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Abstract
Spectral stochastic finite element (SSFE) has been widely used in the uncertainty quantification of real-life problems.
However, the prohibitive computational burden prevents the application of the method in practical engineering sys-
tems because an enormous augmented system has to be solved. Although the domain decomposition method has
been introduced to SSFE to improve the efficiency for the solution of the augmented system, there still exist significant
challenges in solving the extended Schur complement (e-SC) system from domain decompositionmethod. In this pa-
per, we develop an approximate sparse expansion-based domain decomposition solver to generalize the application
of SSFE. An approximate sparse expansion is first presented for the subdomain-level augmented matrix so that the
computational cost in each iteration of the preconditioned conjugate gradient is greatly alleviated. Based on the de-
veloped sparse expansion, we further establish an approximate sparse preconditioner to accelerate the convergence
of the preconditioned conjugate gradient. The developed approximate sparse expansion-based domain decomposi-
tion solver is then incorporated in the context of SSFE. Since the difficulties of solving the e-SC system have been
overcome, the developed approximate sparse expansion-based solver greatly improves the computational efficiency
of the solution of the e-SC system, and thereby, the SSFE is capable of dealing with large-scale engineering systems.
Two numerical examples demonstrate that the developed method can significantly enhance the efficiency for the
stochastic response analysis of practical engineering systems.
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INTRODUCTION
Common geological hazards, such as debris flows, landslides, and avalanches, are usually devastating, and the
timing, location, and scale of disasters are uncertain, posing a significant threat to people’s lives and prop-
erty [1]. Therefore, researching the ability of structures to resist disasters is particularly important. However,
uncertainty is a common occurrence in various aspects of practical engineering, including structure design,
manufacturing, operation, and maintenance [2,3], which can lead to significant deviations in the structural be-
havior during structural response analysis and directly result in inaccurate analysis results of the ability of the
structure to withstand disasters.

So, the realistic design and analysis of these physical systems must consider uncertainties contributed by vari-
ous sources such as manufacturing variability, insufficient data, unknown physics, and aging [4–7]. The uncer-
tainties may also significantly influence the predictive capabilities of computer simulations [8–12]. The latest
advancements in high-performance computing and sensing technology have stimulated computational simu-
lations with extremely high resolution, providing great possibilities for integrating effective uncertainty quan-
tification methods to achieve realistic and reliable numerical predictions [13–18]. Nevertheless, using standard
Monte Carlo simulations for uncertainty quantification in the simulation of random responses to large and
complex problems may be time-consuming or impractical.

As an alternative method to Monte Carlo simulation, spectral stochastic finite element (SSFE) has been widely
applied in the field of stochastic mechanics [19–21]. Different from various methods that rely on sampling such
as the so-called collocation, SSFE is intrusive [22,23]. It estimates the random response of the structure by trans-
forming the random stiffness equation into a coupled set of a series of deterministic equations [4]. In the
framework of SSFE, if the uncertain properties of the system follow a Gaussian distribution, then they are
quantified with the Karhunen-Loeve (KL) expansion; if not, for example, the uncertain properties follow a
lognormal distribution, they will be projected into a polynomial chaos (PC) basis [24,25]. The random response
of the system is usually projected into the PC basis because it is unknown and almost never a Gaussian dis-
tribution; adopting the Galerkin minimization scheme will establish an augmented system of linear algebraic
equations, and only solving this augmented system will determine the coefficients of the basis and then obtain
the random response of the system [19].

However, compared to deterministic equations, the scale of the augmented ones that SSFE needs to solve will
be several orders of magnitude larger, because in the analysis of complex structures, the PC expansion (PCE)
items of the random response usually reach thousands or even tens of thousands. For such large-scale prob-
lems, in the past few years, the customized solution algorithm has been developing continuously, and to some
extent, it has achieved successful results in solving such high computational requirements. A kind of method
is directly solved by the preconditioned conjugate gradient (PCG) method, and the preconditioned matrix is
established using the structure of the coefficient matrix of the augmented system, including the block diago-
nal preconditioner, successive symmetric over-relaxation, and so on [4,25]. Such preconditions can effectively
reduce the number of iterations of PCG, transforming what actually takes time to calculate into a series of
deterministic problems, thus greatly improving the solution efficiency of the augmented system.

Nevertheless, with the increasing scale of the augmented system, the deterministic problems demanding reso-
lution through the direct PCG method are growing, which has gradually approached the number of samples
that need to be solved by the Monte Carlo method. Domain decomposition method (DDM) provides another
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essential framework for developing fast and efficient solvers for such applications. The DDM is an important
strategy for solving large-scale problems in computational mechanics [26,27] and has been applied to the solu-
tion of SSFE in recent years. Using this approach, the solution of augmented systems is transformed into a
series of sub-problems about each sub-domain and an extended Schur complement (e-SC) system [28]. The
solution of the e-SC system takes up most of the calculation time when the number of sub-domains is huge.
Hence, the efficiency for the solution of the e-SC system is the key in this kind of method. Till now, all these
methods are based on the structure of the coefficient matrix of the e-SC system, and PCG is used to solve the
e-SC system, which improves the computational efficiency to a certain extent in the random response analysis
of structures [29–34]. However, the above techniques can still not effectively analyze the large-scale structures,
and the efficiency is even lower than that of direct conjugate gradient (CG) method. This is because the pre-
conditioner established from the existing methods cannot guarantee the similarity with the e-SC matrix [35],
and as a result, the iteration steps of PCG will be quite huge. In addition, since direct DDM needs to store a
large-scale dense matrix in the solution process, the computational cost in each iteration will be quite large,
which may further decrease the efficiency of PCG in the stochastic analysis of large-scale structures.

In order to overcome the above deficiencies of the existingmethods, we develop an approximate sparse expansion-
based domain decomposition solver for stochastic finite element strategy. Firstly, we develop an approximate
sparse expansion for the subdomain-level augmented matrix. By utilizing the property of the subdomain-level
random stiffness matrix, the subdomain-level augmented matrix can be approximated as a product of a block
diagonal matrix and a sparse matrix, which is denoted as approximate sparse expansion in this study. With
this expansion, we further establish an algorism of multiplying the e-SC matrix and an arbitrary vector, which
may greatly save the computational cost in each iteration in PCG. Secondly, a preconditioner for the PCG so-
lution of the e-SC system is further developed based on the established approximate sparse expansion. Since
the preconditioner is constructed as the product of a block diagonal matrix and a sparse matrix, the inverse
of the preconditioner can be readily obtained. More importantly, the preconditioner is approximately equal
to the e-SC matrix so that the number of iterations can be significantly reduced. As a result, our approach
overcomes the difficulties of solving the e-SC system faced by traditional DDM-based SSFE by establishing
the approximate sparse preconditioner, and the efficiency for the solution of e-SC system can be greatly im-
proved compared with the traditional DDM-based SSFE.Therefore, the structural stochastic response analysis
will become much more efficient.

The remainder of this paper is organized as follows: In Section 2, the primal domain decomposition for SSFE
is briefly described. Then, in Section 3, a domain decomposition solver of stochastic finite element method
(SFEM) based on the approximate sparse expansion approach is proposed, and the actual calculation steps are
summarized. Section 4 contains numerical examples demonstrating the efficiency of the proposed method.
Finally, the concluding remarks are given in Section 5.

DOMAIN DECOMPOSITION-BASED SSFE
Stochastic finite element: spectral approach
In the response analysis of a structural system with stochasticity in the model parameters, the equilibrium
equation is usually expressed as

K(𝜃)u(𝜃) = f (1)

whereK(𝜃) is the stochastic stiffness matrix related to the stochastic process 𝜔(𝑥, 𝜃) of the system, u(𝜃) is the
random response vector, and f is the external forcing vector.
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In one particular formulation of the SFEM, according to the KL of the stochastic process 𝐸 (𝑥, 𝜃), the stochastic
stiffness matrix, with the KL expansion [1], can be given as

K(𝜃) = K0 +
𝑁∑
𝑖=1

K𝑖𝜉𝑖 (2)

where K0 is average stiffness, 𝜉𝑖 is a set of standard Gaussian random variables, and {K𝑖} are deterministic,
which are functions of the eigenvalues and eigenfunctions; we called them stochastic part stiffness matrices in
this work.

The resulting vector u(𝜃) of Equation (1), which is expanded along a PCE, is calculated by

u(𝜃) =
𝑀−1∑
𝑗=0

u 𝑗𝜓 𝑗 (3)

where {𝜓 𝑗 } are multidimensional orthogonal polynomials in {𝜉 𝑗 } , and each u 𝑗 denotes a vector of determin-
istic coefficients. The number of terms 𝑀 in Equation (3) depends on: (i) the number N of the uncorrelated
random variables {𝜉 𝑗 } used to describe the uncertainty; and (ii) the highest degree 𝑝 of the {𝜓 𝑗 } orthogonal
polynomials. This term is calculated using the following formula [25]:

𝑀 = (𝑁 + 𝑝)/(𝑁!𝑝!).

Substituting Equations (2) and (3) into (1) and forcing the residual to be orthogonal to the approximating space
spanned by the PC {𝜓 𝑗 } yields the following system of linear equations [36]:

𝑀−1∑
𝑗=0

𝑁∑
𝑖=0

⟨
𝜉𝑖𝜓 𝑗𝜓𝑘

⟩ K𝑖u 𝑗 =
⟨
𝜓𝑘f

⟩
. (4)

These equations can be assembled into a matrix of size 𝑀 · 𝑛 × 𝑀 · 𝑛:


K00 K01 · · · K0,𝑀−1

K10 K11 · · · K1,𝑀−1

...
...

. . .
...

K𝑀−1,0 K𝑀−1,1 · · · K𝑀−1,𝑀−1




u0
u1
...

u𝑀−1


=


f 0

f 1

...

f 𝑀−1


(5)

where K( 𝑗 ,𝑘) =
𝑁∑
𝑖=0

𝑐𝑖 𝑗 𝑘K𝑖 , and 𝑐𝑖 𝑗 𝑘 =
⟨
𝜉𝑖𝜓 𝑗𝜓𝑘

⟩
It is evident that the augmented system is an equation that couples the determinism of finite elements with the
randomness of structures. The number of rows and columns of its coefficient matrix are the product of: (1)
the spatial degrees of freedom (DOF) after meshing the structure; and (2) the number of expansion terms for
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random responses using the PC method. When the structural grid is subdivided densely and multiple terms
are expanded for random responses, the size of the augmented system can become quite large, which exceeds
the computational capacity of current computers. Ultimately, this fact makes it impossible for SSFE to analyze
the stochastic response of large-scale structures. Therefore, it is quite necessary to develop efficient algorithms
for the augmented system.

Domain decomposition approach for SSFE
When dealing with large-scale problems, DDM is one of the best candidates due to its proven performance and
scalability. In this method, the computational domain Ω is partitioned into 𝑁𝑆 non-overlapping subdomains
Ω =

∪𝑁𝑠

𝑠=1 {Ω𝑠}; the random response vector of every typical subdomain s, u𝑠 (𝜃), is divided into interior
response vectoru𝑠

𝐼 (𝜃) corresponding to the interior nodes and interface response vectoru𝑠
Γ (𝜃) corresponding

to interface nodes (shared by two or more adjacent subdomains) [26,27].

