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Abstract
In the past decade, artificial intelligence (AI)-based technology has been applied to develop a simulation and 
navigation system and a model for predicting surgical outcomes in hepatobiliary surgery. To identify the 
intrahepatic vascular structure and accurate liver segmentation and volumetry, AI technology has been applied in 
three-dimensional (3D) simulation software. Recently, 3D and 4D printing have been used as innovative 
technologies for tissue and organ fabrication, medical education, and preoperative planning. AI can empower 3D 
and 4D printing technologies. Attempts have been made to use AI technology in augmented reality for navigating 
and performing intraoperative ultrasound. To predict surgical outcomes and postoperative early recurrence in 
patients with hepatocellular carcinoma, a deep learning model can be useful. Indocyanine green fluorescence 
imaging is used in hepatobiliary surgery to visualize the anatomy of the bile duct, hepatic tumors, and hepatic 
segmental areas. AI technology was applied to fuse intraoperative near-infrared fluorescence and visible images. 
Preoperative simulation, intraoperative navigation, and models to predict surgical outcomes using AI technology 
can be clinically applied in hepatobiliary surgery. As shown in reliable and robust clinical studies, AI can be a useful 
tool in clinical practice to improve the safety and efficacy of hepatobiliary surgery.
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INTRODUCTION
The advancement of artificial intelligence (AI)-based technologies in medicine is progressing rapidly. The
concept of AI was introduced as a computer program to simulate human cognitive functions. Machine
learning is at the core of AI, and deep learning is an important branch of machine learning [Figure 1]. In
hepatobiliary surgery, AI technology using a large number of medical images has recently been applied to
develop a simulation and navigation system and a model for predicting surgical outcomes[1][Figure 2].
Three-dimensional (3D) reconstruction based on computed tomography (CT) images are used to calculate
future liver remnant volume[2]. AI technology can contribute to the development of 3D reconstruction
systems[3,4] and perform liver segmentation, Couinaud segmentation, tumor segmentation, and
volumetry[5-8]. AI technology has also been used for augmented reality (AR) navigation systems[9-11]. Three-
dimensional printing is an innovative technology for tissue and organ fabrication, medical education, and
preoperative planning. Recently, 4D printing has emerged, with the fourth dimension being the time-
dependent change in shape after printing. AI-based technology can enhance the accuracy and robustness of
3D- and 4D-printed models. For liver surgery navigation, augmented reality has been applied to provide a
semitransparent overlay of the preoperative images of the area of interest, such as liver tumors and
vessels[12,13]. Moreover, researchers have attempted to use deep learning to obtain real-time semantic
segmentation and improve 3D augmentation[9]. In intraoperative ultrasonography, the use of AI technology
can accurately identify focal liver lesions[14]. Several deep learning models have been reported to be useful for
predicting postoperative complications and survival outcomes using preoperative medical images[15-17]. The
microvascular invasion of hepatocellular carcinoma (HCC) is an indicator of an aggressive tumor, tumor
recurrence, and poor survival after surgery. Deep learning-based AI using preoperative CT can predict
microvascular invasion and survival outcomes[18,19].

Intraoperative fluorescence imaging with indocyanine green (ICG) is used to visualize cancerous tissues and
anatomic structures[20]. Recently, it was discovered that using signal acquisition and processing technology,
the near-infrared fluorescence signal emitted from ICG can be fused with visible light color images.
Convolutional neural network (CNN)-based deep learning models have been broadly applied in image
processing and computer vision[21].

In this article, we discuss the application of AI-based technology in developing a simulation and navigation,
and prediction model for a surgical outcomes system based on preoperative imaging and ICG in
hepatobiliary surgery.

