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Abstract
Aim: To construct and validate a multitask deep learning (DL) model based on gadolinium ethoxybenzyl 
diethylenetriamine pentaacetic acid (Gd-EOB-DTPA) contrast-enhanced magnetic resonance imaging (MRI) for 
predicting microvascular invasion (MVI) plus cytokeratin 19 (CK19) positivity in patients with hepatocellular 
carcinoma (HCC).
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Methods: A total of 145 pathologically confirmed HCC patients undergoing preoperative enhanced MRI were 
assessed between January 2012 and January 2023. A predictive model, whose skeleton structure was an expert 
shared network based on spatial transformations and relational reasoning, was established based on hepatobiliary 
phase (HBP) images using a training set (n = 66, Center 1) and validated using an external (n = 79, Centers 2 and 
3) test set. A receiver operating characteristic (ROC) curve was used to evaluate MVI CK19 positivity.

Results: The area under the ROC curve (AUC) of the new model, named Expert Sharing Network, for the prediction 
of the CK19 and MVI expression was 0.87 and 0.88 in the training set and 0.80 and 0.85 in the validation set, 
respectively, which was superior to the ResNeSt50-based model, EfficientNet-b0-based model, and ResNet50-
based model. The AUC of the DL model for the prediction of the MVI was 0.88 in the training set and 0.85 in the 
validation set, which was superior to the other three models.

Conclusion: This new model can accurately predict CK19 expression and MVI in patients with HCC.

Keywords: Hepatocellular carcinoma, cytokeratin 19, microvascular invasion, deep learning, multitask learning

INTRODUCTION
Hepatocellular carcinoma (HCC) accounts for approximately 90% of all liver cancer cases[1]. Despite 
advances in treatment options, its incidence is growing worldwide, and these trends are expected to remain 
through 2030[2]. Long-term outcomes are affected by a high recurrence rate (up to 70% of cases 5 years after 
treatment)[2]. Thus, searching for new methods to predict early postoperative recurrence is paramount.

The treatment plan and prognosis of HCC are influenced by factors such as tissue differentiation[3], tumor 
number[4], satellite nodules[5], microvascular invasion (MVI)[6], and related genetic phenotypes[7]. For 
example, the positive expression of CK19, a cytoskeleton protein in liver precursor and bile duct cells, 
indicates a high risk of invasive HCC[8,9]. Moreover, MVI, characterized by cancer cell clusters in small vein 
branches, is linked to more aggressive tumor biology[6,10]. MVI has been recognized as an independent 
predictor of early recurrence and poor prognosis after liver resection or liver transplantation[11]. According 
to available clinical data, liver transplantation or radiofrequency ablation is not recommended for HCC 
patients with MVI; more specifically, anatomical or partial liver resections with wide resection margins 
should be used to improve the prognosis[12]. A correlation between CK19 expression and MVI has also been 
reported. In their study, Qin et al.[13] compared CK19 and MVI in 352 HCC patients and found that the 
CK19 + /MVI + group had the lowest disease-free survival and overall survival rates compared to CK19+ 
and MVI+ groups, suggesting that combining CK19 and MVI may predict postresection prognosis better 
than using either factor on its own. Research indicates that MVI is an important independent risk factor for 
postoperative recurrence and poor prognosis in HCC. The incidence of MVI is significantly higher in 
CK19-positive tumors compared to CK19-negative tumors[14,15]. CK19 is a marker of cholangiocyte 
differentiation, but it can be abnormally expressed in HCC, indicating that the tumor has a higher 
invasiveness[14]. Studies have shown that CK19-positive HCC patients are more likely to experience MVI, 
which may be related to tumor stem cell characteristics, activation of epithelial-mesenchymal transition 
(EMT), and upregulation of pro-angiogenic factors such as vascular endothelial growth factor[15-18]. MVI is 
an important independent risk factor for postoperative recurrence and poor prognosis in HCC. The 
incidence of MVI in CK19-positive tumors is significantly higher than in CK19-negative tumors[14,15]. 
Patients with CK19-positive tumors combined with MVI have a significantly increased early postoperative 
recurrence rate, poorer response to targeted therapy, and shorter survival[9,16,19,20]. Additionally, evaluating 
CK19 and MVI can provide a more comprehensive reflection of tumor heterogeneity and aggressiveness, 
assisting clinicians in: screening high-risk patients, optimizing surgical and adjuvant treatment strategies; 
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avoiding undertreatment or overtreatment to enhance survival benefits; and establishing dynamic 
prognostic models to guide individualized follow-up. Therefore, preoperative prediction of MVI and CK19 
expression in HCC is considered crucial for determining treatment and improving prognosis. Yet, the 
diagnosis of CK19 and MVI is mainly based on postoperative histologic examination, usually known only 
several days after surgery, limiting its use to direct postoperative care. Additionally, during this process, only 
specific tissue areas are collected, failing to fully represent the whole lesion mass.