According to this partition, the DDM numbers, first the subdomains and last the interface, that is, let u(𝜃) =
{u1

𝐼 (𝜃) u2
𝐼 (𝜃) · · ·u𝑁

𝐼 (𝜃) uΓ (𝜃)} , at this time, the vector before any base after PCE of the random response
vector u(𝜃) can be expressed as u𝑖 = {u1

𝑖,𝐼 u2
𝑖,𝐼 · · ·u𝑁

𝑖,𝐼 u𝑖,Γ} . The new order of the vector of random
response vector leads to an ”arrow” pattern of every stochastic part stiffness matrix K𝑖 in Equation (2) as:

K𝑖 =


K1

𝑖,𝐼 𝐼 · · · 0 K1
𝑖,𝐼Γ

(B1)𝑇
...

. . .
...

...

0 · · · K𝑁𝑖

𝑖,𝐼 𝐼 K𝑁𝑖

𝑖,𝐼Γ

(B𝑁𝑖
)𝑇

B1K1
𝑖,𝐼Γ · · · B𝑁𝑖K𝑁𝑖

𝑖,𝐼Γ

∑𝑁𝑖

𝑠=1 B𝑠K𝑠
𝑖,ΓΓ

(B𝑠
)𝑇


(6)

where the restriction operatorsB𝑠 acts as a scatter or gather operator between global and local components of
the deterministic interface solution vectors [31], expressed as uΓ (𝜃) =

(B𝑠
)𝑇 u𝑠

Γ (𝜃) and u𝑠
Γ (𝜃) = B𝑠uΓ (𝜃).

Rearranging the augmented system Equation (5) based on the order of u(𝜃) will lead to an ”arrow” pattern of
the coefficient matrix, as given in



K1
𝐼 𝐼 · · · 0 K1

𝐼Γ

(
B1

𝑆

)𝑇
...

. . .
...

...

0 · · · K𝑁𝑖

𝐼 𝐼 K𝑁𝑖

𝐼Γ

(
B𝑁𝑖

𝑆

)𝑇
B1

𝑆K1
𝐼Γ · · · B𝑁𝑖

𝑆 K𝑁𝑖

𝐼Γ

𝑁𝑖∑
𝑖=1

B𝑖
𝑆K𝑖

ΓΓ

(B𝑖
𝑆

)𝑇




u1
𝐼
...

u𝑁𝑖
𝐼

uΓ

 =



f 1
𝐼
...

f 𝑁𝑖
𝐼

𝑁𝑖∑
𝑖=1

B𝑖
𝑆f 𝑖Γ




. (7)

where the expansion restriction operatorsB𝑠
𝑆 is obtained by the restriction operatorsB𝑠 asB𝑠

𝑆 = blockdiag
(B𝑠, . . . ,B𝑠

)
, u𝑠

𝐼 ={
u𝑠

0,𝐼 u𝑠
1,𝐼 . . . u𝑠

𝑀−1,𝐼

}𝑇
for𝛼, 𝛽 ∈ {𝐼, Γ}, and the solution vector is split intouΓ =

{ u0,Γ u1,Γ . . . u𝑀−1,Γ
}𝑇 ;

K𝑠
𝛼,𝛽 is a small augmented matrix and can be expressed as a Kronecker product [37], determined by

K𝑠
𝛼𝛽 =

∑𝑁
𝑖=0 Θ

(
A𝑖 ,K𝑠

𝑖,𝛼𝛽

)
(8)

whereA𝑖 is a stochastic Galerkin matrix of size𝑀×𝑀 , andA 𝑗 ,𝑘
𝑖 =< 𝜉𝑖𝜓 𝑗𝜓𝑘 >; the operatorΘ(A,B) denotes
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the Kronecker product of matrices A and B.

Then, using Gaussian elimination technique, Equation (7) becomes a global extended e-SC system, as given in

KuΓ = f (9)

where the e-SC matrix K and the e-SC loads f can be computed by


K =

𝑁𝑆∑
𝑆=1

B𝑇
𝑆

(
K𝑆

ΓΓ − K𝑆
𝐼Γ

(
K𝑆

𝐼 𝐼

)−1
K𝑆

Γ𝐼

)
B𝑆 .

f =
𝑁𝑆∑
𝑆=1

B𝑇
𝑆

(
f 𝑆
Γ − K𝑆

𝐼Γ

(
K𝑆

𝐼 𝐼

)−1
f 𝑆
𝐼

) (10)

By solving the e-SC system Equation (9), the global interface solution coefficients uΓ are obtained; the local
interior solution coefficient u𝑠

𝐼 on each subdomain can be obtained independently as:

K𝑠
𝐼 𝐼u𝑠

𝐼 =
(f 𝑠
𝐼 − K𝑠

𝐼Γu𝑠
Γ

)
(11)

As given in Equation (9), the key idea of DDM is to transform the original super-large-scale augmented system
into a smaller e-SC system so as to reduce the complexity for calculating the stochastic response of structures.
However, even if DDM has improved the efficiency of analyzing the stochastic response of structures through
the reduction of complexity, since the coefficient matrix is dense and has lost its structure similar to that of the
augmented matrix, a suitable preconditioner has been lacking to date. The ultimate result is that the analysis
of stochastic response in large-scale structures is not efficient enough.

APPROXIMATE SPARSE EXPANSION SOLVER FOR DDM-BASED SSFE
As mentioned earlier, the reason why the analysis of stochastic response in large-scale structures is not effi-
cient enough is that, compared with the augmented matrix, the e-SC matrix will become quite dense, and the
structure easy to establish preconditioner is lost. As a result, there is no suitable preconditioner for the e-SC
system till now. If a precondition suitable for the structure of the e-SC system can be established according
to the new structure of the e-SC matrix, its solving efficiency will be greatly improved, and then the efficiency
of structural random response analysis will be improved. So, in Section 3.1, we first establish the approximate
sparse matrix for the augmented matrix at the subdomain level, and then in Section 3.2, we further develop
an approximate sparse preconditioner for the e-SC system. Since the new preconditioner is established, the
computational efficiency of the e-SC system will be greatly improved; thus, the analysis of structural stochastic
response will be more efficient.

Approximate sparse expansion of subdomain-level augmented matrix
In this section, we develop an approximate sparse expansion of the subdomain-level augmented matrix K𝑠

𝐼 𝐼

in Equation (10). Through such an expansion, the subdomain-level augmented matrix can be approximately
expressed as a block diagonal matrix and a sparse matrix. This is because the random stiffness matrix at the
subdomain level can be decomposed into a form of multiplication of a deterministic stiffness matrix and an
approximately diagonal matrix. Since the expansion is established, the current dilemma of being unable to
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establish an effective preconditioner for the e-SC system will be overcome. Additionally, the multiplication
steps between the e-SC matrix and an arbitrary vector will also be optimized.

In order to establish the approximate sparse expansion, we first develop an improved mean-based approxima-
tion. Considering the original mean-based approximation K̃(0) = Θ

(
I,K𝑠

0,𝐼 𝐼

)
, where Θ(A, B) denotes the

Kronecker product of matricesA andB, it is easy to find the inverse [37], because it is a diagonal matrix, given

as
(
K̃(0)

)−1
= Θ

(
I,

(
K𝑠

0,𝐼 𝐼

)−1
)
. However, with the increasing variance of the random field, the effect of this di-

agonal precondition on improving computational efficiency is getting worse. For this reason, if the subdomain-
level augmented matrix is expanded based on the mean-based approximation, as K𝑠

𝐼 𝐼 = Θ(I,K𝑠
0,𝐼 𝐼 )R𝑠

𝐼 𝐼 , it is
only necessary to find an approximate value R̃𝑠

𝐼 𝐼 for the relationmatrixR𝑠
𝐼 𝐼 ofK𝑠

𝐼 𝐼 in order to obtain a suitable
approximation for K𝑠

𝐼 𝐼 .

In order to establish the approximate value R̃𝑠
𝐼 𝐼 , we first consider the approximate sparsity of the random

stiffnessmatrix at the subdomain level. Based on our findings about the properties of random stiffnessmatrices
recently, the expansion term of the random stiffness matrix of the s-number subdomainK𝑠

𝑖 (𝑖 = 0, 1, 2, · · · , 𝑚)
can be approximated as a product form, obtained as

K𝑠
𝑖 ≈ K𝑠

0R̂𝑠
𝑖 ≈ R̂𝑠

𝑖 K𝑠
0 (12)

where R̂𝑠
𝑖 is a diagonal matrix, an approximate value of the relation matrix R𝑠

𝑖 =
(
K𝑠

0

)−1
K𝑠

𝑖 for K𝑠
𝑖 . The

number of termsK𝑠
𝑖 , 𝑚, depends on the order 𝑑 of PCE of the stochastic process 𝐸 (𝑥, 𝜃) and number 𝑁 of the

KL expansion of the underlying Gaussian field 𝜔(𝑥, 𝜃) expressed as 𝑚 = (𝑁 + 𝑑)!/(𝑁!𝑑!).

The value of R̂𝑠
𝑖 is related to the results of KL expansion of random field at the subdomain; that is, the value

of this matrix can be calculated through theoretical computation as:

R̂𝑠
𝑖 = 𝑓 (𝐸𝑖 (𝑥)) 𝑥 ∈ Ω𝑠 (13)

This result further indicates that if the matrix K𝑠
𝑖 is rewritten as a block matrix, as formulated in

K𝑠
𝑖 =

[
K𝑠

𝑖,𝐼 𝐼 K𝑠
𝑖,𝐼Γ

K𝑠
𝑖,Γ𝐼 K𝑠

𝑖,ΓΓ

]
(14)

Then, its sub-matrices can also be expressed in this approximate form. The submatri K𝑠
𝑖,𝐼 𝐼 of K𝑠

𝑖 can be
approximately expressed as

K 𝑗
𝑖,𝐼 𝐼 ≈ K 𝑗

0,𝐼 𝐼R̂
𝑗
𝑖,𝐼 𝐼

(15)

It means that any matrixK 𝑗
𝑖,𝐼 𝐼 can be expressed as the product of the mean term and the approximate diagonal

matrix, and the diagonal elements of this approximate diagonal matrix can be approximately obtained through
theoretical calculation.
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Then, we establish the approximate relation matrix R̃𝑠
𝐼 𝐼 , considering the small augmented matrixK𝑠

𝐼 𝐼 accord-
ing to the Kronecker product form given in Equation (8); if it is left multiplied by a block diagonal matrix
Θ(I, (K 𝑗

0,𝐼 𝐼 )
−1), its relation matrix will be established as R𝑠

𝐼 𝐼 =
∑𝑁

𝑖=0 Θ
(
A𝑖 ,R𝑠

𝑖,𝐼 𝐼

)
. In the relational matrix,

each submatrix R𝑠
𝑖,𝐼 𝐼 will be an approximate diagonal matrix.

