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Abstract
Competing endogenous RNAs (ceRNAs) are transcripts that possess highly similar microRNA response elements 
(MREs). microRNAs (miRNAs) are short, endogenous, single-stranded non-coding RNAs (ncRNAs) that can 
repress gene expression by binding to MREs on the 3’ untranslated regions (UTRs) of the target mRNA transcripts 
to suppress gene expression by promoting mRNA degradation and/or inhibiting protein translation. mRNA 
transcripts, circular RNAs (circRNAs), long non-coding RNAs (lncRNAs), and transcribed pseudogenes could share 
similar MREs, and they can compete for the same pool of miRNAs. These ceRNAs may affect the level of one 
another by competing for their shared miRNAs. This interplay between different RNAs constitutes a ceRNA 
network, which regulates many important biological processes. Cancer drug resistance is a major factor leading to 
treatment failure in patients receiving chemotherapy. It can be acquired through genetic, epigenetic, and various 
tumor microenvironment mechanisms. The involvement of ceRNA crosstalk and its disruption in chemotherapy 
resistance is attracting attention in the cancer research community. This review presents an updated summary of 
the latest research on ceRNA dysregulation causing drug resistance across different cancer types and 
chemotherapeutic drug classes. Interestingly, accumulating evidence suggests that ceRNAs may be used as 
prognostic biomarkers to predict clinical response to cancer chemotherapy. Nevertheless, detailed experimental 
investigations of the putative ceRNA networks generated by computational algorithms are needed to support their 
translation for therapeutic and prognostic applications.
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INTRODUCTION
microRNAs (miRNAs) are short (~22 nucleotides in length), endogenous, single-stranded non-coding 
RNAs (ncRNAs) that repress gene expression at the post-transcriptional level in eukaryotic organisms. They 
bind to miRNA response elements (MREs) on the 3’ untranslated regions (UTRs) of the target mRNA 
transcripts with imperfect complementarity, subsequently suppressing gene expression by either promoting 
mRNA degradation or inhibiting protein translation[1]. Recent research demonstrated that mRNA 
transcripts, circular RNAs (circRNAs), long non-coding RNAs (lncRNAs), and transcribed pseudogenes 
could share highly similar MREs, and they interact with the same set of miRNAs to regulate miRNA 
activity. These competing endogenous RNAs (ceRNAs) work as decoys for a particular miRNA, thereby 
abrogating the interaction of the miRNA to its target mRNA[2-5]. The expression of ceRNA usually exhibits a 
negative correlation with the miRNAs that carry the relevant recognition sequences[6]. On the other hand, 
the expression levels of a pair of ceRNAs are usually positively correlated[7]. Figure 1 depicts a schematic 
diagram illustrating the ceRNA networks of mRNA/miRNA/ncRNA to induce cancer drug resistance. 
Numerous in silico algorithms have been established to predict putative pairs of ceRNA in accordance with 
their shared miRNAs and cellular expression[8].

The ceRNA regulatory network involving different RNA molecules can have significant implications for 
various biological processes and disease progression. This area of active research is providing insights into 
the complexity of gene regulation. While most ceRNA interactions reported in the literature reflect only 
single binding partners (i.e., one miRNA and a pair of ceRNA transcripts), emerging evidence suggests that 
ceRNA crosstalk occurs in an interconnected manner as a network. Besides direct interactions via shared 
miRNAs, indirect interactions may also mediate a significant effect on ceRNA modulation. Further 
investigation of the ceRNA crosstalk should also involve analysis of potential miRNAs and ceRNA 
networks. Targeting nonessential nodes within the regulatory network will not produce a useful therapeutic 
response because cancer cells could overcome the damage through alternative survival pathways. Instead, 
the critical juncture of the ceRNA network may represent potential therapeutic targets for cancer therapy.

Cancer drug resistance is a major unresolved obstacle to successful cancer chemotherapy. It is a 
multifactorial phenomenon that is mediated by increased drug efflux, reduced susceptibility to apoptosis, 
accelerated DNA damage repair, aberrant drug biotransformation, mutations in cellular molecular targets, 
and reduced anticancer immunity[9]. Accumulating evidence suggests that dysregulated ceRNA regulation is 
involved in the drug resistance mechanisms affecting numerous anticancer drugs.

In this review, we present the latest investigation about how ceRNA dysregulation triggers drug resistance to 
cancer therapy across different cancer types and chemotherapeutic drug classes. Representative preclinical 
studies and clinical findings are highlighted. Emerging prognostic biomarkers based on ceRNAs to predict 
clinical response to cancer chemotherapy will also be discussed.

SPECIFIC CERNA NETWORK MEDIATING DIFFERENT CHEMORESISTANCE 
MECHANISMS
By sequestering miRNAs and preventing them from interacting with their target mRNAs, ceRNAs are 
known to indirectly modulate the expression of genes regulating drug efflux, drug biotransformation, 
apoptosis, DNA repair, and other mechanisms associated with chemoresistance. Liu et al. reported the first 
comprehensive analysis of ceRNAs in drug resistance across different cancer types and anticancer drug 
classes[10]. In their study, using information about the shared miRNAs and correlation of lncRNA and 
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Figure 1. An overview of the dysregulation of ceRNA regulatory network to induce different drug resistance mechanisms (including 
efflux transporter overexpression, reduced apoptosis, downregulated tumor suppressor, increased angiogenesis, induced autophagy, 
increased EMT, increased cuproptosis, reduced DNA damage, and immune escape). Representative downstream effectors leading to 
the different resistance mechanisms are listed in parentheses. RNA molecules could communicate with one another through miRNA 
and MRE. The expression of one RNA could influence the level and activity of another RNA by sequestering their common miRNA(s). 
ceRNA: Completing endogenous RNA; EMT: epithelial-mesenchymal transition; miRNA: microRNA; MRE: microRNA response element; 
circRNA: circular RNA; lncRNA: long non-coding RNA.

mRNA expressions retrieved from public databases (lncRNA expression data from TANRIC; mRNA 
expression signature of cancer cell lines from CCLE; regulatory relationship between miRNA-lncRNA and 
miRNA-gene according to DIANA-LncBase and miRTarBase), a general ceRNA network was first 
constructed from 183 lncRNAs and 379 mRNAs. Distinct ceRNA modules (encompassing 138 drugs and 19 
cancer types) related to cancer drug resistance were identified in 758 drug-cancer conditions, where there 
are significantly more differentially-expressed lncRNA and mRNA between drug-resistant and -sensitive 
cancer cell lines[10]. Importantly, the functional analysis indicated that resistance-related biological processes 
(including accelerated cell proliferation, enhanced DNA damage repair, and reduced apoptosis) were 
enriched in these drug resistance-related ceRNA modules. It is noteworthy that some anticancer drugs 
(such as the multitargeted kinase inhibitors dasatinib and sunitinib) share the same modules[10]. These drugs 
may exhibit similar drug resistance mechanism(s). Moreover, a Jaccard index (a measure of the similarity of 
different ceRNA modules) of all clinically approved drugs has been computed to examine the possibility of 
multidrug resistance (MDR). Anticancer drugs with a high Jaccard index were found to possess similar 
structural backbones[10]. It is logical because drugs with a high chemical similarity will likely display a similar 
spectrum of therapeutic efficacy and are more likely to be affected by MDR. The information may help 
clinicians identify a better treatment choice for drug-refractory tumors.

ceRNA dysregulation induces resistance to traditional cancer chemotherapy
Upregulation of MDR efflux transporters
Overexpression of the MDR efflux transporters in cancer cells is a major mechanism causing 
chemoresistance. To et al. published a comprehensive review recently about the regulation of MDR 
transporters by ncRNAs, which provided the latest update about the significant impact of ncRNAs on 
chemoresistance in cancer therapy and novel approaches for its circumvention[11]. ncRNAs (including 
miRNA, lncRNA, and circRNA) are important regulators of cancer cell proliferation, apoptosis, and 
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metabolism[12,13]. lncRNAs refer to non-coding transcripts longer than 200 nucleotides in length, which are 
not translated into proteins[14,15]. They are involved in the regulation of chromatin structure and 
transcription, splicing, various forms of RNA processing, editing, localization and stability, and protein 
translation and localization through interactions with RNA, DNA, and protein[16-18]. Numerous lncRNAs are 
also known to bind with miRNAs, thereby regulating gene expression of important biological processes[19,20]. 
On the other hand, circRNA is a single-stranded ncRNA subfamily in which its 5’and 3’ ends join to form a 
covalently closed continuous loop[21]. In a typical circRNA molecule, the 3’ or 5’ ends normally present in an 
RNA are joined together to form a closed loop, which makes them stable against RNA exonuclease-
mediated degradation[22]. Apart from governing transcription, splicing, translation, and post-translational 
modifications, circRNAs also regulate gene expression by sequestering miRNAs[23-25]. To this end, numerous 
lncRNAs and circRNAs are known to function as molecular decoys to sponge miRNAs and wipe out their 
interaction with the target mRNAs, subsequently forming ceRNA networks[26]. Table 1 summarizes the 
representative lncRNA/circRNA-miRNA-ABC efflux transporter regulating ceRNA machineries that have 
been shown to promote MDR to various chemotherapeutic drugs in different cancer types. A few 
representative examples are highlighted below.