Magnetic resonance imaging (MRI) is the optimal method for diagnosing, staging, and evaluating treatment 
efficacy in HCC[21]. Gd-EOB -DTPA-enhanced MRI can reflect the biological behavior of HCC and its 
tumor microenvironment[22]. The HBP, post-contrast injection time range after administration of a 
hepatobiliary agent, is an important stage of Gd-EOB-DTPA-enhanced MRI. Compared to traditional MRI, 
Gd-EOB-DTPA-enhanced MRI has a higher detection rate of MVI positivity in the HBP, enabling earlier 
detection of MVI and aiding in developing more effective treatment strategies[23-25], providing clinicians with 
useful information regarding invasion and prognosis of HCC. Furthermore, studies have shown that 
imaging features from Gd-EOB-DTPA-enhanced MRI can help predict CK19 expression[26] and MVI[27] 
before surgery. However, despite offering important macroscopic imaging characteristics, the limited 
greyscale range of visual images restricts its potential application in reflecting detailed microscopic features.

With the rapid development of computer technology, machine learning methods, including radiomics and 
DL programs, have been widely applied in medical imaging analysis. Wang et al.[28] constructed a radiomics 
prediction model based on a fusion radiomics signature derived from arterial and hepatobiliary phase 
images of Gd-EOB-DTPA-enhanced MR for evaluating the CK19 status of HCC. Moreover, Feng et al.[29] 
developed a radiomics prediction model for preoperative MVI in HCC based on Gd-EOB-DTPA-enhanced 
MRI, achieving significant accuracy in training and validation sets. However, radiomics still has certain 
limitations, including the subjective design of extracted features, strong data dependency, poor feature 
generalization, and the requirement for doctors to manually delineate tumors layer by layer, which is time-
consuming and labor-intensive[30].

DL methods offer a direct feature extraction from MRI, eliminating the need for manual design. Only 
tumor framework outlining is required, enhancing model generalization and repeatability. Chen et al.[31] 
used a convolutional neural network (CNN) to establish a DL model for preoperative prediction of CK19 
expression in Gd-EOB-DTPA-enhanced MRI, achieving AUCs of 0.820 and 0.781 in the training and 
external validation sets, respectively. Additionally, Wang et al.[32] compared 2D, 2D-expansion, and 3D DL 
models for HCC MVI prediction based on Gd-EOB-DTPA-enhanced MRI, finding comparable 
performance between 2D-expansion and 3D DL models, with AUC values of 0.70 and 0.72, respectively.