The submatrix of the relation matrix R𝑠
𝑖,𝐼 𝐼 obtained by direct calculation is dense, and a large number of ele-

ments are quite close to 0 in it; these elements should be deleted and the relation matrix should be transformed
into an approximate sparse structure with only large elements. Therefore, we establish a function ℓ(R) that
converts a dense relationship matrix into an approximately sparse relationship matrix. In the approximate
sparse function ℓ(R) , firstly, the matrix is rewritten as a set, as:

Υ =
{(
𝑗 , 𝑘, 𝜗 𝑗 𝑘

)
| 𝑗 , 𝑘 ∈ [0, 𝑛]

}
(16)

where in this equation, 𝜗 𝑗 𝑘 is the element in the matrix R.

Then, according to the magnitude of these elements, they are sorted, and a certain amount of the big elements
are retained. The preserved elements constitute another set Υ̃ , which can be represented as a sparse matrix
to obtain the approximate sparse form of the relation matrix R̃ . Using the Frobenius norm to ensure the
accuracy of results through the verification errors, that is, to let the Frobenius norm of the errors low enough
as | |R − R̃ | | ≤ 𝜀 , where the norm can be calculated by | |A| |𝐹 =

√
tr

(A𝑇A)
and tr(A) = ∑𝑛

𝑖=1 [A]𝑖,𝑖 is the
trace of a matrix.

The above steps represent the implementation process of approximate sparsity, and we define the steps as a
function, denoted as

R̃ = ℓ(R) (17)

Then, the approximate sparse relationship matrix of the sub-domain augmented matrix will be established
through the following steps as given in Algorism 1 (in the APPENDIX). Now, all the elements where each
node is located are defined as a set Ξ𝑣 ; 𝑣 denotes the number of one element, and letΩ(Ξ𝑣) be the total domain
of the elements set Ξ𝑣 .

Through Algorism 1, a series of relation matrices of random stiffness matrices at the subdomain level are
obtained as R̃𝑠

𝑖,𝐼 𝐼 , and the approximate sparse relationmatrix of the augmentedmatrix at this level is assembled

as R̃𝑠
𝐼 𝐼 =

∑𝑚−1
𝑖=0 Θ

(
A𝑖 , R̃𝑠

𝑖,𝐼 𝐼

)
. According to the approximate sparse relation matrix, the approximate sparse

matrix of the augmented matrix at this level can be obtained as

M𝑠 = Θ
(
I,K𝑠

0,𝐼 𝐼

) (∑𝑚−1
𝑖=0 Θ

(
A𝑖 , R̃𝑠

𝑖,𝐼 𝐼

))
(18)

As given in Equation (18), approximate sparse expansionM𝑠 ofK𝑠
𝐼 𝐼 is a product of a block diagonalmatrix and

a sparse matrix with a very small condition number; as an improvement over the mean-based approximation,
its inverse matrix is easily established, and it is sufficiently approximate toK𝑠

𝐼 𝐼 under any conditions. Through
this approximation, an approximate value of the e-SC matrix can be also derived, and its preconditioner can
be also established. At the same time, a new method can be established to multiply the e-SC matrix with any
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vector, and using the method, it is possible to avoid performing direct operations with relatively dense e-SC
matrices.

Multiplication of e-SC matrix and vector
As given in Equation (9), the cost of solving the e-SC system by PCG depends on: (1) the computational
efficiency of the multiplication of the e-SC matrix and vector; and (2) the preconditioner of the system. So,
in this section, in order to improve the efficiency of solving e-SC systems, we develop a new algorism of
multiplication of the e-SC matrix and vector based on approximate sparse expansion in Equation (18). The
algorism is efficient, avoids the direct involvement of large matrices in operations, and significantly reduces
the cost of stochastic response analysis of Structure.

During each iteration step in PCG, the multiplication of the e-SC matrix with a temporary vector,q = Kp ,
will be calculated once, so its calculation time is one of the factors determining the efficiency of solving the
e-SC system. The direct multiplication of the matrix and vector, however, will face the problem of too much
data of the coefficient matrix of the e-SC system in the random response analysis of large structures. Even if it

can be saved as a set of subdomain-level e-SC matrices K𝑆
= K𝑆

ΓΓ − K𝑆
𝐼Γ

(K𝑆
ΓΓ

)−1 K𝑆
Γ𝐼 and Boolean matrix

B𝑆 , each subdomain-level e-SC matrix remains dense and large, and such a large storage pressure will make
it impossible to calculate the e-SC system.

In this work, the step of directly multiplying the e-SC matrix with the vector is transformed into a series
of steps of multiplying the small-scale augmented matrix with the vector, and the coefficient matrix is the
solution problem of the small-scale augmented system. By rewriting the algorithm of multiplying these small-
scale augmented matrices with vectors and proposing an approximate sparse preconditioned matrix for small-
scale augmented systems, the computational efficiency of the multiplication of e-SC matrices and vectors is
improved.

Considering the multiplication of an e-SC matrix and a temporary vector q = Kp , in most cases, this mul-
tiplication step does not multiply by directly establishing e-SC matrices; instead, the multiplication will be
replaced by the following steps:


p𝑠 = B𝑠

𝑆p (1)
q𝑠 = K𝑠p𝑠 (2)
q =

∑𝑁𝑠

𝑠=1

(
B𝑠

𝑆

)𝑇
q𝑠 (3)

(19)

In the actual calculation process, the e-SC matrix at the subdomain level K𝑠
is replaced by the formula in

Equation (10) to avoid directly using the dense e-SCmatrix of the subdomain level; that is, step (2) in Equation

(19) is replaced by q =
∑𝑁𝑠

𝑠=1

(
B𝑠

𝑆

)𝑇 ((
K𝑠

ΓΓ − K𝑠
Γ𝐼

(K𝑠
𝐼 𝐼

)−1 K𝑠
𝐼Γ

)
B𝑠

𝑆p
)
. Therefore, it is obvious that the steps

of e-SC matrix and vector multiplication are ultimately transformed into a series of small augmented matrix(K𝑠
ΓΓ,K𝑠

Γ𝐼 and K𝑠
𝐼Γ

)
and vectormultiplication, and solution of a series of small augmented systemsK𝑠

𝐼 𝐼a = b,
whereb is a temporary vector. According to the Kronecker product of the subdomain-level augmentedmatrix,
a set representing all the elements of matrix A𝑖 (𝑖 = 0, 1, 2, · · · ) is established as derived in

=
{(
𝑖, 𝑗 , 𝑘, 𝑐𝑖 𝑗 𝑘

)
| 𝑐𝑖 𝑗 𝑘 ≠ 0

}
(20)

Then, the multiplication of argument matrix K̂ =
∑𝑁

𝑖=0 Θ
(A𝑖 ,K𝑖

)
and vector p can be realized by Algorism
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2 (in the APPENDIX).

The solution of a series of small-scale augmented systems in each iteration step of PCG, which are not large
in scale but need to be solved many times in the iterative process, will lead to the time-consuming calculation
and finally have a great impact on the computational efficiency of the e-SC system. So, in this work, PCG is
used to solve the equation, and the matrix-vector multiplication step is conducted by Algorism 2. Then, the
approximate sparse matrix in Equation (18) is used as the preconditioner of the solution.

In recent years, the parallelization of DDM is usually calculations involving the interior of sub-domains. In
order to calculate larger-scale structures, the strategy of multi-computer parallelization is often adopted. The
computations inside each subdomain usually do not interfere with each other. Therefore, in the process of
DDM, this portion of the calculations is typically parallel, and because of this, in this work, the steps of multi-
plying e-SCmatrices and temporary vectors are finally transformed into the following parallel steps ofAlgorism
3 (in the APPENDIX).

As given in Algorism 3, by virtue of the approximate sparse expansion of the subdomain-level augmented
matrix in Equation (18), we establish an algorism of multiplying the e-SCmatrix and vector for the PCG solver
of e-SC system Equation (9). The algorithm can avoid direct operations on large dense matrices, improve the
computation efficiency of each iteration step in PCG, and thus improve the efficiency of stochastic response
analysis of structures.

Approximate sparse preconditioner of e-SC system
Once the approximate sparse expansion of the subdomain-level augmented matrix is established, as deter-
mined by Equation (18), the approximate sparse preconditioner of e-SC can be established in this section. The
preconditioner is expressed in the form of multiplication of a block diagonal matrix with a sparse matrix called
the approximate relation matrix. The preconditioner is quite close to the e-SC matrix, which makes the iter-
ation of PCG converge within a relatively small number of iteration steps. Furthermore, because the inverse
matrix of the approximation relation matrix can be easily established, the computational complexity of each
iteration step is considerably low. These facts make the solving efficiency of the e-SC system extremely high
and ultimately substantially improve the efficiency of structural stochastic response analysis.

Approximate sparse expansion of e-SC matrix
When solving e-SC systems, themore important factor determining the computational efficiency of PCG is the
choice of preconditioned matrix M, which is used in the solution of a temporary equation Mz = g, where g
is a temporary vector calculated in the iterative process. The choice of preconditioned matrix not only affects
the calculation time of each iteration step, but also determines the number of iterations, which greatly affects
the calculation time of the e-SC system. Therefore, it is required that the preconditioned matrix M is close
enough to the e-SC (that is, the conditional number of M−1K is low enough), and the time-consuming for
solving the temporary equation Mz = g should be quite low.

So, in this section, we derive the approximate form of the e-SC matrix based on the approximate sparse aug-
mented matrix in Equation (18). Firstly, based on the derivation process of the approximately sparse aug-
mented matrix, the approximately sparse forms of the matrices in Equation (10) are further established. Then,
the approximation values of each matrix in Equation (10) are substituted into the calculation formula of the
e-SC matrix, and the approximate form of the e-SC matrix is obtained through computation.

Consider further adjusting the order of solutions in the augmented system to carry out the overall Schur com-
plement (SC) process, expressed as
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[ K𝐼 𝐼 K𝐼Γ

KΓ𝐼 KΓΓ

] { u𝐼

uΓ

}
=

{ P𝐼

PΓ

}
(21)

Different from Equation (7), in (21), let the solution vector u𝛼 =
{ u1,𝛼 u2,𝛼 · · · u𝑀−1,𝛼

}
and the

load vector P𝛼 =
{ P1,𝛼 P2,𝛼 · · · P𝑀−1,𝛼

}
(𝛼, 𝛽 ∈ {𝐼, Γ}). Then, for 𝑖 = 0, 1, 2, · · · , 𝑁 , the sub-

matrix of (21) can be expressed as K𝐼 𝐼 = Θ
(A𝑖 ,K𝑖,𝐼

)
,KΓ𝐼 = Θ

(A𝑖 ,K𝑖,Γ𝐼
)
,K𝑖,Γ𝐼 =

(K𝑖,Γ𝐼
)𝑇 , and KΓΓ =

Θ
(A𝑖 ,K𝑖,ΓΓ

)
, where K𝑖,𝐼 𝐼 = blockdiag

{
K1

𝑖,𝐼 𝐼 K2
𝑖,𝐼 𝐼 · · · K𝑁𝑖

𝑖,𝐼 𝐼

}
is a block diagonal matrix, K𝑖,Γ𝐼 ={(B1)𝑇 K1

𝑖,Γ𝐼

(B2)𝑇 K2
𝑖,Γ𝐼 · · ·

(B𝑁𝑠
)𝑇 K𝑁𝑠

𝑖,Γ𝐼

}
, K𝑖,ΓΓ =

∑𝑁𝑠

𝑠=1
(B𝑠

)𝑇 K𝑠
𝑖,ΓΓB𝑠 is a matrix composed

of submatrices and a Boolean matrix.

