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Abstract
Polymer/ceramic composite electrolytes have recently received a lot of attention because they combine the 
advantages of high ionic conductivity of inorganic ceramics and the inherent elasticity of polymer constituents. 
Nonetheless, the interaction between the ceramic particles and the polar functional groups on the polymer 
molecules would affect the ion transport rate, which is an important factor to consider when developing a 
polymer/ceramic composite electrolyte. We present a composite elastic electrolyte based on polyurethane (PU) 
with high ionic conductivity of 10-3 S/cm and excellent mechanical properties (stress-strain) of 4.5 MPa by 
incorporating ceramic particles into the ion conduction chains on PU. This method improves the interaction 
between PU/LGPS and Li+ ions and the conduction of Li+ ions at the bi-phase interface, yielding a high Li+ transfer 
number of 0.56. After 2,000 cycles, the capacity retention rates of the batteries assembled by 
[LFP|(PU-LGPS)/Li+|Li] are 95.7% (0.2 C) and 87.8% (5 C), respectively. The Li symmetric battery test 
demonstrates the PU/LGPS composite electrolyte's high stability over 50 days. The current study presents a novel 
approach to developing high-performance ceramic/polymer composite electrolytes.

Keywords: Polymer/ceramic composite electrolytes, ions transfer number

https://creativecommons.org/licenses/by/4.0/
https://energymaterj.com/
https://dx.doi.org/10.20517/energymater.2022.83
http://crossmark.crossref.org/dialog/?doi=10.20517/energymater.2022.83&domain=pdf


Page 2 of Cui et al. Energy Mater 2023;3:300017 https://dx.doi.org/10.20517/energymater.2022.8312

INTRODUCTION
All-solid-state Li-ion batteries (ASSLBs) have been regarded as an alternative to traditional liquid Li-ion 
batteries (LLIBs) for their higher energy density, better safety, and flame retardancy[1]. The core component 
of ASSLBs is the solid-state electrolyte (SSE), which is linked to the overall performance of the battery[2]. 
Among all types of SSEs, Li10GeP2S12(LGPS)[3] exhibits a high ionic conductivity (10-2 S/cm), which is 
comparable to liquid electrolytes. However, the main drawbacks of inorganic solid electrolytes are their 
poor flexibility and high interfacial impedance between electrolyte and electrodes[4,5]. It has been discovered 
that the presence of high interfacial impedance reduces the capacity retention and operating efficiency at 
high C-rates and long cycles, lowering the battery's overall performance[6,7].

Additionally, solid polymer electrolyte (SPE) has many advantages, such as flexibility and good film 
formation ability[8], which can compensate for the disadvantage of inorganic solid electrolytes. Therefore, 
preparing polymer/ceramic composite electrolytes is an effective strategy for overcoming the drawbacks of 
inorganic ceramic electrolytes. At present, physical mixing with different polymer/inorganic ratios is a 
simple and easy method to screen the optimal composite electrolyte systems[9-11]. Therefore, researchers paid 
little attention to the impact of the interaction of polymer and inorganic ceramic molecules on Li+ ions. In 
addition, as for SPE, the ionic conductivity, as well as the ionic transfer number, are also key factors for 
choosing the polymer substrate [most polymers have low ionic conductivity(10-5~10-6 S/cm)[9] and the ionic 
transfer number(< 0.5)[12].

In our previous work[2], we prepared a PU-based SPE with excellent mechanical properties and high ionic 
conductivity at room temperature (2 × 10-3 S/cm). Since the PU-based SPE has a unique soft and hard 
segment structure, Li+ ions primarily transport in polyether polyols (PPG), so the soft segment in the PU-
based SPE has the ability to dissolve lithium salts[13-15] and disperse ceramic particles[16].

In this study, a composite electrolyte [(PU-LGPS)/Li+, PLL] was created by modifying the soft segment 
functional groups in a PU-based electrolyte and incorporating LGPS particles (1~5 µm) into the polymer 
systems. In this study, Fourier transform infrared (FTIR) spectroscopy, Raman spectra, and X-ray 
photoelectron spectroscopy (XPS) were used to characterize the structure and properties of PLL. 
Meanwhile, we used the electrochemical impedance spectroscopy (EIS) test and assembled the battery to 
evaluate the specific charge/discharge capacity and electric cycle stability at room temperature. 
Furthermore, using first-principles simulation, we investigated the mechanism of the composite system that 
improves Li+ transport.