However, the above studies involved single-task DL models. Single-task learning trains models separately 
for each task, resulting in the need to learn features from scratch for each model. For related tasks (e.g., 
predicting CK19 and MVI), certain underlying features (e.g., vascular pattern or heterogeneity of tumors) 
may be shared. Single-task learning cannot utilize these shared features, leading to redundancy in feature 
extraction and waste of computational resources[33-35]. Moreover, single-task learning requires a large 
amount of annotated data to be prepared separately for each task, while multitask learning can improve data 
efficiency by sharing data and feature representations. For example, the prediction tasks of CK19 and MVI 
can share some of the labeled data (e.g., features of the tumor region), thus reducing the need for separate 
labeled data for each task[36]. Thus, single-task learning suffers from limitations such as feature redundancy, 
ignoring inter-task correlation, data inefficiency, limited generalization ability, and wasted computational 
resources when dealing with multiple related tasks.
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In contrast, multitask learning can effectively overcome these limitations by sharing feature representations 
and jointly training multiple tasks, thus improving model performance and efficiency[34]. It learns shared 
information among tasks and uncovers crucial information for individual tasks, enhancing task accuracy 
and generalization[34]. Fan et al.[37] demonstrated the effectiveness of multitask learning in predicting breast 
cancer tissue grading and Ki-67 expression levels based on dynamic contrast-enhanced magnetic resonance 
imaging (DCE-MRI) and diffusion-weighted imaging (DWI) simultaneously, outperforming single-task 
models with AUC values of 0.811 and 0.816, respectively. Thus, it is believed that multitask learning 
methods can assist a single task in achieving better performance by training and learning from multiple 
relevant tasks.

In this study, we constructed a multitask DL model based on Gd-EOB-DTPA-enhanced HCC MRI, 
validated on an external test set using pathological histology. We hypothesized that the multitask DL model 
can simultaneously predict the expression of CK19 and the presence of MVI and that its predictive 
performance exceeds that of single-task DL models.

METHODS
Patients
This study adheres to the Declaration of Helsinki and has obtained approval from the Ethics Committees of 
Sun Yat-sen University Affiliated First Hospital (Center 1), Sun Yat-sen University Cancer Center (Center 
2), Southern Medical University Tenth Affiliated Hospital (Dongguan People's Hospital) (Center 3). In 
accordance with the approvals, the requirement for informed consent was waived. The reasons were as 
follows: (1) due to the retrospective nature of this study, it was unrealistic or impossible to obtain informed 
consent from all patients; (2) the study did not exceed the minimum risk after review by the ethics 
committees; (3) all patient data accessed complied with relevant data protection and privacy regulations; (4) 
the rights and interests of all patients have not been invaded.

This study retrospectively collected Gd-EOB-DTPA-enhanced MRI data from patients admitted to the three 
centers between January 2012 and January 2023. Data regarding inclusion and exclusion criteria can be 
found in the Supplementary Materials. The study flow chart is shown in Figure 1.

MRI
MRI scan in Center 1, Center 2, and Center 3 utilized a Magnetom Trio A Tim 3.0T system (Siemens 
Healthcare Sector, Erlangen, Germany), GE 3.0T (750W, Pioneer; GE Healthcare, Milwaukee, WI) MR 
scanning system, and Magnetom Skyra 3.0 T system (Siemens Healthcare Sector, Erlangen, Germany), 
respectively. The scanning covered the top to the lower edge of the liver with an 18-channel or 8-channel 
phased-array coil as the receiver coil. Gd-EOB-DTPA-enhanced MRI was obtained including the 
unenhanced phase, enhanced arterial phase (20-40 s), portal phase (50-70 s), equilibrium phase (100-120 s), 
transitional period (3-5 min), and 20- min HBP images. Gd-EOB-DTPA (Primegen; Bayer Schering 
Pharma, Berlin, Germany) was injected into the cubital vein at a flow rate of 1 mL/s and a dose of 0.025 
mmol/kg, followed by 20 mL of normal saline for flushing. A more detailed description of the MRI methods 
and specific sequences and parameters of MRI scans are shown in Supplementary Table 1.

The resident radiologist first contoured the ground truth of tumor lesions on the HBP in HCC patients 
(with 3 years of experience in the field), and this was then reviewed by a more experienced radiologist (with 
15 years of experience in the field); both radiologists were blinded to clinical and pathological data. If the 
opinions of the contour between the two radiologists were different, a discussion would be held until a 
consensus was reached. The radiologist labeled three layers, including the first, the largest, and last layer of 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202504/hr40143-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202504/hr40143-SupplementaryMaterials.pdf
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Figure 1. Study flowchart.

tumor appearance on cross-section MRI based on Insight Toolkit (ITK)- snap software. MVI was defined as 
as the invasion of tumor cells within a vascular space lined by endothelium that is visible only on 
microscopy[38-40]. Data were collected in strict accordance with the diagnostic guideline[40]. To avoid possible 
missing data, the volume of interest (VOI) in MR images covered the whole tumor and peritumor region[41]. 
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The marked quadrangles all contained tumor areas, as seen in Figure 2.