According to the approximate value ofK𝑠
𝐼 𝐼 in (18),K𝐼 𝐼 can be approximated as the value of the block diagonal

matrix
(M1,M2, . . . ,M𝑁𝑠

)
after the transformation order, as formulated in

K𝐼 𝐼 ≈
(∑𝑚−1

𝑖=0 Θ
(
A𝑖 , R̂𝑖,𝐼 𝐼

))
Θ

(I,K0,𝐼 𝐼
)

(22)

where R̂𝑖,𝐼 𝐼 = blockdiag
(
R̂1

𝑖,𝐼 𝐼 , R̂2
𝑖,𝐼 𝐼 , . . . , R̂𝑠

𝑖,𝐼 𝐼

)
.

For other submatrices KΓ𝐼 = Θ
(A𝑖 ,K𝑖,Γ𝐼

)
,K𝐼Γ = Θ

(A𝑖 ,K𝑖,𝐼Γ
)
, and KΓΓ = Θ

(A𝑖 ,K𝑖,ΓΓ
)
in Equation

(21), an approximate sparse expansion is established for the overall random stiffness matrix using a similar
approach as Equation (12), denoted as

K𝑖 ≈ K0R̂𝑖 ≈ R̂𝑖K0 (23)

After dividing the subdomains, we can expand Equation (23) to obtain the block form, expressed as

[ K𝑖,𝐼 𝐼 K𝑖,𝐼Γ

K𝑖,Γ𝐼 K𝑖,ΓΓ

]
=

[ K0,𝐼 𝐼 K0,𝐼Γ
K0,Γ𝐼 K0,ΓΓ

] [ R𝑖,𝐼 𝐼 R𝑖,𝐼Γ

R𝑖,Γ𝐼 R𝑖,ΓΓ

]
≈

[ K0,𝐼 𝐼 K0,𝐼Γ
K0,Γ𝐼 K0,ΓΓ

] [
R̂𝑖,𝐼 𝐼 R̂𝑖,𝐼Γ

R̂𝑖,Γ𝐼 R̂𝑖,ΓΓ

]
(24)

where R𝑖,𝐼 𝐼 , R𝑖,Γ𝐼 and R𝑖,ΓΓ are the real values of the submatrices of the relation matrix.

According to the diagonal dominance of R̂𝑖 , R̂𝑖,𝐼Γ = 0 and R̂𝑖,Γ𝐼 = 0 in Equation (24) can be known, so each
submatrix ofK𝑖 has an approximate value: K𝑖,Γ𝐼 ≈ K0,Γ𝐼R̂𝑖,𝐼 𝐼 ,K𝑖,𝐼Γ ≈ K0,𝐼ΓR𝑖,ΓΓ andK𝑖,ΓΓ ≈ K0,ΓΓR𝑖,ΓΓ;
then, the approximate value of the submatrices in Equation (21) can be obtained as


KΓ𝐼 ≈ Θ

(I,K0,Γ𝐼
( ∑𝑚−1

𝑖=0 Θ(A𝑖 , R̂𝑖,𝐼 𝐼 ))
K𝐼Γ ≈ Θ

(I,K0,𝐼Γ
)
(∑𝑚−1

𝑖=0 Θ(A𝑖 ,R𝑖,ΓΓ))
KΓΓ ≈ Θ

(I,K0,ΓΓ
)
(∑𝑚−1

𝑖=0 Θ(A𝑖 ,R𝑖,ΓΓ))
(25)

Then, Equations (25) and (22) are substituted into (21) and the SC process is carried out; with some simplifi-
cation steps, the approximate form of the e-SC matrix can be finally obtained as

http://dx.doi.org/10.20517/dpr.2023.39


Page 12 of 32 Luo et al. Dis Prev Res 2024;3:3 I http://dx.doi.org/10.20517/dpr.2023.39

K ≈ Θ
(
I,K0

) (
𝑚−1∑
𝑖=0

Θ
(A𝑖 ,R𝑖.ΓΓ

))
(26)

where K0 = K0,ΓΓ − K0,Γ𝐼
(K0,𝐼 𝐼

)−1 K0,ΓΓ is the mean SC (m-SC) matrix.

According to the approximate simplification result in Equation (26), the e-SCmatrix will approximate a special
structure, which is a multiplication of two matrices: the one is a diagonal matrix composed of m-SC matrix
K0 = K0,ΓΓ − K0,Γ𝐼

(K0,𝐼 𝐼
)−1 K0,ΓΓ, and another one is a block matrix stacked by several approximate di-

agonal matrices
∑𝑚−1

𝑖=0 Θ
(A𝑖 ,R𝑖,ΓΓ

)
. Conversely, if the above-mentioned block diagonal matrix consisting

of the inverse of the m-SC matrix K−1
0 is used to multiply the e-SC matrix left, then a matrix consisting of

approximate block diagonal matrices or approximate zero matrix will be obtained, which is called the relation-
ship matrix of the e-SC matrix in this work, and the diagonal element values of these approximate diagonal
submatrices are closely related to the results of KL expansion of random field.

The relation matrix of the e-SC matrix can be approximated as a sparse matrix with the original matrix, which
can be used to establish the precondition for PCG to solve the e-SC system. However, different from establish-
ing the relational matrix of a subdomain augmented matrix, it is usually not feasible to directly multiply the

block diagonal matrix Θ(I,K−1
0 ), because the multiplication of K−1

0 and any submatrix K 𝑗 𝑘 will be involved
in the calculation process, and in large structures, the scale of the matrix is quite large, so direct calculation
will waste a lot of time and need to store a large-scale dense matrix.

We utilize the similarity between approximate relationmatrix in (26) to infer the relationships between various
sub-matrices of the actual relationshipmatrix. Using this relationship, unnecessary calculations can be avoided,
thereby improving computational efficiency.

According to Equation (26), if we calculate the theoretical values of each submatrix of the relational matrix

based on Equation (26), we can obtain that R𝑟,𝑞 ≈
𝑚−1∑
𝑖=0

𝑐𝑖𝑟𝑞R𝑖.ΓΓ. This means that if a series of approximate

values can be calculated as R̃𝑖.ΓΓ ≈ R𝑖.ΓΓ; then, the approximate values of all submatrices of the relationmatrix
can be computed. Therefore, it is only necessary to find a fraction of the values of 𝑐, such that 𝑐𝑖𝑟𝑐 ≠ 0 and
𝑐 𝑗𝑟𝑐 = 0 when 𝑗 ≠ 𝑖; at the same time, establish a collection to store these 𝑐, as the eigen set ℑ in

ℑ =
{
(𝑖, 𝑟, 𝑞) | 𝑐𝑖𝑟𝑞 ≠ 0, 𝑐 𝑗𝑟𝑞 = 0( 𝑗 ≠ 𝑖)

}
(27)

To avoid the direct storage of large dense matrices, we derived an approximate sparse expansion form of
subdomain-level e-SC through the conclusion of Section 3.1. Each term of the calculation formula K𝑠

=

K𝑠
ΓΓ − K𝑠

𝐼Γ

(K𝑠
𝐼 𝐼

)−1 K𝑠
Γ𝐼 is expanded into the Kronecker product as

K𝑠
=

𝑁∑
𝑖=0

Θ
(
A𝑖 ,K𝑠

𝑖,ΓΓ

)
−

𝑁∑
𝑖=0

Θ
(
A𝑖 ,K𝑠

𝑖,𝐼Γ

) (
𝑁∑
𝑖=0

Θ
(
A𝑖 ,K𝑠

𝑖,𝐼 𝐼

))−1 𝑁∑
𝑖=0

Θ
(
A𝑖 ,K𝑠

𝑖,Γ𝐼

)
(28)

According to Equations (12) and (14), the sub-matrix in (28) can be approximately obtained as K𝑖,ΓΓ ≈
K0,ΓΓR̂𝑖,ΓΓ,K𝑖,𝐼Γ ≈ K0,𝐼ΓR̂𝑖,ΓΓ and K𝑖,Γ𝐼 ≈ K0,Γ𝐼R̂𝑖,𝐼 𝐼 ; by substituting the above approximate value into
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Equation (28), the subdomain-level e-SC matrix K𝑠
will have an approximate value as

K𝑠
≈ Θ

(
I,

(
K𝑠

0,ΓΓ − K𝑠
0,𝐼Γ

(
K𝑠

0,𝐼 𝐼

)−1
K𝑠

0,Γ𝐼

)) (
𝑁∑
𝑖=0

Θ
(
A𝑖 , Ĉ𝑠

𝑖,ΓΓ

))
(29)

According to Equation (29), by left-multiplying a diagonal matrixΘ(I,K𝑠

0), whereK𝑠

0 denotes the subdomain-

level m-SCmatrix andK𝑠

0 = K𝑠
0,ΓΓ−K𝑠

0,𝐼Γ

(
K𝑠

0,𝐼 𝐼

)−1
K𝑠

0,Γ𝐼 , then approximating each submatrix with sparsity

processing as R̃𝑠
𝑟,𝑞 = ℓ

((
K𝑠

0

)−1
K𝑠

𝑟,𝑞

)
, every submatrix of the approximate value of subregion-level e-SC can

be obtained as

K𝑠

𝑟,𝑞 ≈ K𝑠

0R̃𝑠
𝑟,𝑞

(30)

Thus, according to Equations (26), (27) and (30), any sub-matrix of the relation matrix of an e-SC matrix can
be denoted as


R𝑖 =

(
K0

)−1 (∑𝑁𝑠

𝑠=1

( (B𝑠
)𝑇 K𝑠

0R̃𝑠
𝑟,𝑞B𝑠

))
/𝑐𝑖𝑟𝑞 (𝑖, 𝑟, 𝑞) ∈ 𝔍, 𝑖 = 0, 1, 2, . . .

R𝑟,𝑞 ≈
𝑚∑
𝑖=0

𝑐𝑖𝑟𝑞R𝑖

(31)

where the matrix R𝑖 is called the eigen relation matrix in this work; Equation (31) demonstrates that only few
number of eigen relation matrix can express the relation matrix of the e-SC matrix.

Due to the approximate diagonal structure given Equation (31), it can be transformed into an approximately
sparse form R̃𝑟,𝑞 = ℓ

(R𝑟,𝑞
)
, and all submatrices are combined to get an approximate sparse relation matrix R̃

for the e-SC matrix, which can be further used to obtain the approximate sparse expansion of the e-SC matrix
as K ≈ Θ

(
I,K0

)
R̃.

The matrix Θ
(
I,K0

)
R̃ is a good approximation of the e-SC matrix and the equations with this matrix as the

coefficientmatrix are quite easy to solve, because R̃ is amatrix having a quite low condition number. Therefore,
using this matrix as a preconditioner can greatly improve the efficiency of solving the e-SC equations.