APPLICATION OF AI TECHNOLOGY FOR PREOPERATIVE SIMULATION
AI technology for 3D simulation
The intrahepatic vascular structure and accurate liver segmentation and volumetry must be identified to 
ensure precise and safe liver surgery[Table 1]. Three-dimensional simulation software has been applied to 
reconstruct intrahepatic structures and calculate future remnant liver volume[22]. Previous studies using deep 
learning-based algorithms for the automatic extraction of portal veins and hepatic veins found that the deep 
learning model contributed to reducing the processing time[3,4]. Chen et al. reported that with the use of the 
residual-dense-attention U-net model, a CNN, accurate segmentation of the liver and liver tumor on CT 
images could be obtained[5]. Koitka et al. demonstrated that a CNN provided fully automated 3D volumetry 
of the right and left liver on CT images[6]. Mojtahed et al. proposed a novel medical software (Hepatica) for 
performing automatic liver volumetry, followed by semiautomatic delineation of the Couinaud segments[7]. 
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Table 1. Selected studies utilizing AI for preoperative 3D simulation in liver surgery

Reference AI-based algorithm Aim Imagingmodality Performance

Kazami et al.[3] Deep learning-based 
algorithm

Extraction of the PV 
and HV 

CT Dice coefficient for the PV and HV: 0.90 and 0.94 
respectively

Takamoto et al.[4] AI-assisted reconstruction Extraction of the IVC, 
PV, and HV systems

CT Shorter processing time compared with the manual 
method (2.1 min vs. 35.0 min, P < 0.001)

Chen et al.[5] Residual-Dense-Attention 
U-Net

Segmentation 
between liver organs 
and lesions

CT Overall computational time reduced by about 28% 
compared with other convolutions; the accuracy of 
liver and lesion segmentation: 96% and 94.8% 
with IoU values and 89.5% and 87% compared 
with AVGDIST values

Kokita et al.[6] Multi-Resolution U-Net 3D 
neural networks

Obtain 3D liver 
volumetry

CT Sørensen–Dice coefficient: 0.9726 ± 0.0058, 
0.9639 ± 0.0088, and 0.9223 ± 0.0187 compared 
with SoR liver annotation and with right lobe and 
left lobe annotation

Mojtahed et al.[7] Hepatica: a deep-learning-
based liver volume 
measurement tool

Measurement of 
segmental liver 
volume

MRI Mean Dice score: 0.947 ± 0.010

Lyu et al.[8] CouinaudNet: a system 
that trains convolutional 
networks for liver tumor 
segmentation

Segmentation of liver 
tumors using 
Couinaud annotation

CT Dice per case and overall for tumor segmentation: 
62.2% and 74.0% respectively on the MSD08 test 
set and 68.4% and 80.9% on the LiTS test set

AI: artificial intelligence; CT: computed tomography; 3D: three-dimensional; PV: portal vein; HV: hepatic vein; IVC: inferior vena cava; IoU: 
intraoperative ultrasonography; LiTS: Liver Tumor Segmentation Benchmark; MRI: magnetic resonance imaging; MSD08: Medical Segmentation 
Decathlon Task08; PV: portal vein; SoR: standard of reference.

Figure 1. Relationship among artificial intelligence, machine learning, and deep learning.

Figure 2. An overview of artificial intelligence techniques used in preoperative planning, intraoperative guidance, and prediction of 
surgical outcomes.

CNN can automatically delineate the liver from a 3D T1-weighted magnetic resonance image and segment 
the volume corresponding to the liver. The new software could accurately delineate the liver and divide the 
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volume into Couinaud segments. Lyu et al. used a novel approach to train convolutional networks for liver 
tumor segmentation using Couinaud segment annotation, which complies relatively better with the 
radiologists’ work practice and significantly reduces manual effort[8]. The new method can use these 
annotations to estimate pseudo tumor masks as pixel-wise supervision for training a fully supervised tumor 
segmentation model. AI technology has contributed to the extraction of detailed and precise data on 
vascular vessels and liver segmental volumes.

AI technology for 3D and 4D printing
Three-dimensional printing is an innovative technology for tissue and organ fabrication, medical education, 
and preoperative planning. The use of 3D-printed liver models allows surgeons to obtain accurate 
information regarding vessel anatomy, the relationship between the tumor and vessels, and the 
parenchymal transection plane. Surgeons can freely handle the patient’s liver before surgery. In addition, 
3D-printed liver models can be used to train new surgeons[23,24]. Various materials such as polymers and 
hydrogels are used to fabricate the 3D-printed structure, and a complex creation process, such as the 
extrusion of feedstock material and building components layer by layer with dimensional accuracy, is 
needed. Meiabadi et al. reported that an artificial neural network-based method can enhance the accuracy of 
modeling for toughness, part thickness, and production cost-dependent variables[25]. Rojek et al. showed the 
utility of AI-based design for 3D printing in saving materials and reducing waste[26]. Recently, 4D printing 
has emerged, in which the fourth dimension of time is added to 3D printing, connecting the change of 
shape, properties, and functionality of the printed material over time following stimuli. An AI algorithm can 
be used to determine the best design of the toolpath and the stimuli-responsive material distribution, 
allowing precise shape control of the 4D-printed structure. AI technology can also ameliorate the design of 
4D printing using a library of previous scans of the target region of interest and coupling it with incomplete 
anatomy scan data to reconstruct a patient-specific 4D-printing model. AI-based 4D printing can improve 
the form and function of the materials in shape- changing and shape memory[27].