Clinicopathological analyses
HCC specimens were pathologically sampled following standardized guidelines[39]. Diagnostic criteria were 
based on World Health Organization morphological standards[42,43]. Two pathologists (with over 10 years of 
HCC pathology experience) who were blinded to clinical and imaging information independently reviewed 
all specimens. MVI, identified as tumor emboli in endothelial-lined vascular spaces on microscopy[42], and 
CK19 expression, assessed semiquantitatively through immunochemical staining, were determined. Tumors 
were classified as negative (< 5% of tumor cells) or positive (≥ 5% of tumor cells) for CK19.

Training and validation of deep learning models
Our framework, depicted in Figure 3, adopts ResNeSt[44] as the backbone of the DL model. Compared with 
commonly used classification networks, ResNet[45] introduces a residual module with skip connections to 
alleviate the vanishing gradient problem, while EfficientNet[46] achieves balanced scaling by simultaneously 
adjusting the network depth, width, and input image resolution. Building on ResNet, ResNeSt incorporates 
a split-attention module to enhance task accuracy while reducing the amount of computation. For a more 
detailed network structure, see the deep learning classification algorithms section of Supplementary 
Materials.

To address the negative transfer between tasks and the phenomenon where one task performance improves 
while another performance declines in most multitask learning algorithms, we designed a network structure 
named “Expert Sharing Network”. Its basic structure with the currently used multitask learning algorithms 
is shown in Figure 3.

As shown in Figure 3A, the CK19 expression prediction and MVI prediction tasks in the Hard Parameter 
Sharing Network model share a feature extraction module, which may lead to negative migration in the 
network due to weak correlation or conflict of tasks. It is also possible that the feature-sharing module of the 
network model may be dominated by one task so that it mainly fits that task, resulting in an increase in the 
performance of one task and a decrease in the performance of the other[47]. The Cross-Stitch Network model 
of Figure 3B automatically adjusts the degree of sharing between tasks by changing the task weight 
parameter in the module, which solves the negative network migration phenomenon to a certain extent, but 
there still exists the situation that the performance of one task rises while the performance of another task 
falls[48]. The core idea of the Expert Sharing Network [Figure 3C] is to clearly separate the common shared 
task parameters from the individual task-specific parameters, thus avoiding the complex parameter sharing 
that brings instability to the network model. The feature extraction part of the network is split into three 
sub-networks: sub-network 1, dedicated solely to CK19 expression prediction; sub-network 2, focused 
exclusively on MVI prediction; and the expert sharing sub-network responsible for learning shared features. 
This will help to avoid situations where complex parameter sharing causes the network to be biased toward 
fitting a particular task, causing the network model to experience negative migration and a rise in 
performance for one task and a drop in performance for the other. The Expert Sharing Network is detailed 
in the multitask learning framework section of Supplementary Materials.

Additionally, in order to further assess the potential relationships between tasks and improve the predictive 
performance of the model, the Spatial Transformation Module (STN)[49] and Relation Reasoning Module 
(RN)[50] were introduced into the network. The detailed structure of the above modules can be found in the 
network structure of improvement section of Supplementary Materials. Our framework is shown in 
Figure 4.

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202504/hr40143-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202504/hr40143-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202504/hr40143-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202504/hr40143-SupplementaryMaterials.pdf
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Figure 2. Lesion contouring for deep learning analysis. The first layer (A), the largest layer (B), and the last layer (C) of the tumor were 
outlined by a radiologist to build a cube area of interest, including the whole tumor lesion (D).