However, another problem is, for the e-SC matrix, when many subdomains are divided, the number of global
interface nodes will be quite large, which leads to the large scale of any sub-matrix of the e-SC matrix, along
with the m-SC. The fact means that the necessary step of computing the R𝑖 will result in a considerable com-
putational cost. So, there is a need for a computation process that can avoid directly computing the inverse of
the m-SC matrix and the multiplication of large dense matrices.

Approximate relation matrix for e-SC matrix
In order to efficiently calculate the approximate values of the relationmatrixR, we further develop an algorism
based on the two-level domain decomposition. By virtue of the two-level domain decomposition, in this
algorism, the inverse of the m-SC matrix is translated into a form of Cholesky decomposition, meaning that
only several small-scale matrices need to be inverse to obtain the inverse of the m-SC matrix. Meanwhile, the
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Figure 1. The two-level domain decomposition of a square plate (• (red) denotes the interface nodes, and the interior nodes are omitted in
this figure). (A) the first-level domain decomposition; (B) the second-level domain decomposition.

product of the inverse matrix of m-SC and the submatrix of the e-SC matrix is transformed into a series of
small-scale matrix multiplications that can be performed efficiently in parallel. Thus, the problem of obtaining
the approximate relation matrix in Section 3.2.1 has been solved.

(1) Computation of the inverse of m-SC matrix

The division of two-level subdomains is based on the division of one-level subdomains, and several adjacent
first-level subdomains form a second-level subdomain. Theorder of e-SCmatrix solutions is rearranged by two-
level division; then, each sub-matrix has an arrow-shaped block structure according to the element distribution
law of its coefficient matrix.

On the basis of finite element mesh, the structure is divided into a certain number 𝑁𝑠 of subdomains; each
subdomain contains a certain number of elements shown in Figure 1A, which is called the first-level domain
decomposition. Then, according to the first-level domain decomposition, the structure is divided into fewer
subdomains; each subdomain contains a certain number of the first-level subdomains, as shown in Figure 1B.

After the structure is divided into two levels, the order of Schur complementary system solutions is adjusted
according to the results of the division, so that its coefficient matrix becomes a block matrix with an arrow
structure element distribution in each submatrix. In order to explain this structure more clearly, firstly, the
element distribution of the mean interface stiffness matrix K0 after two-level division and adjustment of the
order of solutions is considered. The m-SC matrix comes from the SC process of a temporary deterministic
problem, denoted as

K0v = f (32)

According to the deterministic domain decomposition, the SC process of Equation (32) will get the following
m-SC system, as formulated in

K0vΓ = f (33)
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By the two-level domain decomposition, the m-SC matrixK0 can be expressed by the subdomain-level m-SC
matrices and Boolean matrices as K0 =

∑𝑁𝑠

𝑠=1
(B𝑠

)𝑇 K𝑠

0B𝑠. It is obvious that, the matrix is a series of small-
scale matrices mapped and added by Boolean matrices; therefore, there are a large number of zero elements in
the matrix, and the distribution of zero elements satisfies

K(𝑖 𝑗)
0

{
≠ 0 if v𝑑

Γ and v 𝑗
Γ in the same subdomain

= 0 if v𝑖
Γ and v 𝑗

Γ in different subdomains
(34)

According to the distribution law of zero elements given in Equation (34) and the division of the second-level
domain decomposition shown in Figure 1, we reorder the solutions of the interface vΓ and block them as

vΓ =
{

v1
Γ v2

Γ . . . v𝐿𝑡

Γ vX

}
(35)

where v𝑡
Γ denotes the second-level interior solution, and vX denotes the second-level interface solution.

After rearranging the order of SC matrices according to the new order of interface solution vectors derived in
Equation (35), based on the law of element distribution in Equation (34), the matrix will become the following
arrow shape expressed as

K0 =



K(1)
0,𝐼 𝐼 · · · 0 K(1)

0,𝐼Γ

(
B(1)

𝐿

)𝑇
...

. . .
...

...

0 · · · K(𝐿𝑡 )
0,𝐼 𝐼 K(𝐿𝑡 )

0,𝐼Γ

(
B(𝐿𝑡 )

𝐿

)𝑇
B(1)

𝐿 K(1)
0,Γ𝐼 · · · B(𝐿𝑡 )

𝐿 K(𝐿𝑡 )
0,Γ𝐼

(𝐿t )∑
𝑡=1

B(𝑡)
𝐿 K(𝑡)

0,ΓΓ

(
B(𝑡)

𝐿

)𝑇


(36)

whereB(𝑡)
𝐿 acts as a scatter or gather operator between global and local components of the deterministic second-

level interface solution vectors as

v𝑡
X = B(𝑡)

𝐿 vX, vX =
(
B(𝑡)

𝐿

)𝑇
v𝑡

X (37)

The form of the block matrix given in Equation (36) is quite easy to find the inverse. Because it can be easily
expanded into a simpler form by block Cholesky decomposition, denoted as

K0 =

[ I𝐼 0
K0,Γ𝐼K

−1
0,𝐼 𝐼 IΓ

] [
K0,𝐼 𝐼 0

0 S

] [
I𝐼 K−1

0,𝐼 𝐼K0,𝐼Γ
0 IΓ

]
(38)

where K0,Γ𝐼 =
[

B(1)
𝐿 K(1)

0,Γ𝐼 B(2)
𝐿 K(2)

0,Γ𝐼 . . . B(𝐿𝑡 )
𝐿 K

(𝐿𝑡 )
0,Γ𝐼

]
, I𝐼 and IΓ denote the identity matrix, K0,𝐼 𝐼 =

blockdiag(K(1)
0,𝐼 𝐼 ,K

(2)
0,𝐼 𝐼 , . . . ,K

(𝐿𝑡 )
0,𝐼 𝐼 ) is a block diagonal matrix, K0,𝐼Γ = K𝑇

0,Γ𝐼 , and S is the second-level SC
matrix which can be obtained by
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S =
∑𝐿𝑡

𝑡=1 B(𝑡)
𝐿

(
K𝑡

0,ΓΓ − K𝑡

0,Γ𝐼

(
K𝑡

0,𝐼 𝐼

)−1
K𝑡

0,𝐼Γ

) (
B(𝑡)

𝐿

)𝑇
(39)

It can be easily observed that the inverse of this matrix can be expressed as

K−1
0 =

[
I𝐼 −K−1

0,𝐼 𝐼K0,𝐼Γ
0 IΓ

] [
K−1

0,𝐼 𝐼 0
0 S−1

] [ I𝐼 0
−K0,Γ𝐼K

−1
0,𝐼 𝐼 IΓ

]
(40)

where only a series of internal stiffness matrices for second-level sub-domains K0,𝐼 𝐼 and the second-level SC
matrix S needs to be inversed. Usually, the second-level SC matrix will be fairly small-scale, which can be
directly inversed, because after two-level domain decomposition, there will be quite few second-level interface
nodes. Especially for structures with many small sections, such as frame structures and power transmission
tower structures, it is quite easy to find a two-level subdomain division scheme with very few second-level
interface nodes.

Once the inverse of them-SCmatrix is obtained as Equation (40), the multiplication of the inverse of the m-SC
matrix and a vector (or matrix) can be transformed into a more efficient form. Taking multiplication of the

matrix and a vector a = K−1
0 b as an example, the multiplication will be transformed into three steps: (1) the

SC process of the right-hand side vector; (2) the solution of the SC system to obtain the interface solution; and
(3) substituting the interface solution into the calculation of the internal solution, as determined by


hΓ = bΓ − K0,Γ𝐼K

−1
0,𝐼 𝐼b𝐼 (1)

aΓ = S−1hΓ (2)
a𝐼 = K−1

0,𝐼 𝐼

(
b𝐼 − K0,𝐼ΓaΓ

)
(3)

(41)

where only multiplication of the small-scale matrix and vector and inverse of the small-scale matrix exist, and
clearly, it is more efficient tomultiply than computing the inversematrix and thenmultiplying it with the vector
directly.

(2) Determination of relation matrix

Based on our previous research findings, it has been concluded that the e-SC matrix can be represented in a
two-level block form, where each sub-block has the same distribution of elements as the determined SCmatrix,
obtained as

K =



∑𝑁𝑠

𝑠=1 B𝑠K𝑠

0,0
(B𝑠

)𝑇 ∑𝑁𝑠

𝑠=1 B𝑠K𝑠

0,1
(B𝑠

)𝑇 · · · ∑𝑁𝑠

𝑠=1 B𝑠K𝑠

0,𝑀−1
(B𝑠

)𝑇∑𝑁𝑠

𝑠=1 B𝑠K𝑠

1,0
(B𝑠

)𝑇 ∑𝑁𝑠

𝑠=1 B𝑠K𝑠

1,1
(B𝑠

)𝑇 · · · ∑𝑁𝑠

𝑠=1 B𝑠K𝑠

1,𝑀−1
(B𝑠

)𝑇
...

...
. . .

...∑𝑁𝑠

𝑠=1 B𝑠K𝑠

𝑀−1,0
(B𝑠

)𝑇 ∑𝑁𝑠

𝑠=1 B𝑠K𝑠

𝑀−1,1
(B𝑠

)𝑇 · · · ∑𝑁𝑠

𝑠=1 B𝑠K𝑠

𝑀−1,𝑀−1
(B𝑠

)𝑇


(42)

where each submatrix can be transformed into this arrow-shaped representation akin to Equation (36) through
the two-level region decomposition, as derived in
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K 𝑗 𝑘 =



K(1)
𝑗 𝑘,𝐼 𝐼 · · · 0 K(1)

𝑗 𝑘,𝐼Γ

(
B(1)

𝐿

)𝑇
...

. . .
...

...

0 · · · K
(𝐿𝑖)
𝑗 𝑘,𝐼 𝐼 K

(𝐿𝑖)
𝑗 𝑘,𝐼Γ

(
B(𝐿𝑖)

𝐿

)𝑇
B(1)

𝐿 K(1)
𝑗 𝑘,𝐼Γ · · · B(𝐿𝑖)

𝐿 K
(𝐿𝑖)
𝑗 𝑘,𝐼Γ

(𝐿𝑖)∑
𝑖=1

B(𝑖)
𝐿 K(𝑖)

𝑗 𝑘,ΓΓ

(
B(𝑖)

𝐿

)𝑇


(43)

It is noteworthy that substituting matrices of the same number of rows as K0 for a and b also yields a valid
equation. Therefore, Equation (41) can also be applied to the construction of the relationship matrix R 𝑗 𝑘 =

K−1
0 K 𝑗 𝑘 . The obtained relation matrix through this approach will be block-structured as

R 𝑗 𝑘 =


R(1,1)

𝑗 𝑘 R(1,2)
𝑗 𝑘 · · · R(1,𝐿𝑖+1)

𝑗 𝑘

R(2,1)
𝑗 𝑘 R(2,2)

𝑗 𝑘 · · · R(2,𝐿𝑖+1)
𝑗 𝑘

...
...

. . .
...