In chronic myeloid leukemia (CML) K562 cells, the upregulation of lncRNA UCA1 was shown to increase 
the MDR transporter ABCB1 expression and induce resistance to the ABCB1 substrate imatinib[27]. 
Mechanistically, lncUCA1 sequestered miR-16 and revoked the miRNA-mediated repression on ABCB1 
mRNA. Most recently, this lncUCA1-miR-16-5p-ABCB1 regulatory network was also confirmed to regulate 
ABCB1 expression in human placental BeWo cells by RNA pull-down assay[28].

In the doxorubicin-resistant breast cancer cell line (MCF-7/ADR), both mRNA and protein expressions of 
the lncRNA linc00518 and the MDR efflux transporter ABCC1 were found to be significantly upregulated 
relative to the parental counterpart (MCF-7)[29]. Consistent with typical ceRNA pairs, genetic silencing of 
linc00518 was found to inhibit the ABCC1 expression through upregulation of miR-199a. To this end, the 
plasma level of circulating miR-199a-5p exhibited a positive correlation with the disease progression of 
breast cancer patients[30], thus supporting the potential use of linc00518 and miR-199a as novel prognostic 
biomarkers for drug-refractory breast cancer.

In a glioblastoma tumor xenograft mouse model, the high expression of LINC00479 was found to correlate 
well with the rapid growth of the tumor[31]. Detailed mechanistic investigation revealed that LINC00479 
sponged miR-134 to increase c-Myc expression, thereby inducing the MDR transporter ABCC1 and 
triggering temozolomide resistance[31]. This study established a co-expression relationship between MYC 
and ABCC1, and that overexpression of MYC could increase ABCC1 levels in glioma cells. Moreover, using 
rescue experiments, the regulation of ABCC1 by LINC00479 was shown to be mediated by miR-134 
whereas the regulation of ABCC1 by miR-134 was mediated by MYC, thus verifying the LINC00479/
miR-134/MYC/ABCC1 ceRNA network. In gemcitabine-resistant bladder cancer cells, the antisense 
lncRNA (FOXD1-ASP1) was found to express at a very high level, which sequestered miR-143 to upregulate 
the MDR transporter ABCC3 expression[32].

It has been reported that the expression of a few chemoresistance-causing lncRNAs was induced by specific 
transcription/epigenetic factors at the transcription level (i.e., via the lncRNA promoters). In cisplatin-
resistant retinoblastoma cells, the lncRNA antisense non-coding RNA in the INK4 locus (ANRIL) was 
upregulated due to increased binding of the hypoxia-inducible factor (HIF-1α) to the lncRNA promoter[33]. 
The elevated expression of ANRIL subsequently upregulates the MDR efflux transporter ABCG2 by 
sequestering miR-328[33].
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Table 1. Representative ceRNA networks promoting overexpression of multidrug resistance ABC efflux transporters in 
chemoresistant cancer cells

Efflux transporter Dysregulated ncRNA Anticancer drug Cancer type Ref.

DANCR (lncRNA; upregulated) Docetaxel PCa [129]

FENDRR (lncRNA; downregulated) Doxorubicin CML [130]

FTH1P3 (lncRNA; upregulated) Paclitaxel BC [131]

GAS5 (lncRNA; downregulated) Doxorubicin BC [34]

HOTAIR (lncRNA; upregulated) - HCC [132]

LINC00355 (lncRNA; upregulated) Cisplatin Bladder cancer [133]

LUCAT1 (lncRNA; upregulated) Mitoxantrone OS [134]

ROR (lncRNA; upregulated) Cisplatin OS [135]

SNHG16 (lncRNA; upregulated) - CRC [136]

UCA1 (lnRNA; upregulated) Imatinib Leukemia [27]

ABCB1

circ_0004674 (circRNA; upregulated) Doxorubicin OS [137]

CACS15 (lncRNA; upregulated) Oxaliplatin CRC [138]

circ_0076305 (circRNA; upregulated) Cisplatin NSCLC [139]

KCNQ10T1 (lncRNA; upregulated) Oxaliplatin HCC [140] 

linc00518 (lncRNA; upregulated) Doxorubicin BC [29]

linc00707 (lncRNA; upregulated) Cisplatin NSCLC [141]

ABCC1

NR2F1-AS1 (lncRNA; upregulated) Oxaliplatin HCC [142]

ABCC2 circABCC2 (circRNA; upregulated) - HCC [143]

ANRIL (lncRNA; upregulated) Cisplatin Rb [33]

circSETD3 (circRNA; upregulated) Gefitinib NSCLC [144]

ABCG2

HOTAIR (lncRNA; upregulated) Oxaliplatin GC [145]

ceRNA: Competing endogenous RNA; ncRNA: non-coding RNA; lncRNA: long noncoding RNA; PCa: prostate cancer; CML: chronic myeloid 
leukemia; BC: breast cancer; HCC: hepatocellular carcinoma; OS: osteosarcoma; CRC: Colorectal cancer; circRNA: circular RNA; NSCLC: non-
small cell lung cancer; Rb: retinoblastoma; GC: gastric cancer.

The ceRNA network involving lncRNA and miRNA was also reported to drive the MDR phenotype in 
cancer patient tumor specimens. The drug resistance mechanism has been studied recently in breast cancer 
tissues from a cohort of 10 responders and 16 non-responders to a neoadjuvant chemotherapeutic regimen 
(epirubicin + cyclophosphamide combination followed by docetaxel monotherapy)[34]. Compared to the 
tumor tissues from the responders, those from the non-responders exhibited a remarkably lower expression 
of the lncRNA growth arrest-specific 5 (GAS5) (reduction by ~60%) but a significantly higher expression of 
the MDR efflux transporter ABCB1 (by > 2-fold)[34]. In a cell culture study, a doxorubicin-resistant breast 
cancer cell model (MCF-7/ADR) was also found to express significantly higher levels of ABCB1 but lower 
levels of GAS5 than the drug-sensitive MCF-7 parental cells[34]. Mechanistic investigation revealed that 
lncRNA GAS5 upregulated Dickkopf-2 (DKK2), thereby sequestering miR-221-3p and inhibiting the Wnt/
β-catenin pathway[34]. To this end, β-catenin and transcription factor 4 (TCF4) were known to promote 
ABCB1 mRNA transcription by interacting with the ABCB1 promoter[35]. Thus, reduced expression of GAS5 
in MDR breast cancer cells could upregulate Wnt/β-catenin signaling and induce the MDR transporter 
ABCB1 expression.

Apart from the regulation of MDR transporters by ceRNAs, other key chemoresistance mediators are also 
induced by the dysregulation of ceRNA networks, as described below. Table 2 summarizes various other 
cancer drug resistance mechanisms triggered by ceRNA dysregulation, which affect different classes of 
conventional chemotherapeutic anticancer drugs. Key clinical findings are summarized in Table 3.
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Table 2. Representative ceRNA networks promoting the various chemoresistance mediators in preclinical studies

Chemoresistance mediator (effector 
gene) Anticancer drug(s) Dysregulated ncRNA Cancer

type Ref.