Figure 3. Basic structures of multitask learning networks. (A) The hard parameter sharing network; (B) The Cross-Stitch Network; (C) 
The expert-sharing network.

In this study, the dataset of Center 1 was used to establish the network model. To avoid model overfitting, 
we used 10-fold cross-validation to train the model, resulting in 10 models. The best-performing model 
from cross-validation was selected, and the datasets from Center 2 and Center 3 served as external 
independent test sets to validate the robustness of the algorithm.

The network model was trained and tested using Nvidia GTX 1080TI graphics cards with 11GB of memory. 
The network model was built using the PyTorch DL framework. The network autonomously learns linear 
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Figure 4. Expert Sharing Network structure based on spatial transformation and relation reasoning.

combinations of weights based on tasks in order to selectively fuse representations from different tasks. 
Focal Loss was chosen as the training loss function, and the optimizer used was Adam, with a penalty factor 
of 0.05. The batch size during training was 16; the initial learning rate was 1s set; the total number of epochs 
was 300. The learning rate was decayed by a factor of 0.2 every 100 epochs.

Real-time data augmentation was applied to the training dataset to avoid overfitting due to insufficient 
training data. The augmentation methods included (1) image flipping; (2) random image cropping; (3) 
image scaling; (4) image translation; (5) image rotation; and (6) shear transformation.

To transform the continuous probability outputs of the deep learning model into binary predictions (MVI/
CK19-positive vs. negative), the optimal cut-off value was determined by maximizing the Youden Index (J = 
sensitivity + specificity − 1). The ROC curve was generated using the validation set, and the threshold 
corresponding to the point closest to the top-left corner was selected as the cut-off. This approach balances 
sensitivity and specificity, ensuring minimal misclassification costs in clinical decision making.

We applied widely used DL classification algorithms, namely ResNet[45], EfficientNet[46], and ResNeSt[44,45], to 
the prediction tasks in this study. The performance of single-task methods on the HCC CK19 expression 
and HCC MVI prediction tasks was compared with the proposed multitask method, demonstrating the 
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superiority of the multitask approach. The specific network framework details can be found in the 
Supplementary Materials.

Statistical analysis
The performance of the network model was evaluated using accuracy, specificity, sensitivity, ROC curve, 
and AUC.

For the prediction of CK19 expression, we considered CK19-positive expressions as positive samples and 
CK19-negative expressions as negative samples; for MVI, samples classified as MVI-positive were 
considered positive samples, while non-MVI were considered negative samples.

RESULTS
Clinical and pathological data
Initially, 69 patients were enrolled from Center 1, 58 from Center 2, and 25 from Center 3. Subsequently, 3 
patients from Center 1 and 4 from Centers 2 and 3 were excluded. Patients from Center 1 comprised the 
training set, while patients from Centers 2 and 3 comprised the test set. The Clinical Characteristics and 
Pathological Parameters for the Training and Test Sets are presented in Table 1. There were no differences 
in age, Child-Pugh class A score, number of CK19-positive patients, or number of MVI-positive patients 
between the training and test sets (all P > 0.05).

Prediction of CK19 expression in patients with HCC
The performance comparison of our proposed method with three single-task frameworks on HCC CK19 
expression prediction is shown in Table 2. The MR images, together with the corresponding CK19 
expression and MVI status, are illustrated in Figure 5. The ROC curves of different classification models for 
internal cross-validation and external independent testing on CK19 expression prediction are illustrated in 
Figure 6. The final cut-off value was determined to be 0.48. Precision-recall curves are shown in 
Supplementary Figure 1. When assessing patients in Center 1, our model (AUC = 0.87) proved to be 
superior to ResNeSt50-based model (AUC = 0.71), EfficientNet-b0-based model (AUC = 0.70), and 
ResNet50-based model (AUC = 0.67). Similar data were observed in Centers 2 and 3 (AUC values of 0.80, 
0.70, 0.67, and 0.65 for the four models, respectively).