R(𝐿𝑖+1,1)
𝑗 𝑘 R(𝐿𝑖+1,2)

𝑗 𝑘 · · · R(𝐿𝑖+1,𝐿𝑖+1)
𝑗 𝑘


(44)

Directly approximating sparseness of the relationship matrix would consume a considerable amount of time
due to the lowest computational complexity of sorting, which is at least O(𝑛log 𝑛). Therefore, it is possible
to take advantage of the fact that the sub-matrices of the relationship matrix can be calculated independently
and perform two rounds of sparse approximation. For any column of the relationship matrix, according to the
above steps, the interface solution is obtained through steps (1) and (2) in Equation (41) first, and then this
interface solution is used to determine the interior solution of the subdomain by step (3) in Equation (41).

Since the inverse of second-level SC matrix Swill be used repeatedly in calculations, it is advisable to compute
and save the inverse S−1 at the beginning of the analysis. Firstly, considering any column 𝑡 in the first 𝐿𝑡

columns, through the calculation of steps (1) and (2) in Equation (41), the value of the interface solution can
be obtained as

R(𝐿𝑖+1,𝑡)
𝑗 𝑘 = S−1

(
B(𝑡)

𝐿 K(𝑡)
𝑗 𝑘,𝐼Γ − K(𝑡)

0,𝐼Γ

(
B(𝑡)

𝐿

)𝑇 (
K(𝑡)

0,𝐼 𝐼

)−1
K(𝑡)

𝑗 𝑘,𝐼 𝐼

)
(45)

where a series of matrix multiplication problems is involved, including the multiplication of Boolean matrix
and othermatrices. In order to improve the calculation efficiency of this step, we change the original calculation

order, Using the properties of Boolean matrix,
(
B(𝑡)

𝐿

)𝑇 (
K(𝑡)

0,𝐼 𝐼

)−1
is calculated first to reduce the scale of the

matrix, then other steps are calculated, so that each operation is a multiplication between small-scale matrices,
then the calculation time is reduced. By substituting the calculation result of Equation (45) into step (3) of
(41), the rest solutions can be obtained as

R(𝑜,𝑡)
𝑗 𝑘 =

(
K(𝑡)

0,𝐼 𝐼

)−1 (
𝛿𝑡𝑜K

(𝑡)
𝑗 𝑘,𝐼 𝐼 − K

(𝐿𝑖)
0,𝐼Γ

(
B(𝐿𝑖)

𝐿

)𝑇
R(𝐿𝑖+1,𝑡)

𝑗 𝑘

)
(46)
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Similar to formula a, there is also a Boolean matrix in the calculation of Equation (46), so although what needs

to be calculated is the multiplication ofK(𝐿𝑖)
0,𝐼Γ (B(𝐿𝑖)

𝐿 )
𝑇
andR(𝐿𝑖+1,𝑡)

𝑗 𝑘 , in practical calculation, in order to reduce

the calculation cost, we choose to calculate
(
B(𝐿𝑖)

𝐿

)𝑇
R(𝐿𝑖+1,𝑡)

𝑗 𝑘 first, and then multiply K
(𝐿𝑖)
0,𝐼Γ left to get the final

result. For every 𝑜 = 1, 2, · · · , 𝐿𝑡 , R(𝑜,𝑡)
𝑗 𝑘 can be calculated independently, so in order to reduce the storage

cost as much as possible, when each R(𝑜,𝑡)
𝑗 𝑘 is calculated, it is approximately sparse before calculating the next

item R(𝑜+1,𝑡)
𝑗 𝑘 .

For the last column of the relationship matrix in Equation (44), the interface solution R(𝐿𝑖+1,𝐿𝑖+1)
𝑗 𝑘 can be

obtained by adopting the same calculation method as

R(𝐿𝑖+1,𝐿𝑖+1)
𝑗 𝑘 = S−1

((𝐿𝑖)∑
𝑠=1

(
B(𝑠)

𝐿 K(𝑠)
𝑗 𝑘,ΓΓ

(
B(𝑠)

𝐿

)𝑇
− K𝑠

0,Γ𝐼

(
K𝑠

0,𝐼 𝐼

)−1
K(𝑠)

𝑗 𝑘,𝐼Γ

(
B(𝑠)

𝐿

)𝑇 ))
(47)

Bring the calculation results into the sub-formula (3) of Equation (41), the rest of the solution can be obtained
as

R(𝑠,𝐿𝑖+1)
𝑗 𝑘 =

(
K(𝑠)

0,𝐼 𝐼

)−1 (
K(𝑠)

𝑗 𝑘,𝐼Γ

(
B(𝑠)

𝐿

)𝑇
− K

(𝐿1)
0,𝐼Γ

(
B(𝐿𝑖)

𝐿

)𝑇
R(𝐿𝑖+1,𝐿𝑖+1)

𝑗 𝑘

)
(48)

It can be observed that in Equation (47), the same contents K𝑠
0,Γ𝐼

(
K𝑠

0,𝐼 𝐼

)−1
will be calculated every time the

submatrix of the relationship matrix is established, so these repeated calculations can be calculated in advance
to avoid unnecessary repetition.

During the calculations, according to the specified order of computation, Equations (48) and (46) can be writ-
ten in an approximate sparse form first as R̃(𝑠,𝐿𝑖+1)

𝑗 𝑘 = ℓ
(
R(𝑠,𝐿𝑖+1)

𝑗 𝑘

)
and R̃(𝑜,𝑡)

𝑗 𝑘 = ℓ
(
R(𝑜,𝑡)

𝑗 𝑘

)
; then, Equations

(47) and (45) are expressed as R̃(𝐿𝑖+1,𝐿𝑖+1)
𝑗 𝑘 = ℓ

(
R(𝐿𝑖+1,𝐿𝑖+1)

𝑗 𝑘

)
and R̃(𝐿𝑖+1,𝑡)

𝑗 𝑘 = ℓ
(
R(𝐿𝑖+1,𝑡)

𝑗 𝑘

)
. According to the

above calculation results, the relation matrix can be roughly approximated as R̃′
𝑗 𝑘 , as formulated in

R̃′
𝑗 𝑘 =



R̃(1,1)
𝑗 𝑘 R̃(1,2)

𝑗 𝑘 · · · R̃(1,𝐿𝑖+1)
𝑗 𝑘

R̃(2,1)
𝑗 𝑘 R̃(2,2)

𝑗 𝑘 · · · R̃(2,𝐿𝑖+1)
𝑗 𝑘

...
...

. . .
...

R̃(𝐿𝑖+1,1)
𝑗 𝑘 R̃(𝐿𝑖+1,2)

𝑗 𝑘 · · · R̃(𝐿𝑖+1,𝐿𝑖+1)
𝑗 𝑘


(49)

Further approximate sparsity processing is performed on thematrix R̃′
𝑗 𝑘 to obtain the final approximate sparse

relation matrix R̃ 𝑗 𝑘 = ℓ
(
R′

𝑗 𝑘

)
. Assembling these submatrices results, the approximate sparse relation matrix

R̃ for e-SC.

In the calculation process, all the computations involved are operations between small matrices and the ap-
proximate sparse processing of small matrices. Since the relation matrix of each submatrix is established by
calculating the same amount of content separately, in the actual calculation, this part will be calculated in
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parallel, and the algorithm for finally calculating the relationship matrix of an e-SC matrix is expressed as
Algorithm 4 (in the APPENDIX), where we first choose the row and column numbers of the eigen relation
matrices by step 5; then, for every eigen relation matrix, which is split into a block matrix akin to Equation
(44), the submatrices in the bottom row are first obtained by steps 6 and 8; using the result, the other row can
be calculated by steps 9 and 11; steps 12 16 involve creating the approximate value of these submatrices, then
use these submatrices to assembly the approximate eigen relation matrix by steps 17 and 18, finally create the
approximate relation matrix by step 20.

Once the approximate relationmatrix R̃ of the e-SCmatrix is established by Algorism 4, it is possible to obtain
the preconditioner for solving the e-SC system, expressed as

M = Θ
(
I,K0

)
R̃ (50)

which denotes the proposed approximate sparse preconditioner that is quite close to the e-SCmatrix; therefore,
using this matrix as the preconditioner for PCG will lead to convergence within a relatively small number of
iterations. On the other hand, the matrix is a product of a diagonal matrix and a sparse matrix with very
little condition number, which makes the solution of the preconditioning equation relatively easy. Ultimately,
adopting this preconditioner can make PCGmore efficient in solving the e-SC system, which greatly improves
the solution efficiency of the random response of the structure.

Approximate sparse approach for DDM-based SSFE
According to the derivation of Sections 3.1 and 3.2, we develop an approximate sparse approach for DDM-
based SSFE; the proposed method targets the step of solving e-SC systems with PCG. An efficient algorism
for the multiplication of an e-SC matrix and an arbitrary vector, and an approximate sparse preconditioner
are established to improve the computing efficiency of PCG, thus making the structural random response
more efficient. The following steps show the new computational framework based on the approximate sparse
approach for DDM-based SSFE in this work:

step 1 Describe the stochastic process 𝐸 (𝑥, 𝜃) through KL expansion (or PCE, depending on the process is
Gaussian or non-Gaussian). Calculate the matrix Ai according to 𝑐𝑖 𝑗 𝑘 .

step 2 Mesh the structure and divide two-level subdomains, establish the first-level Boolean matrix B𝑠 and
second-level Boolean matrix B𝑠

𝐿 .

step 3 For 𝑠 = 1, 2, 3, · · · , 𝑁𝑠 and 𝑖 = 0, 1, 2, · · · , 𝑁 , establish the submatrix of subdomain-level stochastic
stiffness matrix K𝑠

𝑖 ,including K𝑠
𝑖,𝐼 𝐼 ,K𝑠

𝑖,𝐼Γ,K𝑠
𝑖,Γ𝐼 , K𝑠

𝑖,ΓΓ.

step 4 Calculate approximate relation matrix R̃𝑠
𝑖,𝐼 𝐼 of K𝑠

𝑖,𝐼 𝐼 according to Algorism 1

step 5 Calculate Second-level m-SC matrix S and inverse matrix S−1 by Equation (39).

step 6 Establish the eigen set 𝔍 by Equation (27).

step 7 Calculate the approximate relation matrix R̃ for the e-SC matrix K by Algorism 4.

step 8 Parallelly calculate the interface solution uΓ according to the proposed solution for the e-SC system
Algorism 5 (in the APPENDIX).
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step 9 Obtain the local interior solution u𝑠
𝐼 by Equation (11) parallelly.

In the established algorithm, PCG in step 8 is used to solve the e-SC system; different from the traditional solu-
tion, we propose a new calculation scheme based on the approximate sparse stiffness matrix for the two most
critical steps in PCG: the e-SC matrix and temporary vector multiplication and the solution of preconditioned
equations, to solve the problems that the existing solution methods must save large dense matrices and their
calculation efficiency are low.