Apoptosis (BAX) Cisplatin lncRNA XIST (upregulated) NSCLC [39]

Apoptosis (Aurora B kinase) Cisplatin lncRNA XIST (upregulated) GC [146]

Autophagy (SIRT1) 5-FU lncRNA H19 (upregulated) CRC [61]

Autophagy (STX17, RAB33B, UVRAG) Paclitaxel Protein-coding mRNA SLC7A11
(downregulated)

OC [147]

Cell cycle regulation (CCND1) Doxorubicin lncRNA PVT1 (upregulated) OS [148]

Cell proliferation (KPNA4) Paclitaxel circRNA circ_ZFR (upregulated) NSCLC [40]

Cuproptosis (DLD) Tamoxifen lncRNA C6orf99 (upregulated) TNBC [68]

DNA damage response/G2 cell cycle 
checkpoint (WEE1)

Temozolomide lncRNA FOXD3-AS1 (upregulated) GBM [149]

EMT Oxaliplatin lncRNA H19 (upregulated under hypoxic 
condition)

CRC [62]

EMT (ZEB1) Doxorubicin lncRNA HULC (upregulated) HCC [63]

Glutamine metabolism (GLS) Cisplatin lncRNA NEAT1 (upregulated) MB [150]

Glycolysis (GOT1) Cisplatin circRNA circGOT1 (upregulated) ESCC [151]

Mitophagy (p62) Lenvatinib lncRNA LINC01607 (upregulated) HCC [152]

Senescence (SALL1, METAP1, DCAF11) Sunitinib lncRNA LINC00461 (upregulated) RCC [153]

Tumor suppression (PTEN) Cisplatin, paclitaxel, and 
docetaxel

lncRNA HOTAIR (upregulated) CC [38]

Transcription factor critical for the Hippo 
pathway (TEAD1)

Gemcitabine lncRNA MKLN1-AS (upregulated) PC [154]

Tyrosine kinase (BCR-ABL) Imatinib circRNA circCRKL (upregulated) CML [155]

ceRNA: Competing endogenous RNA; ncRNA: non-coding RNA; lncRNA: long non-coding RNA; NSCLC: non-small cell lung cancer; GC: gastric 
cancer; 5-FU: 5-fluorouracil; CRC: colorectal cancer; OC: ovarian cancer; OS: osteosarcoma; TNBC: triple negative breast cancer; GBM: 
glioblastoma; EMT: epithelial mesenchymal transition; HCC: hepatocellular carcinoma; MB: medulloblastoma; ESCC: esophageal squamous cell 
carcinoma; RCC: renal cell carcinoma; CC: cervical cancer; PC: pancreatic cancer; CML: chronic myeloid leukemia.

Inhibition of apoptosis
The PI3K/Akt/mTOR signaling pathway plays a central role in regulating cancer cell survival, proliferation, 
and apoptosis[36]. PTEN is an important tumor suppressor that inhibits PI3k/Akt/mTOR to promote 
apoptosis[37]. In cervical cancer, Zhang et al. reported that the lncRNA HOTAIR could sponge miR-29b, 
which indirectly inhibited PTEN by upregulating SP1 expression[38]. Interestingly, miR-29b did not affect 
promoter methylation of PTEN, but it regulated PTEN by targeting the SP1 transcription factor. HOTAIR 
was shown to induce resistance of cervical cancer cell lines HeLa and Siha to cisplatin, docetaxel, and 
paclitaxel, which could be reversed by miR-29b upregulation. In non-small cell lung cancer (NSCLC), the 
lncRNA XIST was reported to sponge miR-520 and induce cisplatin resistance by regulating the apoptotic 
gene BAX via the p53 signaling pathway[39]. Recently, a circRNA circ_ZFR was reported to be highly 
upregulated in paclitaxel-resistant NSCLC tumor specimens and cell lines[40]. To this end, circ_ZFR 
knockdown was shown to overcome paclitaxel resistance by reducing KPNA4 expression and inducing 
apoptosis via sponging miR-195-5p.

Inhibition of tumor suppressor genes
The loss of function of tumor suppressor genes is well known to cause cancer drug resistance[41]. 
Phosphatase and tensin homolog on chromosome 10 (PTEN) is an extensively studied tumor suppressor[42]. 
PTEN deficiency and its dysfunction leads to aggressive tumor phenotype and reduced response to 
anticancer therapy. Tay et al. were one of the first research teams to identify endogenous protein-coding 
transcripts (SERINC1, VAPA, CCR4-NOT, and CNOT6L) as PTEN ceRNAs that regulate PTEN expression 
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Table 3. Representative clinical data showing the significance of ceRNA dysregulation in mediating cancer drug resistance

Cancer 
type Dysregulated ncRNA miRNA

involved mRNA target of miRNA Ref.

BC lncRNA GAS5 (lower expression in chemotherapy (epirubicin + 
cyclophosphamide combination)-refractory patients)

miR-221-3p ABCB1 (efflux transporter-
mediated resistance)

[34]

BC lncRNA C6orf99 (highly expressed in ER+ BC patients resistant to 
endocrine therapy)

miR-370-3p, 
miR-432-5p

DLD (cuproptosis) [67]

BC lncRNA LINC00589 (can be used as an independent prognostic 
factor for discriminating tratuzumab responders)

miR-100 and 
miR-452

DLG5 and PRDM16 (tumor 
suppressor)

[80]

CML lncRNA HULC (elevated in CML patients with advanced clinical 
stages)

miR-200a c-myc and Bcl-2 (apoptosis) [85]

CRC circNCOA3 (overexpressed in patients resistant to anti-PD-1 mAb) miR-203-3p CXCL1 (immune checkpoint) [107]

CRC Exosomal ciRS-122 (elevated in serum samples of oxaliplatin 
refractory CRC patients)

miR-122 PKM2 (glycolysis) [70]

CRC H19 (increased in recurrent patients) miR-194-5p SIRT1 (autophagy) [61]

ESCC Exosomal lncRNA PART1 (elevated serum level in patients 
demonstrating poor response to geftinib)

miR-129 Bcl-2 (apoptosis) [87]

GBM Exosomal lncRNA SBF2-AS1 (elevated in serum sample of 
temozolomide resistant patients)

miR-151a XRCC4 (DNA double strand 
break repair)

[75]

HCC HULC (highly upregulated in patients with more advanced TNM 
staging)

miR-200a-3p ZEB1 (EMT) [63]

NSCLC circCPA4 (low level in tumor) associated with better prognosis in 
patients on PD-L1 immunotherapy

let-7 PD-L1 (immune checkpoint) [106]

ceRNA: Competing endogenous RNA; ncRNA: non-coding RNA; miRNA: microRNA; BC: breast cancer; lncRNA: long non-coding RNA; ER+: 
estrogen receptor-positive; CML: Chronic myeloid leukemia; CRC: colorectal cancer; DLD: dihydrolipoamide dehydrogenase; PKM2: pyruvate 
kinase M2; ESCC: esophageal squamous cell carcinoma; GBM: glioblastoma; HCC: hepatocellular carcinoma; EMT: epithelial mesenchymal 
transition; NSCLC: non-small cell lung cancer.

in a miRNA-dependent manner[43]. As PTEN and its ceRNAs share the same miRNAs, deletion of 
individual ceRNA by siRNAs allowed more miRNAs to interact with PTEN 3’ untranslated region (3’UTR), 
thereby reducing PTEN mRNA and protein levels. Moreover, the mutual reciprocal regulation of PTEN and 
its ceRNAs was demonstrated by the fact that PTEN downregulation modulates its ceRNA expression and 
PTEN ceRNAs are coexpressed with PTEN in patient specimens[43]. Pseudogenes are DNA sequences that 
share high sequence similarity to a known gene, but they are not coded into proteins[44]. Due to the high 
homolog between pseudogenes and their protein-coding partners, pseudogenes may sequester the shared 
miRNAs and prevent them from binding to their authentic protein-coding transcripts. A representative 
example is PTENP1, the pseudogene of PTEN, which competes with PTEN for the same set of miRNAs 
through numerous conserved MREs[45]. The direct association between PTENP1 and PTEN expression in 
tumor specimens from colon cancer patients suggests that PTENP1 transcript may act as a tumor 
suppressor by regulating PTEN expression[45,46]. Intriguingly, PTENP1 is known to produce both sense and 
antisense transcripts to modulate PTEN expression. The PTENP1 sense transcript shares high sequence 
similarity with PTEN, thus competing with PTEN for binding specific miRNAs to affect PTEN expression. 
Meanwhile, two functionally independent isoforms (PTENP1-AS-α and PTENP1-AS-β) are transcribed 
from the antisense strand. PTEN1-AS-α has been shown to bind to the 5’UTR (promoter) of PTEN, which 
recruits the epigenetic modifiers (including EZH2 and DNMT3A) to suppress PTEN transcription. On the 
other hand, PTEN1-AS-β was known to bind to the PTEN1 sense transcript, thus forming a complex that is 
exported to the cytoplasm. As PTEN1-AS-β lacks a poly-A tail, it stabilizes the PTENP1 sense transcript, 
which works as a miRNA sponge to post-transcriptionally regulate PTEN.

Recent studies reported an intriguing enrichment of 3’UTR shortening among transcripts that could serve 
as ceRNAs for tumor suppressor genes[47]. The 3’UTR of mRNA contains recognition sequences for various 
regulatory elements, including miRNA binding sites. Interestingly, some mRNA transcripts display 
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differential 3’UTR length. This could be mediated by alternative polyadenylation (APA), alternative 
splicing, or other mechanisms[48]. The 3’UTR length could influence the availability of miRNA binding sites 
and, therefore, disrupt the ceRNA regulatory network[47,49].