APPLICATION OF AI TECHNOLOGY FOR INTRAOPERATIVE NAVIGATION
AI technology for AR and intraoperative ultrasound
Intraoperative navigation techniques, which began with intraoperative ultrasound, may help surgeons 
perform liver surgery. Recently, AR has been applied to assist the operator in minimally invasive surgery. 
Liver tumors and vascular and biliary structures reconstructed using preoperative CT images are projected 
on the liver surface during liver parenchymal transection[28]. Adballah et al. used AR software during the 
laparoscopic resection of liver tumors[29]. Pseudotumor was created in sheep cadaveric liver, and a virtual 
preoperative 3D model was reconstructed using CT imaging. When the tumor image and 1-cm peritumoral 
margins were projected onto the liver surface during AR laparoscopic liver resection, the resection margins 
were more accurate and had less variability than those obtained using standard ultrasonographic navigation. 
CNN has been used to obtain real-time semantic segmentation of the scene and improve the precision of 
the subsequent 3D enhancement for an in-vivo robot-assisted radical prostatectomy[9]. Lin et al. proposed 
using a dual-modality endoscopic probe for tissue surface shape reconstruction and hyperspectral imaging 
enabled by a CNN model[10]. Structured light images are used to recover the depth maps of tissue surfaces 
using a fully convolutional network. The spectrographic and RGB images were jointly processed by a CNN-
based super-resolution model to generate pixel-level dense hypercubes. By combining the depth maps and 
hypercubes using AR, surgeons can visualize the recovered 3D surfaces, narrow-band images, and oxygen 
saturation maps. Luo et al. evaluated the utility and accuracy of the proposed AR navigation system for 
performing liver resection by a stereoscopic laparoscope using five modules: hand-eye calibration, 
preoperative image segmentation, intraoperative liver surface reconstruction, image-to-patient registration, 
and AR navigation[11]. An automatic CNN-based algorithm was used to segment the liver model using 
preoperative CT images. An unsupervised CNN framework was introduced to estimate the depth while 
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reconstructing the intraoperative 3D model for registration. AI systems have also been applied in 
intraoperative ultrasound. Barash et al. developed an AI system to detect liver lesions in intraoperative 
ultrasound. The area under the curve (AUC) of the algorithm performance was 80.2%, and the overall 
classification accuracy was 74.6%. The algorithm was found to assist in identifying focal liver lesions in 
intraoperative ultrasound performed by the liver surgeon[14].

AI technology for fluorescence imaging using ICG
ICG is mainly used as a fluorogenic reagent for fluorescence imaging-guided surgery. Protein-bound ICG 
emits fluorescence that peaks at approximately 840 nm when illuminated with near-infrared light 
(750 nm-810 nm)[30]. Because it is hard for this wavelength to be absorbed by hemoglobin or water, 
structures that contain ICG can be visualized through human tissue thicknesses of up to 5 mm-10 mm using 
a near-infrared camera system. ICG fluorescence imaging is used in hepatobiliary surgery to visualize the 
anatomy of the bile duct, hepatic tumors, and hepatic segmental areas. Intravenous injection of ICG during 
surgery allows fluorescence images of the bile ducts to be obtained in the surgical field. Fluorescence 
cholangiography provides detailed information on the anatomy of the extrahepatic bile duct. At first, 
fluorescent images of the biliary tract are displayed on a monitor with standard spatial resolution images. 
Switching from standard images to fluorescence images is required[31]. The high sensitivity of image sensors 
and advances in signal-processing technology have allowed for the application of fluorescent imaging in 
laparoscopic surgery[32,33]. Recent advances in imaging technology have enabled the fusion of fluorescence 
and full-color visible images with high-resolution quality[34] and allowed for the application of fluorescence 
imaging to laparoscopic liver surgery[35]. In addition, deep learning-based algorithms have been applied to 
fuse fluorescence images with visible light images. The deep learning fusion method is based on CNNs and 
can achieve a good infrared and visible image fusion effect[21]. Liu et al. used a CNN to obtain a weight map 
and used image pyramids to fuse infrared and visible images[36]. Zhang et al. proposed an adaptive 
brightness fusion method using the deep learning fusion method to fuse intraoperative near-infrared 
fluorescence and visible images[21]. Shen et al. applied a deep CNN to capture fluorescence imaging to 
determine glioma quickly and accurately in real-time during surgery. The developed deep CNN combined 
with the second near-infrared window fluorescence images can predict the pathological diagnosis while 
achieving an AUC of 0.945 during surgery[37].