RESULTS AND DISCUSSION
Figure 1 depicts the PLL preparation process. Supplementary Material Section 1 shows all materials and 
preparation details. PPG (20 g, 0.03 mol) first reacts with LiOH·H2O (5 g, 0.1 mol) to change the functional 
groups from “-OH” to “-OLi”. The mixture was then supplemented with LiTFSI (1 g, 3 mmol) and Al2O3 
(0.05 g, 0.4 mmol) and stirred for 2 h until fully dissolved. Following that, LGPS (5 g, 8 mmol) particles were 
added, and the solution was evenly stirred to form a homogeneous solution. Finally, the 7.5 mmol MDI was 
added to form PLL. We can disperse the LGPS primarily in soft segment chains using this method, and the 
interaction of Al2O3 with functional groups has been described in our previous work[2].

Infrared and Raman spectra were used to characterize the PU and the effects of different LGPS addition 
ratios on functional groups and chemical bonds. Infrared spectra characterized the chemical component 
and internal bonding behavior of PU, and the change in peak position after the addition of LGPS (a detailed 
analysis of the analyzed infrared spectra) is shown in Supplementary Material Figure 1A[17-19]. 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202304/5520-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202304/5520-SupplementaryMaterials.pdf
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Figure 1. The preparation process of PLL [(PU-LGPS)/Li+]

Supplementary  Figure 1B depicts the Raman spectra of PU and PU + LGPS. The Raman characteristic 
peaks at 275 cm-1, 409 cm-1, and 556 cm-1[20-21] can be ascribed to the deformation vibration peak, stretching 
vibration peak, and asymmetric vibration absorption peak of PS4

3- and P2S7
4-, respectively. The stretching 

vibration of LiS4
3- causes the absorption peak at 341 cm-1. Furthermore, the stretching vibration peak of the 

“P-S-P” bond can cause the absorption peak at 512 cm-1[22]. The obtained results show that the composite 
material PLL has good chemical compatibility [Figure 2].

We used XPS characterization to further investigate the bonding behavior of the composite electrolyte, and 
the results are shown in Table 1.

Through the XPS analysis of the PLL, it can be known that the PLL’s internal state is stable.

In addition, the physical properties of PLL are also critical, which are associated with electrolyte thermal 
stability and mechanical properties. Furthermore, the surface morphology of PLL is shown to efficiently 
identify element distribution in PLL and PLL affinity for various fillers.

First, we examined the XRD patterns of PU and LGPS, respectively. The sample LGPS peak location 
[Supplementary  Figure 2] is consistent with the simulation XRD patterns[30]. The figure shows that the 
prepared PU material has a broad peak at 2θ near 19.5° and 46.0°, indicating that the prepared PU material 
has a certain degree of crystallinity[31].

Figure 3A presents that the glass transition temperature (Tg) value was approximately -51 °C, indicating that 
the electrolyte has good flexibility at ambient temperatures. Figure 3B displays the stress-strain curve for 
PLL. It demonstrates that PLL has a stress strength of 4.5 MPa and an elongation-at-break level of 220.1%. 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202304/5520-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202304/5520-SupplementaryMaterials.pdf
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Table 1. Details of XPS analysis for PLL

Elements Main morphology Binding energy (eV) Peak position Proportion(%)

1-S 2p 161.65 2p3/2-S-

162.95 2p1/2

25.83

168.66 2p3/2O=S=O[23]

169.79 2p1/2

1-P 2p P[24] 133.12 2p3/2

134.22 2p1/2

1-Li 1s Li-S[25] 
Li-O[26]

55.69

1-Ge 3d 25.78 Ge 3d5/2Ge[27]

26.55 Ge 3d3/2

70.48

GeO 29.87 16.17

GeO2 33.86 13.34

1-C1s C-C/C-H 284.8 41.37

C-O[28] 286.34 55.79

O-C=O[29] 289.01 2.83

Figure 2. XPS spectra of electrolyte PLL. (A) full spectrum diagram; (B) C1S, illustrations: O1S; (C) Li1S; (D) S2P; (E) P2P; (F) Ge3d.

These characterizations show that PLL has good stress strength characteristics, with higher stress-strain 
properties compared to other reported SPEs[32]. Supplementary  Figure 3 clearly shows an SEM image for 
surface morphology and element mapping for electrolyte PLL. Besides, the electrolyte surface is smooth and 
evenly distributed, and the elements found in reactant LGPS are present in this electrolyte system. Al2O3 
nanoparticles and LiTFSI within the polymer system are evenly distributed in this system, indicating that 
these added fillers are compatible with the system[2].