Prediction of MVI in HCC
The performance comparison of our proposed method with three single-task frameworks on HCC MVI 
prediction is shown in Table 3 and Figure 7. Precision-recall curves are shown in Supplementary Figure 2. 
When assessing patients in Center 1, our model (AUC = 0.88) proved to be superior to ResNeSt50-based 
model (AUC = 0.83), EfficientNet-b0-based model (AUC = 0.79), and ResNet50-based model (AUC = 0.72). 
Similar data were observed in Centers 2 and 3 (AUC values of 0.85, 0.79, 0.78, and 0.71 for the four models, 
respectively).

DISCUSSION
This is the first study to propose a multitask DL model based on Gd-EOB-DTPA-enhanced MRI to predict 
CK19 expression and MVI simultaneously in HCC. The multitask DL model outperformed single-task DL 
models in predicting CK19 expression and MVI, demonstrating robustness. The proposed approach in this 
study contributes to providing effective references for the clinical preoperative assessment of CK19 and 
MVI status, assisting physicians in guiding individualized management for HCC patients.

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202504/hr40143-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202504/hr40143-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202504/hr40143-SupplementaryMaterials.pdf
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Table 1. Baseline clinical characteristics and pathological parameters in the training and test sets

Total Training set Test set P value
Variables

n = 145 n = 66 n = 79

Age (yrs) 54.1 ± 13.0 54.2 ± 14.0 54.1 ± 12.3 0.09 

Sex (female) 29 (20%) 7 (11%) 22 (28%) 0.01*

History of hepatitis B 123 (85%) 62 (94%) 6 2(78%) < 0.01*

Child-Pugh class A 140 (97%) 65 (98%) 75 (95%) 0.25 

AFP > 400 μg/L 3 6 (25%) 22 (33%) 14 (18%) 0.03*

CK19-positive expression 44 (30%) 20 (30%) 24 (30%) 0.99 

MVI-positive tissue 51 (35%) 25 (38%) 26 (33%) 0.53 

*P < 0.05. Values are represented as mean ± standard deviation or number (percentage). P values represent the result of a comparison of the 
training set with the test set. CK19: cytokeratin 19; MVI: microvascular invasion; AFP: alpha-fetoprotein.

Table 2. Performance comparison of different classification models for HCC CK19 expression prediction

Experiment Model Accuracy (%) Sensitivity (%) Specificity (%) AUC (%)

ResNet50 64 85 54 67

EfficientNet-b0 79 50 91 70

ResNeSt50 70 60 74 71

Internal cross-validation (Center 1)

Expert sharing network 83 75 87 87

ResNet50 74 75 73 65

EfficientNet-b0 58 75 53 67

ResNeSt50 74 75 73 70

Independent external test (Centers 2 and 3)

Expert sharing network 84 75 87 80

AUC: area under the receiver operating characteristic (ROC) curve.

Table 3. Performance comparison of different classification models for HCC MVI prediction

Experiment Model Accuracy (%) Sensitivity (%) Specificity (%) AUC (%)

ResNet50 71 68 73 72

EfficientNet-b0 74 68 78 79

ResNeSt50 80 76 83 83

Internal cross-validation (Center 1)

Expert sharing network 85 80 88 88

ResNet50 79 67 85 71

EfficientNet-b0 89 67 100 78

ResNeSt50 79 83 77 79

Independent external test (Centers 2 and 3)

Expert sharing network 89 67 100 85

AUC:area under the receiver operating characteristic (ROC) curve; HCC: hepatocellular carcinoma.

In this study, there were no statistically significant differences in the proportion of patients by Age, Child-
Pugh class A, CK19, and MVI between the Training and Test sets, suggesting that the prevalence of CK19-
positive and MVI-positive HCC remained relatively constant across both sets.

In this study, DL classification algorithms, namely ResNet[45], EfficientNet[46] and ResNeSt[44], were employed 
for prediction tasks. Among the three models, ResNet50 performed the best. This could be attributed to the 
decentralized attention module introduced in ResNeSt, which integrates concepts from both the ResNeXt 
network and SENet. Compared to ResNet and EfficientNet, ResNeSt can improve task accuracy without 
incurring additional computational costs[44]. Therefore, ResNeSt was selected as the backbone network.
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Figure 5. The MR images with the corresponding CK19 and MVI. (A)MVI- CK19+ (B) MVI+ CK19- (C) MVI- CK19+ (D) MVI+ CK19-. 
CK19: cytokeratin 19; MVI: microvascular invasion.