The CNN architecture has also been applied to fluorescence lifetime imaging microscopy (FLIM). FLIM is 
an imaging technique that uses the inherent properties of fluorescent dyes. It identifies different intensity 
patterns and the lifetime of autofluorescence between cancerous tissues, margins, and normal tissues[38]. 
CNNs can reduce the acquisition time required to reconstruct pixel raw fluorescence data into intensity and 
lifetime images[39]. Marden et al. reported that a CNN allows for accurate and rapid localization and 
visualization of aiming beam segmentation during FLIM acquisition[40].

APPLICATION OF AI TECHNOLOGY TO PREDICT SURGICAL OUTCOMES
AI is also being used to predict postoperative morbidity and recurrence after liver surgery [Table 2]. When
used as a mathematical tool, an artificial neural network model can predict postoperative liver failure and
early recurrence after hepatic resection of HCC[15,16]. In previous reports, AI-based models using the
machine learning technique were able to predict postoperative morbidity after liver, pancreatic, and
colorectal surgery with a C-statistic value of 0.74[17]. Li et al. developed a deep CNN nomogram that
predicted microvascular invasion in HCC and survival outcomes including recurrence-free survival and
overall survival based on contrast-enhanced CT image and clinical variables[19]. The AUC value was 0.897 in
the validation cohort. Wakiya et al. reported the use of a deep learning model to predict early postoperative
recurrence after resection of intrahepatic cholangiocarcinoma using plain CT imaging from 41 patients. The
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Table 2. AI technology to predict surgical outcomes in patients with hepatocellular carcinoma

Reference AI-based 
algorithm Predicted object Incorporated variables Performance

Mai et al.[15] ANN model Post-hepatectomy early 
recurrence (within two 
years)

γ-GTP, AFP, tumor size, tumor 
differentiation, MVI, satellite nodules, 
and blood loss

AUC: 0.753 in the derivation cohort 
and 0.736 in the validation cohort

Mai et al.[16] ANN model Postoperative severe 
liver failure#

Plt, PT, T-Bil, AST, standardized future 
liver remnant

AUC: 0.880 in the development set 
and 0.876 in the validation set

Li et al.[19] DCNN Microvascular invasion, 
DFS, and OS

Clinicoradiologic features AUC of DCNN nomogram: 0.929 in 
the training cohort and 0.865 in the 
validation cohort; the DFS and OS 
differed significantly between the 
DCNN-nomogram-predicted groups 
with and without MVI

Our data 
(unpublished)

AI model 
implemented using 
CNNs and multilayer 
perception as a 
classifier

Postoperative 
complications of 
Clavien-Dindo 
classification II or higher 
and intraoperative blood 
loss

Arterial preoperative CECT imaging 
phase, sex, age, body mass index, 
preoperative ASA physical status 
classification, diabetes mellitus, serum 
ALT, Child-Pugh classification, Plt, and 
laparoscopic approach

AUC: 0.71 for postoperative 
complications and 0.83 for major 
blood loss

AI: artificial intelligence; ANN: artificial neural network; AFP: alpha-fetoprotein; AUC: area under the curve; ASA: American Society of 
Anesthesiologists; ALT: alanine transaminase; AST: aspartate aminotransferase; CNNs: convolutional neural networks;  CECT: contrast-enhanced 
computed tomography; DCNN: deep convolutional neural network; DFS: disease-free survival; γ-GTP:  γ-glutamyl transpeptidase; MVI: 
microvascular invasion; OS: overall survival; Plt: platelet count; PT: prothrombin time; T-Bil: total bilirubin.
#Grades B and C as defined by the International Study Group for Liver Surgery.

average sensitivity, specificity, and accuracy were 97.8%, 94.0%, and 96.5%, respectively[41].

