ 1 
systemic therapy

Safety Active, 
recruiting

NCT04053062 1 LIGHT-PSMA-CART mCRPC after progression on 
Abiraterone and chemotherapy

Safety Suspended

NCT04249947 1 P-PSMA-101 CAR-T mCRPC ORR, DLT, 
safety

Active, not 
recruiting

NCT03873805 1 Anti-PSCA-CAR-4-1BB/TCRzeta-CD19t-
expressing T-lymphocytes

PSCA+ mCRPC DLT, safety Active, 
recruiting

NCT02744287 1/2 BPX-601 (PSCA-specific CAR-T cells) PSCA+ mCRPC DLT, safety Active, 
recruiting

NCT03013712 1/2 EpCAM-specific CAR T Cells EpCAM+ mCRPC Safety Unknown

BiTE

NCT04104607 1 CC-1 (PSMAxCD3) mCRPC after progression on ≥ 3 
systemic therapies

Safety Active, 
recruiting

NCT03792841 1 Acapatamab (PSMAxCD3) mCRPC after progression on 1 NHA and 
1 chemotherapy

DLT, safety Active, not 
recruiting

NCT01140373 1/2 HPN424 (PSMAxCD3) mCRPC after progression on ≥ 2 
systemic therapies

ORR, DLT Active, not 
recruiting

NCT03972657 1/2 REGN5678 (PSMAxCD28) + Cemiplimab mCRPC after progression on ≥ 2 
systemic therapies

ORR, DLT, 
safety

Active, 
recruiting

NCT04221542 1 AMG 509 (STEAP1xCD3) mCRPC after progression on 1 NHA and 
1 chemotherapy

DLT, safety Active, 
recruiting

NCT03406858 2 HER2Bi-armed activated T cells 
(HER2xCD3) + Pembrolizumab

mCRPC PFS Active, not 
recruiting

DLT: dose limiting toxicity; EpCAM: Epithelial cell adhesion molecule; mCRPC: metastatic castration-resistant prostate cancer; NHAs: novel 
hormonal agents; ORR: objective response rate; PFS: progression-free survival; PSCA: prostate stem cell antigen.

Figure 3. Bispecific T cell engager binding CD3 on T cell with PSMA on prostate cancer cell. BiTE: Bispecific T-cell engager; PSMA: 
prostate-specific membrane antigen.

CAR T
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