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202304/5520-SupplementaryMaterials.pdf
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Figure 3. (A) DSC curve of the PLL; (B) the stress-strain curve of the as-prepared PLL.

Ionic conductivity is an important electrolyte parameter. Table 2 details the ionic conductivity changes 
caused by various (LGPS/PU = x)/Li+ ratios.

Although the ionic conductivity of PLL continues to rise with the increase of LGPS, for electrolytes, in 
addition to the ionic conductivity, the stress-strain performance is considered a vital index to evaluate the Li 
dendrite inhibition ability of the electrolyte.

Figure 4A shows the Arrhenius plots for the ionic conductivities of different proportions of 
(LGPS/PUx)/Li+. Through the slope of these curves, the relationship between the ionic conductivity and 
temperature of several groups of samples was established. The linear relation between temperature and 
conductivity demonstrates that PLL electrolytes obey the ion transport mechanism originating from the 
polymer chain vibration mechanism. Figure 4B explains the metric for screening the optimal electrolyte 
systems. Three samples with proportions of 30%, 40%, and 50% were selected. Since the conductivity of the 
sample with a 60% proportion is not much higher than that of the sample with a 50% proportion, and its 
mechanical property is also lower than that of the three samples (30%, 40%, and 50%), we did not consider 
the sample with 60%. The activation energies of the three different proportions of (LGPS/PU)/Li+ were 
149.3 kJ/mol (30%), 64.6 kJ/mol (40%), and 34.7 kJ/mol (50%), respectively [Supplementary  Figure 4]. The 
activation energy calculation details are shown in Supplementary Material Section 1. Figure 4B 
demonstrates the relationship between ionic conductivity and stress. The sample with an LGPS ratio of 40% 
has superior mechanical properties than that of the sample with 50%. As a result of extensive analysis, the 
optimal proportion of PLL is 40%.

Figure 4C displays the AC impedance of a PLL at different temperatures. As the temperature rises from 
25 °C to 80 °C, the conductivity rises from 3.1 × 10-3 to 6.1 × 10-3 S/cm. The ionic conductivity can be 
identified through polymer chain movement based on Li+ coordination and interaction based on the 
elevation of ionic conductivity as temperature increases[33]. As shown in Figure 4D, the linearity of 
Arrhenius plots for ionic conductivity as a function of temperature suggests that polymer electrolyte 
conductivity follows Arrhenius law[34].

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202304/5520-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202304/5520-SupplementaryMaterials.pdf
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Table 2. Ionic conductivity of PLL with LGPS adding an amount

Samples (LGPS/PUX)/Li+, X = 10%~80% R (Ω) Conductivity (S cm-1)

1 10% 21.2 1.2 × 10-3

2 20% 10.6 2.4 × 10-3

3 30% 9.2 2.9 × 10-3

4 40% 8.3 3.1 × 10-3

5 50% 6.5 3.9 × 10-3

6 60% 5.7 4.5 × 10-3

7 70% 5.2 4.9 × 10-3

8 80% 4.7 5.4 × 10-3

Sample thickness: 200 um; electrolyte area: S = πr2 (r = 0.05 cm): π/4.

Figure 4. (A) Arrhenius plots for the ionic conductivities of different proportions of (LGPS/PUx)/Li+; (B) Relationship between ionic 
conductivity and stress, PLL at different temperatures; (C) AC impedance; and (D) Arrhenius plots for the ionic conductivities (40%).

This study determined the ionic transfer number of the composite to further demonstrate Li+ transfer 
kinetics. Figure 5 clearly shows the potentiostatic polarization curve and the variation of the impedance 
spectra before and after the polarization of the PLL composite Figure 5A. Furthermore, the value of TLi is 
0.56, and the ionic transference number calculation details are shown in Supplementary Material Section 2.

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202304/5520-SupplementaryMaterials.pdf
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Figure 5. (A) Potentiostatic polarization curve of a symmetric lithium battery (Li|PLL|Li), the illustrations are the impedance comparison 
of a symmetric lithium battery(Li|PLL|Li) before and after polarization; (B) First-principles theory simulation analyzing the charge 
distribution in the LGPS crystal.