Theoretically, long 3’UTRs tend to harbor more miRNA binding sites and provide more opportunities for 
miRNA-mediated regulation. It follows that ceRNAs with longer 3’UTRs may have a higher chance to 
compete for shared miRNAs, thereby sequestering them and affecting the expression of the target genes. 
This could lead to complex ceRNA networks and regulatory interactions. On the other hand, shorter 
3’UTRs usually possess fewer miRNA binding sites, thus limiting ceRNA regulatory potential. This could 
lead to reduced competition for miRNAs and thus minimize the effect on target gene expression. The 
relevance of differential mRNA 3’UTR length in ceRNA regulation lies in its effect on modulating the 
availability of miRNA binding sites and shaping the ceRNA network[48].

Recent transcriptome-wide studies have revealed that more than 70% of human genes exhibit APA[50,51]. As a 
result of APA, numerous genes have been reported to generate multiple mRNA isoforms bearing 
differential 3’UTR length, where key RNA regulatory elements are found[52]. Mounting evidence suggests 
that APA can give rise to differential 3’UTR usage according to tissue type, cell state, and environmental 
condition, thereby coordinating post-transcriptional regulation of numerous genes driving the 
carcinogenesis process[53,54]. To this end, mRNAs harvested from highly proliferative or tumorigenic cells 
have shorter 3’UTRs, which enables their escape from miRNA-mediated repression of mRNA stability and 
protein synthesis[50]. A widespread recurrent tumor-specific APA regulation in multiple cancer types has 
recently been identified[55]. The prevailing hypothesis is that 3’UTR shortening could activate proto-
oncogenes to promote carcinogenesis through the escape of miRNA-mediated repression. Interestingly, 
according to a recent study correlating the sensitivity of anticancer drugs with APA events characterized by 
RNA-seq data from The Cancer Genome Atlas (TCGA) data sets[56], the top drug class correlated with global 
3’UTR shortening are DNA topoisomerase I inhibitors that are commonly used in treating colorectal 
cancer.

When mRNA transcripts with shortened 3’UTRs lose miRNA recognition sites and no longer sponge the 
miRNAs, the released miRNAs become available to repress their ceRNA partners [Figure 2]. In various 
cancer types, the disruption of ceRNA crosstalk by mRNA 3’UTR shortening has been reported for tumor 
suppressor genes[47,57,58]. Intriguingly, genetic silencing of the master 3’UTR-shortening regulator NUDT21 
was shown to repress a few tumor suppressor genes (including PHF6 and LARP1) in a ceRNA-dependent 
manner and promote cancer proliferation[47]. Mechanistically, two miRNAs (miR-3187-3p and miR-549) 
targeting PHF6 were shown to participate in the ceRNA crosstalk. As depletion of DICER1 could abolish 
PHF6 and NUDT21 crosstalk, the regulation is miRNA-dependent. Moreover, PHF6 3’UTR-mediated 
luciferase activity was shown to be rescued by the miR-3187-3p antagomir or NUDT21 siRNA.

Promotion of tumor angiogenesis
In lung cancer, the lncRNA H19 was known to promote tumor angiogenesis by regulating the anti-
angiogenic miRNAs[59]. Interestingly, expression of the lncRNA H19 is often induced by cigarette smoke. 
This smoking-associated H19 dysregulation was shown to provoke angiogenesis by altering the expression 
of numerous miRNAs (including miR-29, miR-30a, miR-107, miR-140, miR-148b, miR-199a and miR-200) 
and lead to chemoresistance by inhibiting BiP, DLL4, HIF1α, PDGFB, PDGFRA, and VEGFA[59]. 
Additionally, H19 was also shown to induce tumor-specific pyruvate kinase M2 (PKM2), which is pivotal 
for the Warburg effect and tumor angiogenesis[59].
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Figure 2. Schematic diagram illustrating how mRNA 3’UTR shortening represses its ceRNA partner in trans by releasing the common 
miRNA(s). 3’UTR shortening of mRNA-X allows its escape from miRNA-mediated repression, therefore increasing mRNA-X 
expression. However, the release of the common miRNA(s) from binding to the long 3’UTR of mRNA-X will result in the repression of 
the ceRNA partner mRNA-Y. 3’UTR: 3’ untranslated region; ceRNA: completing endogenous RNA; miRNA: microRNA.

Induction of autophagy
Autophagy is a cellular degradation and recycling process that plays a dual role in cancer by functioning as a 
cell survival or death mechanism[60]. The dysregulation of ceRNAs has been linked with drug resistance by 
inducing autophagy. In CRC, the expression of H19 was found to be remarkably increased in recurrent 
CRC patient tumor samples[61]. H19 was demonstrated to induce autophagy via SIRT1 to cause 
5-fluorouracil (5-FU) resistance. The overexpression of H19 was shown to promote the conversion of LC3-I 
to LC3-II, thus leading to a remarkable increase in LC3 aggregation and autophagosome formation but 
downregulation of the autophagy receptor protein p62 in 5-FU-resistant CRC cells. SIRT1 is a direct target 
of miR-194-5p. Mechanistically, H19 was shown to sponge miR-194-5p, as demonstrated by gene reporter 
and immunoprecipitation assays, to induce SIRT1 expression in 5-FU-resistant CRC cells[61].

Induction of epithelial-mesenchymal transition
In CRC, the expression of the lncRNA H19 was induced under hypoxic conditions and in oxaliplatin-
resistant cells[62]. H19 was shown to work as a ceRNA of miR-675-3p to regulate epithelial-mesenchymal 
transition (EMT) and lead to chemoresistance. Importantly, H19 downregulation could overcome hypoxia-
induced chemoresistance by sequestering miR-675-3p to regulate EMT[62].

In HCC, the lncRNA HULC is highly upregulated, which is associated with advanced TNM staging, 
metastases, recurrence, and poor drug response[63]. HULC was shown to sequester miR-200a-3p, which 
targets and inhibits the transcription factor ZEB1. ZEB1 is critical for EMT and its overexpression is known 
to drive tumor progression, thus upregulating ZEB1 to mediate EMT and promote metastasis and 
chemoresistance[63].

In cervical cancer, HOTAIR was found to promote EMT and induce chemoresistance via a miR-29b/PTEN/
PI3K ceRNA network[38]. HOTAIR was shown to bind with miR-29b. Consistent with the ceRNA 
mechanism, the expression of HOTAIR and miR-29b is negatively correlated with each other in cervical 
cancer. While HOTAIR induced cell migration and chemoresistance to cisplatin, docetaxel, and paclitaxel, 
miR-29b was shown to inhibit EMT. Specifically, miR-29b mimics were shown to downregulate PI3K and 
enhance cancer drug response.

Recently, a tamoxifen resistance-related ceRNA network has been constructed and validated for breast 
cancer exhibiting enhanced migration and invasion (EMT phenotype)[64]. Differentially expressed mRNAs 
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(DEmRNAs) were screened from drug-resistant breast cancer cells by GEO2R. The 20 top-ranked 
DEmRNAs were associated with 113 upstream miRNAs and 501 lncRNAs. Among these mRNA/miRNA/
lncRNA, 7 mRNAs, 22 lncRNAs, and 11 miRNAs were selected to construct a ceRNA network contributing 
to tamoxifen resistance in breast cancer. Ultimately, after incorporation of data from GEPIA differential 
gene expression and Kaplan-Meier survival analyses, 4 mRNAs, 4 lncRNAs, and 3 miRNAs were found to 
be significantly associated with poor drug response and prognosis[64]. The differential gene expression was 
confirmed by quantitative real-time PCR analysis, thus verifying the novel therapeutic targets for tamoxifen 
resistance in the constructed ceRNA network.

Induction of cuproptosis
Cuproptosis is a new copper metabolism-dependent cell death mechanism[65,66]. In triple-negative breast 
cancer, oral administration of the bioavailable copper chelator tetrathiomolybdate has been shown to 
deplete mitochondrial copper content and reduce cellular energy production, which is significantly 
correlated with favorable patient survival[67]. A ceRNA network has been constructed using differentially 
expressed genes related to cuproptosis in estrogen receptor-positive (ER+) breast cancer[68]. DLD was found 
to be a critical cuproptosis-related gene in ER+ breast cancer resistance to endocrine therapy by evaluating 
the intersection of the protein-protein interaction analysis, differentially expressed genes between the 
sensitive breast cancer cell lines, and the prognostic cuproptosis-related genes (CRGs)[68]. The lncRNA 
C6orf99 was predicted to be a ceRNA that regulates DLD by sponging hsa-miR-370-3p and hsa-miR-432-
5p.