Figure 6. The ROC curves for predicting CK19 expression in patients with HCC. (A) Internal cross-validation; (B) external independent 
testing. AUC:area under the receiver operating characteristic curve; ROC: receiver operating characteristic; CK19: cytokeratin 19; HCC: 
hepatocellular carcinoma.
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Figure 7. The ROC curves for predicting MVI in patients with HCC. (A) Internal cross-validation; (B) external independent testing. 
AUC:area under the receiver operating characteristic curve; ROC: receiver operating characteristic; MVI: microvascular invasion; HCC: 
hepatocellular carcinoma.

Few studies based on Gd-EOB-DTPA-enhanced MRI have assessed the predicted potential of CK19 
expression in HCC. Chen et al.[31] developed and validated the performance of a DL radiomics model for 
CK19 identification in HCC based on Gd-EOB-DTPA-enhanced MRI, obtaining an internal validation set 
AUC of 0.82 and an external test set AUC of 0.781. In comparison, our single-task method yielded slightly 
lower performance. The main reason is that the previous method independently designed a deep semantic 
feature extraction module, which processed the enhanced MRI of HCC through a trained feature extraction 
model for semantic feature extraction. In contrast, our approach did not involve training a separate feature 
extraction model; instead, decentralized attention modules were used to extract features from ResNeSt. 
Moreover, Yang et al.[51] retrospectively included a multicenter, temporally independent cohort using a 
radiomics model based on enhanced MRI for CK19 expression prediction. The final AUCs for the training 
and two validation cohorts were 0.857, 0.726, and 0.790, respectively. Their performance was slightly 
superior to that of our single-task method, potentially because they created a composite model, whereas we 
constructed a simpler DL classification model.

Our multitask approach based on ResNeSt achieved excellent performance in predicting CK19 expression in 
HCC, with an AUC of 0.87 in the internal cross-validation set and 0.80 in the external independent test set 
[Table 2]. This result surpassed the performance of the ResNeSt network and was also slightly higher than 
the results reported in the literature mentioned above. The main reason is that the ResNeSt network and the 
methods proposed in the literature are based on a single-task framework for predicting CK19 expression. 
The information obtained by the network is only related to features associated with CK19 expression. In this 
study, we simultaneously performed multitask learning to predict CK19 expression and MVI in HCC. In 
addition to utilizing features related to CK19 expression, the network can also exploit the intrinsic 
relationship between CK19 expression and MVI, extracting shared information between the two tasks to 
improve the performance of CK19 expression prediction. Multitask learning can leverage the potential 
relationships between tasks to extract important information, thereby improving the accuracy and 
generalization capabilities of the tasks[52], as demonstrated in many studies. For example, Chu et al.[36] used 
multi-phase Gd-EOB-DTPA-enhanced MRI to establish a three-dimensional CNN (3D CNN) for single-
task learning focused on predicting MVI and multitask learning simultaneously predicting MVI and vessels 
encapsulating tumor clusters (VETC). The results showed that the AUC of the 3D CNN for single-task 
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learning was 0.896, and multitask learning improved the performance of MVI prediction with an AUC 
value of 0.917. Similarly, we applied widely used DL classification algorithm networks to predict MVI in 
HCC [Table 3]. ResNeSt demonstrated the best performance (Internal AUC = 0.83, External AUC = 0.79). 
The superiority of the ResNeSt model in the framework contributes to these results. Some studies have also 
achieved accurate prediction of MVI in HCC based on Gd-EOB-DTPA-enhanced MRI.