We have recently developed deep learning models based on contrast-enhanced CT imaging to predict 
surgical outcomes and postoperative early recurrence in patients undergoing hepatic resection for HCC. 
The data of 543 patients who underwent initial hepatectomy for HCC were randomly classified into the 
training, validation, and test datasets in a ratio of 8:1:1. Arterial preoperative contrast-enhanced CT imaging 
phases and several clinical variables, including sex, age, body mass index, preoperative American Society of 
Anesthesiologists physical status classification, the presence of diabetes mellitus, serum alanine 
aminotransferase level, Child-Pugh classification status, platelet count, and laparoscopic approach, were 
used to create the model for predicting surgical risk. The surgical risk was assessed using intraoperative 
blood loss and postoperative complications of Clavien-Dindo classification II or higher. The deep learning 
model predicting both major blood loss and postoperative blood loss was developed using a dense 
convolutional network with explanatory variables including clinical data and contrast-enhanced CT 
imaging. To evaluate the predictive performance of differential models, we applied the receiver operating 
characteristic (ROC) curves and their AUC values. The AUCs of the predictive model for postoperative 
complications and major blood loss were 0.71 and 0.83, respectively [Figures 3 and 4]. Using the deep 
learning model, the predicted blood loss was significantly correlated with measured blood loss during 
hepatic resection [P < 0.01; Figure 5].

We developed the predictive model for the early recurrence of HCC by performing a deep learning analysis 
using a dense convolutional network as a training dataset with explanatory variables, including clinical data 
and saliency heat maps [Figure 6]. The data of 543 patients who underwent initial hepatectomy for HCC 
were randomly classified into the training, validation, and test datasets in a ratio of 8:1:1. Arterial 
preoperative contrast-enhanced CT imaging phases and several clinical variables, including sex, age, serum 
alanine aminotransferase and alpha-fetoprotein, Child-Pugh classification, and platelet count, were used to 
develop the predictive model for early HCC recurrence. This study defined postoperative early recurrence 
as intra- or extrahepatic recurrence of HCC within the first 2 postoperative years. This deep learning model 
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Figure 3. Receiver operating characteristic curve of the deep learning model to predict postoperative complications after hepatic 
resection of hepatocellular carcinoma with the area under the curve value.

Figure 4. Receiver operating characteristic curve of the deep learning model to predict major blood loss after hepatic resection of 
hepatocellular carcinoma with the area under the curve value.
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Figure 6. Saliency heat map of representative patients using the deep learning model. The red color highlights the region of interest to 
predict early recurrence.

demonstrated high accuracy for predicting early recurrence (within 1 year after surgery) by the ROC curve 
analysis with the area under the ROC curve values of 0.69 in the test dataset and 0.72 in the validation 
dataset [Figure 7]. Thus, deep learning-based AI using preoperative CT can be useful for predicting the 
early recurrence of HCC after surgery.

FUTURE PERSPECTIVES
It is hoped that AI will provide better and more individualized planning for each patient undergoing 
hepatobiliary surgery. In hepatobiliary surgery, significant progress has been made in preoperative 
simulation, intraoperative navigation, and prediction of surgical outcomes using AI. However, most studies 
on AI-based technology in hepatobiliary surgery had a retrospective design. Thus, to acquire reliable results, 
it is desirable to perform future studies on large patient populations collected in a prospective multicenter 
trial. Through reliable and robust clinical studies, AI can be a useful tool in clinical practice for improving 
the safety and efficacy of hepatobiliary surgery.

Figure 5. Correlation between predicted blood loss and measured blood loss during hepatic resection of hepatocellular carcinoma.
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Figure 7. Receiver operating characteristic curve of the deep learning model to predict postoperative early recurrence of hepatocellular 
carcinoma with the area under the curve value in the test and validation datasets.
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