Induction of glycolysis
Cancer cells are known to undergo metabolic reprogramming, including increased glycolysis, to promote 
cell proliferation, metastasis, and chemoresistance[69]. In CRC, Wang et al. reported that the circRNA 
ciRS-122 was highly upregulated in oxaliplatin-resistant cells[70]. CiRS-122 was shown to sponge miR-122, 
thus upregulating human pyruvate kinase M2 (PKM2) to promote glycolysis and drug resistance[70]. 
Exosomes are small membrane-bound extracellular vesicles secreted from various cell types. They carry 
specific nucleic acids, metabolites, and cellular proteins to facilitate intracellular communication[71]. 
Numerous ncRNA are secreted in tumor-derived exosomes and transferred to neighboring cancer cells to 
mediate the chemoresistance phenotype via a ceRNA mechanism[40,72,73]. Importantly, in oxaliplatin-
refractory CRC patients, a high expression level of exosomal ciRS-122 in serum samples was significantly 
associated with unfavorable clinical response to chemotherapy. Moreover, the delivery of siRNA against 
ciRS-122 via exosomes was shown to reverse oxaliplatin resistance in cell culture and tumor-bearing mouse 
models by inhibiting the ciRS-122/miR-122/PKM2 ceRNA network, thus inhibiting glycolysis and drug 
resistance[70]. Collectively, drug-resistant cancer cells may exploit ciRS-122 to transfer the chemoresistance 
phenotype via exosomes to neighboring sensitive cells. Moreover, targeting ciRS-122 may be a novel 
strategy to overcome oxaliplatin resistance.

Alteration of DNA damage response
In ovarian cancer, the lncRNA urothelial carcinoma associated 1 (UCA1) was reported to mediate cisplatin 
resistance via transfer in tumor cells-derived exosomes[74]. Mechanistic investigation indicated that UCA1 
worked as a ceRNA of miR-143 to increase the expression of its target FOS-like 2 (FOSL2) mRNA, thereby 
promoting DNA repair and the drug resistance phenotype. In glioblastoma patients, high serum exosomal 
lncRNA SBF2-AS1 was shown to contribute to temozolomide resistance[75]. Mechanistically, SBF2-AS1 was 
shown to sequester miR-151a to increase the expression of X-ray repair cross-complementing 4 (XRCC4), 
thus promoting repair of DNA double-strand break and leading to temozolomide resistance[75].
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ceRNA dysregulation induces resistance to targeted cancer therapy
Targeted cancer therapy refers to the approach that specifically inhibits key molecular signaling pathway(s) 
to elicit the anticancer effect. Numerous small molecule tyrosine kinase inhibitors have been developed as 
targeted cancer drugs, which have revolutionized the practice of oncology[76]. However, most cancer patients 
receiving targeted cancer therapy inevitably relapse and develop resistance to the treatment. Various 
mechanisms are known to contribute to targeted drug resistance, including direct target reactivation, 
aberrant activation of downstream oncogenes, engagement of parallel oncogenic pathways, and other 
adaptive cancer survival mechanisms[77]. Emerging evidence suggests that ceRNA crosstalk plays a critical 
role in drug resistance to many targeted anticancer drugs.

A representative example of ceRNA-mediated drug resistance to targeted chemotherapy is the interaction 
between the lncRNA H19 and the tumor suppressive miR-200a in breast cancer. The role of the lncRNA 
H19 in various cancer hallmarks has been recently reviewed by Hashemi et al.[78]. The biological function of 
H19 in most cancer types is oncogenic, and therefore, high H19 expression is generally correlated with 
enhanced tumor growth, cell cycle progression, EMT induction, and elevated metastasis. H19 is also well 
known to trigger chemo- and radio-resistance in cancer cells. Numerous downstream target genes and 
molecular pathways for lncRNA H19 have been identified and validated, which include miRNAs, RUNX1, 
STAT3, β-catenin, and FOXM1. To this end, H19-miR-200a constitutes a ceRNA network to mediate 
resistance to the targeted chemotherapy drug trastuzumab, commonly used for treating HER2-positive 
breast cancer[79]. H19 acts as a ceRNA to sequester miR-200a, thus preventing it from binding to its target 
mRNAs ZEB1 and ZEB2. ZEB1 and ZEB2 are important transcription factors involved in the EMT process, 
which is associated with increased tumor invasiveness and chemoresistance. The increased expression of 
ZEB1 and ZEB2 promotes EMT and contributes to drug resistance. Inhibition of H19 or ectopic expression 
of miR-200a could sensitize trastuzumab-resistant breast cancer cells[79].

Bai et al. recently reported another LINC00589-dominated ceRNA network regulating resistance to HER2-
targeted therapy, cancer stemness properties, and multidrug resistance in breast cancer[80]. The lncRNA 
LINC00589 was reported as an independent prognostic factor for identifying trastuzumab (HER2 inhibitor) 
responders. Intriguingly, LINC00589 was found to simultaneously sponge miR-100 and miR-452 to relieve 
their repression of two tumor suppressors (DLG5 and PRDM16), thereby inhibiting cancer proliferation 
and counteracting drug resistance[80]. The two novel ceRNA networks (LINC00589/miR-100/DLG5 and 
LINC00589/miR-452/PRDM16) may be exploited as useful prognostic markers and novel therapeutic 
targets for drug-refractory HER2-positive breast cancer.

Sorafenib (a multikinase inhibitor of VEGFR and PDGFR) is the targeted drug of choice for HCC. The let-7 
family of miRNAs has been shown to inhibit the expression of the antiapoptotic protein Bcl-xL and 
potentiate sorafenib-induced apoptosis in HCC[81]. It has been proposed that the antitumor efficacy of 
sorafenib could be compromised by high H19 levels by sponging miR-let-7[82]. Another lncRNA NEAT1 was 
also reported to promote resistance of HCC to sorafenib by sponging miR-355, thus relieving sorafenib-
induced inhibition of the c-Met/Akt pathway[83]. On the other hand, NEAT1 could also work as a ceRNA of 
miR-204 to increase the expression of the Autophagy Related 3 (ATG3), subsequently inducing autophagy 
and leading to sorafenib resistance[84].

In CML, the lncRNA HULC was shown to promote imatinib resistance by a miR-200a/c-myc/Bcl-2 ceRNA 
regulatory network[85]. HULC was shown to be remarkably overexpressed in both leukemia cell lines and 
hematopoietic cells from CML patients. The elevated HULC level was remarkably associated with more 
advanced clinical stages of CML. Importantly, HULC silencing was shown to inhibit the activation of PI3K 
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and AKT, and potentiate imatinib-induced apoptosis, which was associated with the downregulation of 
c-Myc and Bcl-2. Mechanistically, HULC was shown to modulate c-Myc and Bcl-2 by sponging miR-200a[85].

NcRNAs are also transferred in tumor-derived exosomes to mediate targeted drug resistance via ceRNA-
related mechanisms. In NSCLC cells, tumor-derived exosomal circRNA_102481 has been reported to 
mediate EGFR-TKI resistance by sponging miR-30a-5p to modulate ROR1[86]. Interestingly, high expression 
of circRNA_102481 in exosomes isolated from the peripheral blood of NSCLC patients was positively 
correlated with more advanced TNM stage, poor tumor differentiation status, prominent brain metastasis, 
and dismal progression-free survival and overall survival. Genetic silencing of circRNA_102481 or 
administration of exosomes encapsulated with si-circRNA_102481 could inhibit EGFR-TKI resistance and 
promote apoptosis. Therefore, exosomal circRNA_102481 may represent a useful diagnostic biomarker and 
novel therapeutic target for EGFR-TKIs resistance in NSCLC. In esophageal squamous cell carcinoma 
(ESCC), the lncRNA PART1 was enriched in exosomes and it acted as a ceRNA of miR-129 to upregulate 
Bcl-2 and promote gefitinib resistance[87]. Importantly, a high serum level of exosomal PART1 was found to 
be significantly associated with poor response to gefitinib therapy in ESCC patients. In advanced renal cell 
carcinoma, exosome-transmitted lncRNA Activated in RCC with Sunitinib Resistance (lncARSR) was 
shown to mediate sunitinib resistance by sponging miR-34/miR-449 to increase AXL and c-Met 
expression[88]. The lncRNA urothelial carcinoma associated 1 (UCA1) was enriched in ovarian cancer-
derived exosomes, and it was reported to mediate gefitinib resistance by sequestering miR-143 to increase 
FOSL2 expression[89].

ceRNA dysregulation induces resistance to cancer immunotherapy
There is accumulating evidence to suggest the potential impact of ceRNA regulation on cancer 
immunotherapy response. The regulation of ceRNAs could affect cancer immunotherapy by regulating the 
immune checkpoint molecules. Jiang et al. recently published a comprehensive review of the regulatory role 
of lncRNAs and circRNAs in the PD-1/PD-L1 pathway and the relevance to the efficacy of immune 
checkpoint inhibitors[90]. Programmed cell death protein (PD-1) and cytotoxic T-lymphocyte-associated 
protein 4 (CTLA-4) are the two most extensively studied immune checkpoint molecules that are exploited 
by cancer cells to evade immune surveillance[91]. Immune checkpoint blockade with anti-CTLA-4 
(ipilimumab and tremelimumab), anti-PD-1 (nivolumab and pembrolizumab), or anti-PD-ligand (PD-L1) 
(durvalumab, atezolizumab, and avelumab) monoclonal antibodies is revolutionizing cancer therapy, which 
induces durable tumor responses and overall survival benefit in a wide variety of cancer types[92]. However, 
some patients do not respond to or develop resistance to immune checkpoint inhibitors, such as anti-PD-1 
antibodies. Understanding the mechanisms underlying drug resistance in immunotherapy is crucial for 
improving patient outcomes.