Zhang et al.[53] developed a DL model based on multi-sequence MRI, achieving accurate preoperative 
prediction of MVI in HCC through enhanced MRI. The study utilized a 3D CNN to establish fusion models 
combining sequences. The final AUC of the fusion model in the training set was 0.81, and in the validation 
set, it was 0.72. The performance of this model was slightly inferior to that of the ResNeSt network in 
predicting MVI, possibly because ResNeSt uses average pooling layers instead of convolutional ones, 
reducing spatial information loss[50]. Additionally, Sun et al.[54] developed a DL model based on preoperative 
dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) to predict the MVI status in HCC. 
The resulting DL-based predictive model accurately predicted MVI risk, with an AUC of 0.824. The results 
were comparable to those obtained by the ResNeSt network. Although this study used a traditional CNN, it 
combined pathological predictive factors and employed a multi-input network, enabling the model to 
achieve performance comparable to the larger-parameter ResNeSt network.

Our multitask approach based on ResNeSt also demonstrated excellent performance in predicting MVI in 
HCC (Internal AUC = 0.88, External AUC = 0.85) [Table 3]. This result not only surpasses the performance 
of the ResNeSt network but is also slightly higher than the results reported in the literature mentioned 
above. When predicting MVI in HCC, our proposed multitask method utilized features related to MVI and 
exploited the intrinsic relationship between MVI and CK19 expression. This allows the network to extract 
shared information between the two tasks, enhancing the performance of MVI prediction.

However, there was a slight decrease in the results of the external test compared to the internal validation 
(e.g., CK19 AUC from 0.87 to 0.80, MVI AUC from 0.88 to 0.85), which may be attributed to the domain 
bias caused by differences in scanning equipment, parameters, or patient populations in different centers; in 
addition, CK19, as a biomarker, may be expressed heterogeneously in different centers, which affects the 
model to capture stable features. Meanwhile, training data from a single center may not be sufficient to 
cover all potential variant scenarios, resulting in insufficient model generalization ability. Multicenter joint 
training, biomarker-image correlation analysis, and model integration of clinical features may be able to 
solve the above problems, which will be explored in our future studies.

In summary, we have successfully proposed a predictive algorithm based on multitask learning and 
enhanced MRI, capable of accurately predicting CK19 expression and MVI in HCC. We designed an Expert 
Sharing Network that distinctly separates shared task parameters from specific task parameters, addressing 
negative transfer and the phenomenon where one task performance improves while another performance 
declines, which is commonly observed in multitask learning. Additionally, we adapted a Jaderberg[49] 
network, introducing a Spatial Transformation Module to learn useful affine transformations for task 
predictions autonomously. Applying these transformations can remove irrelevant noise, enhancing task 
classification. To further explore and leverage the relationship between CK19 expression and MVI, we 
improved a network based on Santoro[50], designing a Relation Reasoning Module. The purpose is to utilize 
the correlation between CK19 expression and MVI for more accurate predictions by the network model. 
Our results demonstrate that our proposed Expert Sharing Network, incorporating the Spatial 
Transformation Module and Relation Reasoning Module, achieved excellent performance in simultaneously 
predicting CK19 expression and MVI in HCC, which helps doctors assess prognosis and formulate 
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personalized treatment plans more accurately and facilitates close monitoring for early detection of tumor 
recurrence, leading to improved treatment outcomes and survival rates.

The present study has several limitations. First, we have not yet utilized other sequences from different 
phases of enhanced MRI. Previous literature has reported that data from different sequences and phases of 
enhanced MRI can provide rich feature information for predicting CK19 expression and MVI in HCC. 
Second, clinical information has not been integrated into the model, which could enhance predictive 
performance. Third, the skeleton network used in this study was not the latest classification network, and its 
performance may not be optimal. Further studies should explore and update classification networks to 
address these limitations. Additionally, the study will focus on utilizing clinical and pathological 
information from patients and exploring updated classification networks.

The multitask learning approach proposed in our study has good performance and robustness in predicting 
CK19 expression and MVI in HCC. This model could improve prognosis, develop more tailored treatment 
plans, improve treatment efficacy, and ultimately prolong patient survival, which may be a useful non-
invasive method for preoperative prediction of CK19 expression and MVI in HCC.
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