To investigate the charge distribution in the LGPS crystal, we used first-principles theory simulation[35-37]. 
Figure 5B depicts the charge being primarily concentrated around “S” atoms, demonstrating the ease with 
which electron exchange can occur. Based on previous research, we demonstrated that “O” atoms can act as 
Li+ trapping sites due to dense negative charge distributions surrounding “O” atoms. These findings suggest 
that Li+ deintercalated from the LGPS lattice can be absorbed by “O” atoms on PU. Furthermore, the 
functional group modification process can reduce the coupling impact of “O” atoms on Li+, resulting in a 
moderate capture behavior. The absorption energy of the “-OLi” group towards Li+ is shown to be 0.55 eV 
in comparison to that of the “-OH” group (1.01 eV)[2], indicating that the “-OLi” group can both capture 
and easily give out the Li+ from LGPS crystal. Therefore, the “-OLi” group can function as a Li+ transfer 
medium, and the “S” sites in the LGPS crystal, in conjunction with the “O” site on the PU molecule, can 
function as an interfacial ion transfer channel, contributing to the high ionic conductivity.

The LFP|PLL|Li battery was built to investigate the use of an electrolyte for battery device performance. 
Figure 6A depicts specific LFP|PLL|Li battery capacities at different cycle C-rates. At 0.2 C, the capacity was 
167.7 mAh/g, which was very close to the theoretical specific capacity of LFP cathode materials 
(170 mAh/g). It can show that the PLL electrolyte is effective at transporting ions and contacting solid-state 
LFP|PLL|Li battery electrodes. Furthermore, our assembled battery has high stability in the charging/
discharging platform under varying C-rates with no polarization, indicating that our prepared electrolyte 
significantly improves battery stability while improving electrolyte-electrode contact, reducing the 
phenomenon of battery polarization. Figure 6B depicts the battery charging/discharging process at various 
C-rates. When the cycling rate is changed from 0.2 C to 5 C and then back to 0.2 C, the battery capacity 
reaches 99%, indicating that the internal rate of the battery is stable. Figure 6C depicts a schematic plot of 
the battery during the bulb-lighting process.

Figure 6D depicts the long-cycle performance of the batteries based on varying C-rates. After 2,000 cycles, 
the battery retention rate can still be 95.7% at 0.2 C, 91% at 3 C, and 87.8% at 5C, indicating the assembled 
batteries' excellent performance stability.
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Figure 6. (A) LFP|PLL|Li, the first charge/discharge curves for 0.2 C, 1 C, 2 C, 3 C,4 C, and 5 C at ambient temperatures; (B) Capacity 
with various C-rates; (C) Battery luminescence picture (LFP|PLL|graphite); (D) Long-cycling properties offered based on varying 
C-rates; (E) Voltage-time curves of the symmetric lithium battery (Li|PLL|Li) at the current density of 0.5 mA/cm2 and 5 mA/cm2, as 
well as 10 mA/cm2.

The voltage profiles of the symmetric Li|PLL|Li cells at 0.5 mA/cm2, 5 mA/cm2, and 10 mA/cm2 are shown 
in Figure 6E. The cells maintained stable voltage profiles for 1,250 h at 0.5 mA/cm2. When the current is 
increased tenfold (5 mA/cm2), the voltage fluctuation increases from 0.01 V to 0.03 V. Despite the increased 
fluctuation range, the circulation remained stable within 1,000 h, indicating no obvious polarization 
phenomenon appeared. With the current density increased to 10 mA/cm2, more than 700 h of stable 
circulation and hysteresis can be obtained, indicating the good stability of Li|PLL|Li batteries. Through the 
investigation of the electrolyte PLL and the overall performance analysis of the assembled batteries, which 
are superior to previous reports[38-40] [Table 3]. We assembled an NCM|PLL|Li battery to verify that PLL has 
a universal adaptive electrode. The results [Supplementary  Figure 5A] demonstrate that the PLL we 
developed can be adapted to the NCM electrode. Furthermore, 40 cycles were performed at 5 C to compare 
the two groups of batteries (NCM|PLL|Li battery and LFP|PLL|Li battery), and both groups of batteries had 
stable  cycles ,  demonstrat ing the excel lent  performance of  the  PLL prepared by us  
[Supplementary  Figure 5B].