PD-1 is an inhibitory receptor present on activated immune cells, including T cells, B lymphocytes, natural 
killer cells, macrophages, dendritic cells, and monocytes, which normally function to blunt both adaptive 
and innate immune responses. Upon binding of PD-1 to its major ligand PD-L1, which is expressed on 
tumor cell surface, T cell antitumor immunity will be suppressed. The anti-PD-1/PD-L1 antibodies were 
designed as immune checkpoint inhibitors for cancer therapy. They work by binding to inhibitory PD-1 
receptors on tumor-reactive T cells and PD-L1 on tumor cells, respectively, thereby disrupting the PD-1/
PD-L1 interaction and reactivating the antitumor T cell-mediated cell cytotoxicity. Cancer patients with 
heavy tumor mutational burden, abundant pre-treatment tumor-infiltrating T cells, and elevated pre-
treatment PD-L1 levels on tumor cells are expected to respond more favorably to anti-PD-1/PD-L1 
immunotherapy[93].
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PD-L1 expression can be regulated by lncRNAs that compete for miRNAs targeting PD-L1 mRNA, thereby 
promoting immune escape in various cancer types[94]. Table 4 summarizes representative ceRNA networks 
modulating PD-1/PD-L1 expression and their effects on cancer immunotherapy. Figure 3 illustrates the 
induction of cancer immunotherapy resistance due to ceRNA dysregulation-mediated PD-L1 upregulation 
in different cancer types. In breast cancer, the lncRNA tissue differentiation-inducing non-protein coding 
RNA (TINCR) was known to upregulate PD-L1 expression both in vitro and in vivo, thus promoting breast 
cancer progression. Importantly, TINCR knockdown was shown to significantly potentiate the antitumor 
efficacy of PD-L1 inhibitors in breast cancer in animal studies. Mechanistically, TINCR was shown to serve 
a dual function: it sequesters miR-199a-5p and inhibits its transcription, leading to increased PD-L1 
expression [Figure 4][95]. TINCR expression was detected in both the nucleus and cytoplasm of breast cancer 
cells. In the cytoplasm, TINCR was found to work as a molecular sponge of miR-199a-5p and upregulate the 
stability of the ubiquitin-specific protease 20 (USP20) mRNA via a ceRNA regulatory machinery, thus 
increasing PD-L1 expression by suppressing its ubiquitination[95]. In the nucleus, TINCR was found to 
recruit DNMT1 to the gene promoter of miR-199a-5p and promote DNA methylation, thereby inhibiting 
the transcription of miR-199-5p. Therefore, TINCR knockdown may be used as a novel strategy to 
potentiate PD-L1 immunotherapy in breast cancer.  Similarly, CRC tumor cells have been reported to 
release exosomes enriched in the lncRNA KCNQ1OT1, which regulates the ubiquitination of PD-L1 via a 
miR-30a-5p/USP22 pathway to facilitate immune evasion[96]. According to TCGA database, the expressions 
of KCNQ1OT1 and miR-30a-5p are negatively correlated in tumor tissues. A high level of KCNQ1OT1 in 
CRC tumors was shown to sequester miR-30a-5p, thereby relieving the repression of the ubiquitin-specific 
peptidase USP22. It follows that PD-L1 expression is upregulated due to less ubiquitination, subsequently 
inhibiting CD8+ T cell response to induce CRC immune tolerance.

In hepatocellular carcinoma (HCC), the lncRNA Lnc-CCNH-8 is highly expressed and correlates with poor 
prognosis[97]. Zhao et al. recently reported that Lnc-CCNH-8 could inactivate T cells in vitro and suppress 
antitumor immunity in immunocompetent mice in vivo[97]. Mechanistically, Lnc-CCNH-8 was shown to 
sequester miR-217 and, therefore, upregulate PD-L1 expression. Moreover, Lnc-CCNH-8 also stabilized 
PD-L1 via a miR-3173/Phakophilin 3 (PKP3) regulatory machinery. PKP3 is involved in deubiquitination of 
PD-L1. Therefore, overexpression of Lnc-CCNH-8 and PKP3 could upregulate PD-L1 levels in tumors. In 
addition, experimental mice bearing tumors with high Lnc-CCNH-8 expression are highly responsive to 
PD-L1 blockade treatment. Interestingly, HCC patients with high levels of plasma exosomal Lnc-CCNH-8 
showed remarkably higher treatment responses to immune checkpoint inhibitors. Collectively, Lnc-CCNH-
8 forms a novel ceRNA network to induce immune escape from CD8+ T cell-mediated cancer-killing effect 
by upregulating PD-L1 in a miR-217/miR-3173-dependent manner[97]. Critical players within the ceRNA 
network may be exploited as novel therapeutic targets to enhance PD-L1-based cancer immunotherapy. The 
plasma level of exosomal Lnc-CCNH-8 also represents a novel predictive marker for immunotherapy 
response in HCC.

In lung cancer, a ceRNA network has been constructed by using immune-related genes of LUAD samples 
from the TCGA database[98]. A 14-lncRNA immune-related signature was developed. In particular, the 
lncRNA C5orf64 was found to be positively correlated with the expression of immune checkpoint molecules 
(including PD-1, PD-L1, and CTLA-4) and immune cells (such as M2 macrophages, eosinophils, and 
neutrophils)) but negatively associated with the immunosuppressive Tregs and plasma cells. Thus, the 
lncRNA C5orf64 may be used as an indicator to predict the status of tumor microenvironment (TME) 
modulation[98]. The expression level of C5orf64 was found to be remarkably lower in LUAD tumor 
specimens than in non-tumorous tissues. Detailed ceRNA network analysis identified two potential 
pathways, C5orf64/miRNA-150/EREG and C5orf64/miRNA-155-ITK, which presumably play a critical role 
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Table 4. Representative ceRNA networks modulating PD-1/PD-L1 expression and their effect on cancer immunotherapy

Cancer type Dysregulated ncRNA miRNA involved mRNA target of miRNA Ref.

BC TINCR (lncRNA) miR-199a-5p USP20 [95]

CRC MIR17HG (lncRNA) miR-375 NF-κB/RELA [156]

DLBCL SNHG14 (lncRNA) miR-5590-3p ZEB1 [157]

HCC RNAFOXD1-AS1 (lncRNA) miR-615-3p PI3K/AKT [158]

NSCLC hsa_circ_0020714 (circRNA) miR-30a-5p SOX4 [159]

OC EMX2OS (lncRNA) miR-654 AKT3 [160]

PC PMSB8-AS1 (lncRNA) miR-382-3p STAT1 [161]

PCa lncAMPC (lncRNA) miR-637 JAK1-STAT3 [162]

Thy RP11-424C20.2 (pseudogene) miR-378a-3p UHRF1 [163]

TNBC GATA3-AS1 (lncRNA) miR-676-3p COPS5 [164]

ceRNA: Competing endogenous RNA; ncRNA: non-coding RNA; miRNA: microRNA; BC: breast cancer; CRC: colorectal cancer; DLBCL: diffuse 
large B cell lymphoma; HCC: hepatocellular carcinoma; NSCLC: non-small cell lung cancer; OC: ovarian cancer; PC: pancreatic cancer; PCa: 
prostate cancer; Thy: thymomas; TNBC: triple negative breast cancer.