In step 4, according to the derivation in Section 3.1, the approximate relation matrix of expansion term of the
random stiffness matrix in subdomain R̃𝑠

𝑖,𝐼 𝐼 is established. Then, the multiplication of the e-SC matrix and
temporary vector (steps 2 and 7 in Algorism 5) can adopt the steps of Algorism 3 for parallel calculation. In
Algorism 3, the direct multiplication of e-SC and vectors at the subdomain level will no longer be used, but an
algorithm based on the calculation formulated in Equation (10) will be established instead. The subdomain
augmentedmatrix and vector multiplication in Algorism 3 is further transformed into the multiplication given
in Algorism 1; then, the preconditioner for solving any subdomain-level augmented systemK𝑠

𝐼 𝐼a = b by PCG
is built as M𝑠 = Θ

(
I,K𝑠

0,𝐼 𝐼

)
R̃𝑠

𝐼 𝐼 through the approximate relation matrix R̃𝑠
𝑖,𝐼 𝐼 of K𝑠

𝑖,𝐼 𝐼 ; this preconditioned
matrix is quite close to the subdomain augmented matrix K𝑠

𝐼 𝐼 , and because it is composed of a block diagonal
matrix and a sparse matrix with low condition number, the preconditioned equation M𝑠a = b is quite easy
to solve. By this means, compared with the traditional methods, the proposed new method of multiplying
e-SC matrices and temporary vectors, b = Ka, does not need to save large dense matrices and has quite high
computational efficiency.

On the basis of Section 3.1, after further derivation, the proximate relationship matrix of e-SC matrix R̃ is
established, and steps 5-7 show the specific calculation process. By creating the eigen set 𝔍, the number of
needed multiplication steps between the inverse of the m-SC matrix and submatrix of an e-SC matrix will be
reduced, then by the two-level domain decomposition given in Algorism 4, the calculation process of every
submatrix of relation matrix is transformed into a series of operations between small matrices, which greatly
improves the calculation efficiency while avoiding the direct participation of large dense matrices in the op-
eration. After the calculation, the preconditioner for solving the e-SC is obtained as M = Θ(I,K0)R̃; this
matrix ensures the similarity with the original e-SC matrix K, and the high calculational efficiency of solving
the preconditioned equation on steps 3 and 12 of Algorism 5, because it is composed of block diagonal matrix
and a sparse matrix with low condition number.

To sum up, by rewriting the step of the e-SC matrix and the vector multiplication based on the approximate
sparse random stiffness matrix, we avoid the large dense matrix directly participating in the operation and
improve the calculation efficiency. At the same time, based on the approximate sparse random stiffness matrix,
the relationship matrix of the e-SC matrix is further established to create a preconditioning matrix. Using this
matrix as the preconditioner for solving the e-SCmatrix by PCG can greatly improve the calculation efficiency
by controlling the iteration steps. Finally, an efficient framework for structural random response analysis is
established.

NUMERICAL EXAMPLES
To assess the computational efficiency of the proposed approximate sparse expansion-based domain decompo-
sition solver for SFEM, we consider two numerical examples. In the two examples, the precision of the results
(structural stochastic response) and the distribution of elements in the relation matrix of the e-SC matrix will
be verified first, and then the convergence rate, computational time needed, and relative speedup compared
with the original DDM-based SSFE will be investigated and manifested. The computational platform used for
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Figure 2. Problem setting(A) and typical finite element mesh with 49 subdomains (B).

this investigation is an Intel Core i9-13900 with 24 physical cores at 3.0 GHz, coupled with 128 GB of RAM.
The finite element mesh of the two examples is generated using Abaqus; the finite element method (FEM)
assembly procedure is adapted from the FEON framework in python.

Stochastic response of a thin square plate
As a test case, we have considered a stochastic response analysis of a thin square plate. The dimensions of this
plate are 𝐿𝑥 = 𝐿𝑦 = 1; thickness is 0.1, and Poisson’s ratio is 0.3. One of its edges is a fixed end, receiving
uniformly distributed load with a size of 𝑝 = 1, as shown in Figure 2A. The elastic modulus of the thin square
plate 𝐸 is modeled as a Gaussian field 𝐸 (𝑥, 𝜃) with amean value of 𝜇 = 1.0; the exponential covariance function
of the field is expressed as

𝐶 (x,y) = 𝜎2 exp
(
− |𝑥1 − 𝑥2 |

𝑏𝑥
− |𝑦1 − 𝑦2 |

𝑏𝑦

)
(51)

where standard deviation is 𝜎 = 0.2; the correlation lengths of 𝑥 and 𝑦 directions are 𝑏𝑥 = 𝑏𝑦 = 1 .

The physical domainwith unit-square geometry is discretized using an unstructured finite elementmesh. After
partitioning the mesh, the number of nodes is 5,041, and the count of Quadrilateral elements totals 4,900; the
number of subdomains involves 16, 25, 36, 49, and 64; the mesh and the division of subdomains are shown in
Figure 2B illustrating the situation of 49 subdomains.

The random field 𝐸 (𝑥, 𝜃) is expressed by the KL expansion; in this example, the terms of expansion are 𝑁 = 2,
as 𝐸 (𝑥, 𝜃) = 𝐸0 +

∑𝑁
𝑖=1 𝐸𝑖𝜉𝑖 ; the result is shown in the following Figure 3.

The response is expressed using sixth order PCE (𝑀 = 28) leading to a linear system of order 282296. In
this work, the traditional DDM, the DDM based on approximate sparse expansion proposed (the PCGM is
considered to have converged when the error satisfies: | |Ku − f ∥/∥f ∥ ≤ 10−6) and 50,000 times of Monte
Carlo method are used to calculate the random response of structures. Firstly, the result of the stochastic
response calculated through the method proposed is shown in Figure 4.

In order to verify the accuracy of the calculated results more clearly, we consider the node No. 2485 (point
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Figure 3. KL expansion result of the random field 𝐸 (𝑥, 𝜃 ): Coefficients before the standard Gaussian random variables 𝜉𝑖 . (A) 𝐸1; (B) 𝐸2.

Figure 4. The solution process: Coefficients before the first 4 PC basis. (A) 𝑢0; (B) 𝑢1; (C) 𝑢0; (D) 𝑢1.

A in Figure 4A), which has a large average response, and draw the probability density function (PDF) of its
displacement in the y direction according to the calculation results of different methods shown as Figure 5.

From the PDF shown in the figure, it can be seen that the random response results in the y-direction of node
number 2485 obtained by the proposedmethod are almost consistent with the traditional SSFEmethod. More-
over, due to the maximum mean displacement in the y-direction of this node, it can be considered that the
random response results of other nodes obtained by the proposedmethod alsomeet the accuracy requirements.
Therefore, it indicates that the proposed approach has the same accuracy as the traditional SSFE method and
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Figure 5. Stochastic response of y-direction displacement of node No. 2485: (A) the PDF and (B) tail of the PDF.

Figure 6. Element distribution of relation matrix of random partial stiffness matrix at the subdomain level: (A) R1
1,𝐼𝐼 and (B) R1

2,𝐼𝐼 .

can meet the accuracy requirements when the response PCE order is sufficient.

Next, the distribution law of the coefficient matrix elements of the e-SC system is verified. Firstly, the el-
ement distribution of the augmented matrix at the subdomain level is verified; the relation matrix R𝑠

𝑖,𝐼 𝐼 =(
K𝑠

0,𝐼 𝐼

)−1
K𝑠

𝑖,𝐼 𝐼 is obtained by left multiplying the inverse matrix of the average stiffness matrix of the subdo-
main level; then, Figure 6 shows the distribution of elements of R1

1,𝐼 𝐼 and R1
2,𝐼 𝐼 ; in the figures, the 𝑥-axis and

𝑦-axis represent the row number and column number of the matrix elements, while the z-axis represents the
absolute value of the matrix element.

Figure 6 presents that for the relation matrices of the subdomain-level stochastic stiffness matrices, the non-
diagonal elements are almost zero, while the values of the diagonal elements are relatively large compared to
the non-diagonal elements, which confirms our findings.

Based on the above verification results, we further verify whether the properties of the relationship matrix of
the e-SC matrix are consistent with the conclusion of proof in Section 3.2. Firstly, it is necessary to verify the

distribution of the elements in the relation matrix R =
(
Θ

(
I,K0

))−1
K. As shown in Figure 7, we choose

some of the submatrices of the relation matrix, and the distribution of their elements was charted. Similar
to Figure 6, in Figure 7, the 𝑥-axis and 𝑦-axis represent the row number and column number of the matrix
elements, while the 𝑧-axis represents the absolute value of the matrix element.
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Figure 7. Element distribution of some relationmatrix’s submatrices: (A) the first row, second columnR1,2 and (B) the first row, third column
R1,3.

Table 1. Statistics of competitional time: DDM-based SSFE and approximate sparse expansion approach

Number of subdomains Time of SC process
Time of solving e-SC matrix
Proposed preconditioner Traditional method

16 1,202.1 258.7 1,532.7
25 400.3 342.7 2,819.3
36 318.1 536.7 5,201.9
49 338.5 744.3 7,254.2
64 542.4 1,120.6 11,533.4

It is evident that the sub-matrices of the relation matrix of the e-SC matrix also exhibit similar patterns of ele-
ment distribution; that is, the non-diagonal elements are almost zero, while the values of the diagonal elements
are relatively large compared to the non-diagonal elements.

Therefore, it can be said that, as demonstrated in this article, the distribution pattern of the elements in the
relation matrix has been confirmed. Thus, the approximate sparse preconditioner established in Section 3.2 is
approximately equal to the e-SC matrix, thus greatly improving the efficiency of solving the e-SC system.

On this basis, we study the magnitude of improvement in computational efficiency provided by the method
proposed in our research. We compared the computational time of the traditional DDM-based SSFE and the
proposed method, including the time of the SC process, the direct CG solver and the PCG solver with the
proposed preconditioner of the e-SC system, as shown in Table 1.

As demonstrated in Table 1, it can be obviously seen that compared with the traditional DDM-based SSFE,
which uses the direct CG solver to solve the e-SC system, PCG with the proposed approximate sparse precon-
ditioner is highly efficient, and as a result, the efficiency of stochastic response analysis of structures is greatly
improved. Especially when there are a large number of subdomains and the solving time of the e-SC system
becomes a higher proportion, this improvement in computational efficiency will become more evident from
the fact shown in Table 1.

Stochastic response of a frame structure
The second example features the stochastic response analysis of a frame structure, where we pay greater atten-
tion to its computational efficiency under different circumstances, including varying standard deviations and
correlation lengths, than in Section 4.1.

As shown in the following Figure 8, the structure we consider in this example is a five-layer frame structure
with a layer height of 3 m, the distance between each column is 2 m, the cross-sectional widths of the beams
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Figure 8. The geometry and subjected load of the frame structure.

Figure 9. The coefficient before the first PC basis of solution process: (A) Component in the x-direction (B) Component in the y-direction.

and columns are 0.3 m, thickness is 0.1, and Poisson’s ratio is 0.25. The structure is subjected to the self-weight
𝐺 with planar density 𝜌 = 7.85 × 103 Kg/m2 and a lateral uniformly distributed load P with P = 700 N/m.
The elastic modulus of the material in this frame structure is considered as a gaussian random field with a
mean of �̄� = 2.06 × 105 Mpa and a standard deviation of 𝜎 = 0.2�̄� , the correlation length of the field is
𝑏𝑥 = 𝑏𝑦 = 15.3 m, and the exponential covariance function is the same as given in Equation (51). The finite
element mesh of the structure consists of 9,552 elements and 11,855 nodes, and 65 subdomains are generated
after subdivision.