As shown in Table 4, when the current density of the PLL is increased from 0.5 mA/cm2 to 10 mA/cm2, the 
voltage increases by 0.04 V. However, in some other relevant works[41,42,44,45], the current density was still less 
than 0.5 mA/cm2. Despite the fact that Deng’s work[43] increased the current density to 4.5 mA/cm2, the 
voltage fluctuation value was 0.5 V. In contrast, there is no obvious polarization phenomenon in the PLL 
electrolyte. This result shows that the PLL electrolyte has a high intrinsic ionic conductivity. PU is an elastic 
electrolyte that can form a good contact interface with the electrode, promoting interfacial ion transport.

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202304/5520-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202304/5520-SupplementaryMaterials.pdf


Page 9 of Cui et al. Energy Mater 2023;3:300017 https://dx.doi.org/10.20517/energymater.2022.83 12

Table 3. Comparison of the ionic conductivity and ions transfer number of the electrolytes, and cycle performance of assembled 
solid-state batteries regarding their capacity and rate and retention

Electrolyte Ionic conductivity 
(S/cm)

Ions transfer number 
(tLi

+, 25 °C)
Batteries performances 
LFP as cathode

This work: PLL, 
[(PU-LGPS)/Li+]

3.1 × 10-3 (25 °C) 
6.1 × 10-3 (80 °C)

0.56 SC[a] : 167.7 mAh/g at 0.2 C 
CR[b]: at 2000 cycles 
95.7% at 0.2 C; 
91.0% at 3 C; 
87.8% at 5 C

PEO/Li+-LGPS[38] 1.18 × 10-5 (25 °C) 
1.21 × 10-3 (80 °C)

0.26 SC: 158 mAh/g at 0.1 C 
148 mAh/g at 0.2 C 
138 mAh/g at 0.5 C 
99 mAh/g at 1 C 
CR: at 50 cycles, 92.5% at 0.1 C, (60 °C)

PEO/Li+-PEG-LGPS[39] 9.83 × 10-4 (25 °C) 
1.72 × 10-3 (60 °C)

0.68 SC: 168 mAh/g at 0.05 C 
166 mAh/g at 0.1 C 
158 mAh/g at 0.5 C 
CR: at 150 cycles , 91% at 0.5 C

PEO/Li+-1%LGPS-10%SN[40] 9.1 × 10-5 (25 °C) 0.2 SC: 160.6 mAh/g at 0.1 C 
CR: at 60 cycles, 94.7% at 0.1 C 
at 100 cycles, 87.65% at 0.5 

[a]: SC, specific capacity; [b]: CR, capacity retention.

Table 4. Comparison of voltage variations of different polymer solid electrolytes at different current densities

Electrolyte Ionic conductivity Current (mA/cm2)/polarization (V)

This work: PLL 3.1 × 10-3 (25 °C) 
6.1 × 10-3 (80 °C)

0.5/ -0.01~0.01 
5/-0.03~0.03 
10/-0.05~0.05

SLICPs[41] 1 × 10-4 (80 °C) 0.1/-0.01~0.01

PCPU[42] 1.12 × 10-4 (80 °C) 0.2/-0.2~0.2

CPE-PHCE[43] - 0.3/-0.15~0.15 
4.5/-0.6~0.6

PVAE[44] - 0.3/-0.25~0.25

PEO/CuF2
[45] 2 × 10-4 (30 °C) 0.1/-0.075~0.075

CONCLUSIONS
In conclusion, a new solid composite electrolyte PLL [(PU-LGPS)/Li+] was developed. LGPS particles are 
dispersed in soft segment structure (PPG) on PU, and functional groups “-OH” and ionic bonds “-OLi” 
interactions on PPG and LGPS are used to promote Li+ transport. The PLL has a high Li+ transfer number of 
0.56 as well as increased ionic conductivity [3.1 × 10-3 S/cm (25 °C), 6.1 × 10-3 S/cm (80 °C). Moreover, we 
used the first-principles theory to confirm the enhancement mechanism of ion transport in the dual system. 
The batteries that we have assembled perform admirably. The specific discharge capacity at 0.2 C was nearly 
167.7 mAh/g, which approaches the theoretical specific capacity of LFP materials (170 mAh/g), resulting in 
excellent capacity retention (95.7%) after 2,000 cycles at 0.2 C, as well as retention of 91% and 87.8% after 
2,000 cycles at 3 C and 5 C, respectively. This research provides a solid theoretical foundation and 
experimental demonstration for preparing composite polymer electrolytes, which improve battery 
efficiency.
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