Figure 3. Resistance to cancer immunotherapy due to upregulation of PD-L1 mediated by ceRNA dysregulation in different cancer types. 
Representative ceRNA networks (miRNA - ncRNA interaction) are shown. PD-L1: Programmed cell death ligand 1; ceRNA: completing 
endogenous RNA; miRNA: microRNA; ncRNA: non-coding RNA.

in shaping an immunosuppressive TME[98]. Further investigation is still needed to confirm the mechanistic 
explanation. The lncRNA FGD5-AS1 was reported to regulate PD-L1 expression by working as a miR-142 
sponge, thereby promoting cancer cell proliferation, cisplatin resistance, migration, and tumor invasion[99]. 
On the other hand, the antisense lncRNA NKX2-1-AS1 was shown to downregulate PD-L1 by modulating 
NKX2-1 protein expression and reducing the cellular expression of cell adhesion molecules (including E-
cadherin), thereby inhibiting cell migration in lung adenocarcinoma[100]. In NSCLC, the lncRNA MALAT1 
was reported to upregulate PD-L1 by sequestering miR-200a-3p and promoting cancer propagation[101]. 
Therefore, FGD5-AS1/MALAT1 silencing or NKX2-1-AS1 ectopic expression may represent useful 
approaches to enhance PD-1/PD-L1 immunotherapy in lung cancer patients.
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Figure 4. Schematic diagram showing a dual mechanism of PD-L1 regulation by a lncRNA TINCR in breast cancer to mediate resistance 
to cancer immunotherapy. TINCR was shown to increase PD-L1 expression by upregulating the USP20 via a dual mechanism. TINCR is 
expressed both in the nucleus and cytoplasm of breast cancer cells. In the cytoplasm, TINCR sponges miR-199a-5p and upregulates 
USP20 mRNA, thus increasing PD-L1 expression by suppressing its ubiquitination. In the nucleus, TINCR recruits DNMT1 to the gene 
promoter of miR-199-5p and promotes DNA methylation, thereby inhibiting the transcription of miR-199-5p. PD-L1: Programmed cell 
death ligand 1; lncRNA: long non-coding RNA; TINCR: tissue differentiation-inducing non-protein coding RNA; USP20: ubiquitin-specific 
protease 20.

Furthermore, the dysregulation of circRNAs has also been reported to promote cancer development, 
migration, invasion, and immune evasion of NSCLC cells[102]. For example, the high expression of 
circFGFR1 (derived from FGFR1) in NSCLC tissues is associated with poor prognosis and clinical 
outcomes[103]. Mechanistically, circFGFR1 was shown to sequester miR-381-3p and increase the expression 
of its target gene CXCR4[103]. CXCR4 genetic silencing could sensitize NSCLC cells to PD-1 blockade 
immunotherapy[103]. To this end, CXCR4 is known to bind to CXCL12, subsequently increasing intracellular 
calcium content, cancer cell adhesion, proliferation, and gene transcription[104,105]. Hong et al. recently 
reported that circCPA4 and PD-L1 were overexpressed, but the miRNA let-7 was expressed at a lower level 
in NSCLC cell lines (than in normal bronchial epithelial cells) and tumor specimens (than in adjacent 
normal lung tissues)[106]. Importantly, NSCLC patients whose tumors expressed lower circCPA4 and PD-L1 
levels but higher let-7 levels demonstrated a better prognosis. Detailed mechanistic investigation revealed 
that circCPA4 sponges let-7, thus upregulating PD-L1 to promote proliferation and EMT in NSCLC 
cells[106]. Moreover, circCPA4 was also shown to increase exosomal PD-L1 levels. In the co-culture system of 
NSCLC (H1299 or A549) and CD8+ T cells (isolated from human PBMCs), the depletion of circCPA4 was 
shown to reactivate CD8+ T cells. Interestingly, PD-L1 depletion was also shown to increase the levels of 
IFN-γ and IL-4, but reduce IL-10 expression in the CD8+ T cells and the supernatants, suggesting that the 
NSCLC cells inactivated CD8+ T cells in the co-culture via secreting PD-L1[106]. Collectively, circCPA4 
increased PD-L1 expression in NSCLC cells by sponging let-7 to promote cancer stemness and cisplatin 
resistance, and also inactivated CD8+ T cells in the TME to facilitate immune evasion[106].

Chen et al. recently reported the critical role played by the circRNA circNCOA3 in CRC immune escape 
and resistance to PD-1 blockade therapy[107]. In CRC patient tumors, circNCOA3 was found to be 
remarkably overexpressed in samples resistant to anti-PD-1 monoclonal antibodies. High circNCOA3 was 
significantly correlated with worse survival and poor treatment outcomes in CRC patients. In cell line 
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studies, the knockdown of circNCOA3 was shown to suppress cancer cell proliferation and invasion. In 
animal studies, circNCOA3 knockdown was found to increase the proportion of anticancer CD8+ T cells but 
reduce the abundance of the immunosuppressive myeloid-derived suppressor cells (MDSCs). Importantly, 
circNCOA3 knockdown was reported to retard tumor growth and potentiate the antitumor efficacy of PD-1 
blockade immunotherapy in tumor-bearing mouse models[107]. Subsequent mechanistic investigation 
revealed that circNCOA3 acted as a ceRNA for miR-203-3p to modulate CXCL1 expression. To this end, 
CXCL2 derived from the M2 macrophages, upon binding to CXCR2, has been shown to activate the PI3K/
AKT/NF-B signaling pathway to increase PD-L1 expression. circNCOA3 may be further developed into a 
useful biomarker to predict the response and prognosis of CRC patients upon PD-1 blockade therapy.

In pancreatic cancer, hypoxia is known to induce HIF1, ADAM10, and sMICA, thus leading to reduced 
NKG2D in natural killer (NK) cells and immune escape of tumor cells[108]. The circRNA circ_0000977 was 
induced by hypoxia. Knockdown of circ_0000977 was shown to potentiate NK cell-mediated lysis of cancer 
cells under hypoxic conditions in a HIF1- and ADAM10-dependent manner. Both HIF1α and ADAM10 are 
direct downstream targets of miR-153. circ_0000977 was shown to sequester miR-153 and relieve the 
repression of HIF1α and ADAM10 mRNA in pancreatic cancer cell line Panc-1. Collectively, the 
circ_0000977/miR-153/HIF1α/ADAM10 ceRNA network represents a novel mechanism contributing to the 
hypoxia-mediated immune escape of pancreatic cancer cells[108].

While there is growing interest in understanding the role of ceRNA regulation in cancer immunotherapy, 
research in this domain is still in its infancy. ceRNA regulation may also affect the expression of other 
immune-related genes regulating the TME, tumor infiltration of immune cells, and biological functions of 
the immune cells. By modulating the expression of genes involved in various immune response pathways, 
ceRNAs could indirectly regulate the efficacy of cancer immunotherapy. It is noteworthy that the specific 
ceRNA networks and their impact on the various immune checkpoints may vary across different cancer 
types and in different contexts. Further research is needed to fully understand the complexity of ceRNA-
mediated regulation of the immune checkpoints and its implications on cancer immunotherapy.

CONCLUSION AND FUTURE PERSPECTIVES
Understanding the ceRNA networks and their role in anticancer drug resistance could yield novel insights 
for the development of effective therapeutic strategies for treating refractory tumors and useful prognostic 
biomarkers for predicting clinical outcomes. By targeting specific ceRNAs or manipulating the ceRNA 
network, it may be possible to overcome drug resistance and improve the effectiveness of cancer treatments. 
Interestingly, flavonoids (bioactive polyphenolic compounds abundant in fruits, vegetables, and many 
medicinal plants) have been reported to regulate cancer-related genes via the ceRNA network, thereby 
inhibiting cancer growth and reversing chemoresistance[109]. In gastric cancer, chrysin has been shown to 
promote apoptosis via the H19/miR-let-7a/COPB2 regulatory pathway[110]. Another extensively studied 
flavonoid, quercetin, was reported to inhibit cancer proliferation and tumor invasion by upregulating miR-
146a in breast cancer[111] and sensitize NSCLC cells to radiotherapy by modulating the miR-16-5p/WEE1 
axis[112]. These ceRNA-modulating flavonoids may be combined with anticancer drugs to potentiate the 
therapeutic effect and overcome cancer drug resistance. Moreover, the ceRNA components involved may be 
exploited as useful biomarkers to select the patient population who could respond better to the drug 
combination.

Recent advances in high-throughput sequencing techniques have enabled the discovery of numerous 
biomarkers, including protein-coding RNAs and ncRNAs, from tissue and blood samples of cancer patients. 
To this end, most existing cancer biomarkers are solely relying on gene expression patterns. However, the 
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expression patterns are not able to reflect the underlying interactions/mechanisms[113,114]. Therefore, gene 
expression signatures for patient populations harboring the same clinical condition reported by different 
research teams are usually highly heterogeneous[114]. To this end, system-guided ceRNA network analysis 
may represent a more reliable method for biomarker identification and the generated ceRNA signature may 
also facilitate precision medicine. The systematic method of computational approaches for ceRNA network-
driven biomarker discovery has been recently reviewed[115,116]. Clinical drug response analyses are usually 
performed to validate ceRNA biomarkers associated with anticancer drug responses[117].