The KL expansion is used to express the random field; in this example, the number of terms 𝑁 used in the
truncated KL is 2, themaximumpolynomial order of the PCE is 6, the total terms of the PC basis of the solution
are 𝑀 = 28, and the augmented system to be solved will have a coefficient matrix of 663, 880×663, 880 . Using
our approximate sparse expansion-based domain decomposition solver, we get the solution of the augmented
system, and Figure 9 shows the coefficients before the first PC basis of the solution process of the x-direction
and y-direction.

Then, we use PDF of the y-direction displacement at point A and the x-direction displacement at point B to
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Figure 10. The PDF of (A) x-direction displacement of point A and (B) y-direction displacement of point B.

Table 2. Statistics of competitional time of the different standard deviation: DDM-based SSFE and approximate sparse expansion approach

Standard deviation Time of SC process
Time of solving e-SC matrix
Proposed preconditioner Traditional method

0.1𝐸 946.4 302.1 15,893.6
0.15𝐸 953.1 539.4 18,106.9
0.2𝐸 935.4 619.8 21,011.6
0.25𝐸 940.2 703.5 21,933.9

Table 3. Statistics of competitional time of the different correlation lengths: DDM-based SSFE and approximate sparse expansion approach

Correlation length Time of SC process
Time of solving e-SC matrix
Proposed preconditioner Traditional method

0.2𝑏 928.6 496.4 16,555.3
0.4𝑏 936.3 466.1 14,879.8
0.6𝑏 938.2 562.9 19,194.6
0.8𝑏 936.4 584.5 19,527.4
𝑏 935.4 619.8 21,011.6

describe the calculated results (points A and B are shown in Figure 9; A is the point with the largest average
displacement in the y-direction shown in Figure 9A, while B is the point with the largest average displacement
in the x-direction shown in Figure 9B) and compare them with the results of 50000 Monte-Carlo simulations,
as shown in Figure 10.

It is obvious that the solution process calculated by the proposed approach is similar to the MC method in
Figure 10, indicating that the proposed one can meet the accuracy requirements when the PCE order of the
response is sufficient. Then, we are concerned about the numerical scalability of the improvement of compu-
tational efficiency, that is, the computational efficiency improvement of the proposed method under different
conditions (the PCGM is considered to have converged when the error satisfies: ( | |Ku−f ∥/∥f ∥ ≤ 10−8)). So,
we first consider the different standard deviation𝜎 of the elastic modulus 𝐸 , taking values of 0.1�̄�, 0.15�̄� , 0.2�̄�
and 0.25�̄� , respectively. Then, we consider the different correlation lengths of 𝑏 (𝑏 = 𝑏𝑥 = 𝑏𝑦), taking values
of 0.2𝑏, 0.4𝑏, 0.6𝑏, 0.8𝑏 and 𝑏, respectively. The computation time statistics are documented in the following
Table 2 and Table 3:

From the computational time presented in Table 2 and Table 3, it is evident that the proposed approximate
sparse preconditioner exhibits high efficiency; moreover, the degree of improvement does not show significant
variations as the standard deviation and the correlation length change, thus indicating its numerical scalability.
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CONCLUSIONS
In this paper, we develop an approximate sparse expansion-based domain decomposition solver in the con-
text of SSFE. By establishing an approximate sparse expansion of the subdomain-level augmented matrix, we
transform the multiplication of the e-SC matrix and vector to the operation of a series of subdomain-level
augmented matrices and vectors. The transformation can greatly decrease the computational cost in each
iteration in PCG. With the approximate sparse expansion, we further develop an approximate sparse precon-
ditioner in the context of PCG for the solution of the e-SC system. The preconditioner is established as a
product of a block diagonal matrix and a sparse matrix with low condition number. The convergence of PCG
can be remarkably accelerated using the preconditioner. Since the two main difficulties in the existing DDM-
based SSFE are overcome, the developed solver addresses the challenge of difficulty solving the e-SC system
in traditional methods, and thereby the uncertainty quantification of practical engineering is quite efficient
using SSFE. Two numerical examples, including stochastic analysis of a thin square plate and a planar frame
structure, have been studied to illustrate the effectiveness of the developed method. In both examples, the
developed approximate sparse expansion-based domain decomposition solver enables greatly improving the
efficiency of stochastic response analysis, and the improvement of efficiency is not affected by the number of
subdomains and the variance of the random field.

Due to our focus on improving the computational efficiency of the proposed algorithm compared to traditional
DDM-based SSFE, we only consider the simplest case, assuming that the structure is elastic and onlywithstands
deterministic static loads.

In future work, we will further evaluate the computational performance of the algorithm under complex condi-
tions (such as nonlinear structures subjected to random dynamic loads [38]). Additionally, it is necessary to be
aware that the proposed method has certain limitations; for example, the SC process is still inevitably required
in establishing the approximate sparse preconditioner. So, in future work, we will also consider developing an
approximate SC process to reduce its computational cost while meeting the accuracy requirements.
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APPENDIX

Algorithm1Approximate sparse relation matrix of subdomain − level augmented matrix
1: Input result of KL expansion K𝑠

𝑖,𝐼 𝐼 for 𝑖 = 0, 1, 2, · · · , 𝑚 and 𝑠 = 1, 2, · · · , 𝑁𝑠

2: for 𝑠 = 1, 2, · · · , 𝑁𝑠 do
3: for 𝑖 = 0, 1, 2, · · · , 𝑚 do
4: Calculate R𝑠

𝑖,𝐼 𝐼 = (K𝑠
0,𝐼 𝐼 )

−1K𝑠
𝑖,𝐼 𝐼

5: Calculate R̃𝑠
𝑖,𝐼 𝐼 = ℓ

(
R𝑠

𝑖,𝐼 𝐼

)
by (17)

6: end for
7: Calculate R̃𝑠

𝐼 𝐼 =
∑𝑚

𝑖=0 Θ
(
A𝑖 , R̃𝑠

𝑖,𝐼 𝐼

)
8: end for
9: Output R̃𝑠

𝐼 𝐼

Algorithm 2 Multiplication of argument matrix and vector
1: Input p
2: Initialize q 𝑗 = 0, 𝑗 = 0, 1, 2, . . . , 𝑀 − 1
3: for

(
𝑖, 𝑗 , 𝑘, 𝑐𝑖 𝑗 𝑘

)
∈ do

4: q 𝑗 = q 𝑗 + K𝑖p𝑘

5: q =
{ q0 q1 · · · q𝑀−1

}
6: end for
7: Output q

Algorithm 3 Parallelmultiplicationof e − SC matrixandvector
1: Input p
2: for 𝑠 = 1, 2, 3, · · · , 𝑁𝑠, parallelly do
3: Compute p𝑠 = B𝑠

𝑆p
4: Compute q𝑠

1 = K𝑠
ΓTp𝑠 by Algorism 2

5: Compute q𝑠
𝑎 = K𝑠

𝐼Γp𝑠 by Algorism 2
6: Solve K𝑠

𝐼 𝐼q𝑠
𝑏 = q𝑠

𝑎 . by PCG, preconditioner M𝑠 =
(
I ⊗ K𝑠

0,𝐼 𝐼

)
R̃𝑠

𝐼 𝐼

7: Compute q𝑠
2 = K𝑠

Γ𝐼q𝑠
𝑏 . by Algorism 2

8: Compute q𝑠 = q𝑠
1 − q𝑠

2
9: end for
10: Compute q =

∑𝑁𝑠

𝑠=1

(
B𝑠

𝑆

)𝑇
q𝑠

11: Output q
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Algorithm 4 Parallel computation for the relation matrix of e − SC matrix
1: Establish the second level Boolean matrix B(𝑖)

𝐿 , for 𝑖 = 1, 2, · · · , 𝐿𝑖

2: Compute S =
∑𝐿𝑖

𝑖=1

(
K𝑖

0,ΓΓ − K𝑖

0,Γ𝐼

(
K𝑖

0,𝐼 𝐼

)−1
K𝑖

0,𝐼Γ

)
3: Compute S−1

4: for 𝑖 = 0, 1, 2, · · · , parallelly do
5: Choose 𝑗 and 𝑘 satisfy (𝑖, 𝑗 , 𝑘) ∈ 𝔍
6: Compute R(𝐿𝑖+1,𝐿𝑖+1)

𝑗 𝑘 by Equation (47)
7: for 𝑠 = 1, 2, 3, · · · , 𝐿𝑠 do
8: Compute R(𝐿𝑖+1,𝑠)

𝑗 𝑘 by Equation (45)
9: Compute R(𝑠,𝐿𝑖+1)

𝑗 𝑘 by Equation (48)
10: for 𝑡 = 0, 1, 2, 3, · · · , 𝐿𝑠 do
11: Compute R(𝑡,𝑠)

𝑗 𝑘 by Equation (46)

12: Approximate R̃(𝑡,𝑠)
𝑗 𝑘 = ℓ

(
R(𝑡,𝑠)

𝑗 𝑘

)
by Equation (17)

13: end for
14: Approximate R̃(𝐿𝑖+1,𝑠)

𝑗 𝑘 = ℓ
(
R(𝐿𝑖+1,𝑠)

𝑗 𝑘

)
by Equation (17)

15: Approximate R̃(𝑠,𝐿𝑖+1)
𝑗 𝑘 = ℓ

(
R(𝑠,𝐿𝑖+1)

𝑗 𝑘

)
by Equation (17)

16: Approximate R̃(𝐿𝑖+1,𝐿𝑖+1)
𝑗 𝑘 = ℓ

(
R(𝐿𝑖+1,𝐿𝑖+1)

𝑗 𝑘

)
by Equation (17)

17: Assembly R̃′
𝑗 𝑘 by Equation (49)

18: Approximate R̃𝑖 = ℓ(R 𝑗 𝑘 ) by Equation (17)
19: end for
20: end for
21: Assembly R̃ according to R̃ 𝑗 𝑘 by

𝑚∑
𝑖=0

𝑐𝑖𝑟𝑞R𝑖

22: Output R̃
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Algorithm 5 Approximate sparse approach for the e − SC system
1: Input uΓ = 0; 𝜀 = 1
2: Parallelly compute r = g − KuΓ by Algorism 3
3: Parallel Preconditioned Residual: r = Θ

(
I,K0

)
R̃z

4: Compute: p = z
5: Compute: 𝛿 = (r, z)
6: While 𝜀 ≤ 10−8,do :
7: Parallelly compute q = Kp by Algorism 3
8: Compute: 𝛾 = (q,p)
9: Compute: 𝛼 = 𝛿/𝛾
10: Update:uΓ = uΓ + 𝛼p
11: Update: r = r − 𝛼q
12: Parallel Preconditioned Residual: r = Θ

(
I,K0

)
R̃z

13: Compute: 𝛽 = (r, z)/𝛿
14: Compute: 𝛿 = 𝛽𝛿

15: Update: p = 𝑧 + 𝛽p
16: 𝜀 = (r, r)/(g,g)
17: End while
18: Output : uΓ
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