Components of ceRNA networks, including miRNAs, lncRNAs, and circRNAs, have been considered 
emerging biomarkers for cancer diagnosis, prognosis prediction, and treatment monitoring[118-120]. Using a 
ceRNA network-driven method, a ceRNA network comprising 12 lncRNAs, 2 miRNAs, and 15 mRNAs was 
identified as a prognostic biomarker to predict survival for patients with pancreatic adenocarcinoma[121]. For 
breast cancer, Wang et al. recently reported a lncRNA H19- and BRCA1/2-associated ceRNA signature that 
could distinguish patients with favorable versus dismal survival outcomes[122]. For gastric cancer, Sui et al. 
identified a 2-lncRNA signature within a ceRNA network as a prognostic biomarker for predicting patient 
survival[123]. The therapeutic significance is that genetic silencing of the two lncRNAs (LINC01644 and 
LINC01697) was shown to effectively inhibit gastric cancer cell proliferation. For lung cancer, a lung 
squamous cell carcinoma-specific ceRNA network has been recently constructed using TCGA RNA-
sequencing datasets[123]. A 2-lncRNA signature (consisting of FM06P and PRR26) was identified as a 
prognostic biomarker for overall patient survival[123]. Moreover, ceRNA biomarkers have also been reported 
to predict and monitor anticancer drug response in the clinic. By integrating the expression profiles of 
lncRNA, miRNA, and mRNA from a pan-cancer ceRNA network with the patient survival data after 
anticancer drug treatment, Qi et al. identified a signature of drug response-related ceRNA (DRCE) that was 
significantly correlated with individual drug response to cisplatin[116]. Moreover, they also identified two 
DRCEs (NEAT1/hsa-miR-130b/TP53INP1 and NEAT1/hsa-miR-18a/NBR1) capable of modulating the 
anticancer efficacy of tamoxifen in breast cancer patients harboring TP53 mutation[116]. Most recently, for 
lung cancer, Liao et al. reported a novel prognostic ceRNA network biomarker consisting of RGN 
(inhibitory protein of calcium signaling) and its related miRNA (hsa-miR-203a-3p) and two lncRNAs 
(ZNF876P and PSMG3-AS1)[124]. The high RGN expression group was found to be associated with lower 
cancer immunotherapy efficacy and prognosis, which was consistent with an immunosuppressive tumor 
microenvironment[125].

With the increasing number of experimentally validated ceRNA networks reported in recent years, a few 
databases have been developed to compile experimentally supported ceRNA interactions with 
comprehensive annotations [Table 5]. A few recently developed ceRNA databases also include patient 
demographics and clinical drug response data, thus making them more clinically relevant and potentially 
allowing for personalized prediction of ceRNA modulation outcomes. LncACTdb 3.0 is a comprehensive 
database of experimentally validated ceRNA interactions across 25 species and 537 diseases[126]. It also 
compiled the lncRNA/mRNA/miRNA expression profiles with clinical and pathological information 
extracted from 62 datasets in TCGA and GEO. Computational tools are available for exploring the effects of 
ceRNA on individuals with specific pathological backgrounds.

LnCeCell is another database of predicted lncRNA-associated ceRNA networks constructed at the single-
cell resolution[127]. It is handpicked from cellular-specific ceRNA regulations and functional status of more 
than 94,000 cells in 25 tumor types. The database compiles more than 9,000 experimentally validated 
lncRNA biomarkers, associated with drug resistance, prognosis, tumor metastasis, and recurrence. The 
unique feature of LnCeCell is that it provides a global map of ceRNA sub-cellular localization at a single 
cancer cell level, which was manually curated from the original data sources.
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Table 5. Representative databases/online resources for ceRNAs relevant to anticancer drug resistance

Database          Online accession       Characteristic features Ref.

● Online tool for simultaneous prediction of miRNA target
interactions and their mediated ceRNA interactions

[6]

● Collecting the correlations of miRNA-lncRNA pairs, and profiles of 
lncRNA expression in different cell types and organ tissues

[165]

 ● Composing cancer ceRNAs in human blood exosomes [166]

 ● Listing human lncRNAs that may act as ceRNAs [167]

● A human lincRNA function annotation resource based on ceRNA 
hypothesis 
● Composing miRNA-lincRNA and miRNA-mRNA interaction data

[168]

● Listing comprehensive information of ceRNAs in different species 
and under different disease states

[125]

● Compiling genomic variations that may disrupt ceRNA network 
● Curated from high-throughput sequencing datasets or published 
literature

[127]

● Collecting cell-specific lncRNA-associated ceRNA networks, 
applicable for personalized characterization of diseases

[126]

● Composing experimentally supported miRNA sponges and ceRNA 
networks

[169]

● Compiling cancer somatic mutations in miRNA that may disrupt the 
interactions between miRNAs and ceRNA (circRNA, lncRNA, and 
mRNA)

[170]

 ● Collecting experimentally supported miRNA-lncRNA and miRNA-
mRNA interactions 

●  Curated from CLIP-Seq data available in published literature

[171]

ceRNA: Competing endogenous RNA; miRNA: microRNA; lncRNA: long non-coding RNA; lincRNA: long intergenic non-coding RNA.

LnCeVar is another recently developed database of genomic variations that disturb ceRNA network 
regulation[128]. It curated genomic variations-ceRNA events from patient samples and cell lines. Of relevance 
to anticancer drug response, the database contains more than 2,000 experimentally validated circulating, 
drug-resistant and prognosis-related lnRNA biomarkers. A few user-friendly searching and browsing 
interfaces are available for retrieval and analysis of data[128]. In particular, LnCeVar-Survival can be used to 
conduct COX regression analyses and produce patient survival curves for specific genomic variation-ceRNA 
events. Thus, LnCeVar represents a useful tool for investigating the influence of personalized genomic 
variations that disturb ceRNA network in various diseases, including drug-refractory cancers.

It is noteworthy that the specific impact of disrupting ceRNA networks on cancer drug response may vary 
depending on the specific ceRNAs involved, the miRNAs and target genes regulated by the ceRNAs, and the 
cellular context. Subcellular localization and abundance of the ceRNA(s), and their interaction with other 
cellular pathways will also affect the biological outcomes of the ceRNA network. As the non-coding regions 
encoding regulatory RNAs make up close to 99% of the human genome, genomic alterations in cancer 
could have substantial effects on ceRNA networks that are largely regulated by ncRNAs. To this end, the 
intersection between cancer genomic alterations and ceRNA regulation has been unappreciated.

Moreover, an interplay between ceRNA network and epigenetic regulation of the miRNA components has 
been proposed[129]. This is exemplified by the ceRNA network operating in the estrogen receptor signaling 
pathway. In ovarian cancer, miR-193a is known to target E2F6 (a downstream target of estrogen receptor), 

Cupid https://cupidtool.sourceforge.net/ (accessed on
22 May 2024)

DIANA-
LncBase v3.0

www.microrna.gr/LncBase (accessed on 22 May
2024)

ExoceRNA 
atlas

https://ngdc.cncb.ac.cn/databasecommons/
database/id/7334 (accessed on 22 May 2024)

lnCeDB http://gyanxet-beta.com/lncedb (accessed on 22
May 2024)

Linc2GO https://pubmed.ncbi.nlm.nih.gov/23793747/ 
(accessed on 22 May 2024)

LncACTdb 3.0 http://www.bio-bigdata.hrbmu.edu.cn/
LncACTdb (accessed on 22 May 2024)

LnCeVar https://ngdc.cncb.ac.cn/databasecommons/
database/id/6187 (accessed on 22 May 2024)

LnCeCell http://www.bio-bigdata.hrbmu.edu.cn/LnCeCell/
(accessed on 22 May 2024)

miRSponge https://bio.tools/mirsponge (accessed on 22 May
2024)

SomamiR 2.0 http://compbio.uthsc.edu/SomamiR (accessed
on 22 May 2024)

StarBase v2.0 http://starbase.sysu.edu.cn/ (accessed on 22 
May 2024)

https://cupidtool.sourceforge.net/
http://gyanxet-beta.com/lncedb
http://www.bio-bigdata.hrbmu.edu.cn/LncACTdb
http://www.bio-bigdata.hrbmu.edu.cn/LncACTdb
http://compbio.uthsc.edu/SomamiR
http://starbase.sysu.edu.cn/
www.microrna.gr/LncBase
https://ngdc.cncb.ac.cn/databasecommons/database/id/7334
https://ngdc.cncb.ac.cn/databasecommons/database/id/7334
https://pubmed.ncbi.nlm.nih.gov/23793747/
https://ngdc.cncb.ac.cn/databasecommons/database/id/6187
https://ngdc.cncb.ac.cn/databasecommons/database/id/6187
https://bio.tools/mirsponge
http://www.bio-bigdata.hrbmu.edu.cn/LnCeCell/
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c-KIT (a widely-studied marker for cancer stemness), and PBX1 (a transcriptional activator for the 
immunosuppressive cytokine IL-10). Interestingly, epigenetic silencing of miR-193a by the E2F6 protein 
was shown to be required to upregulate c-KIT and PBX1 mRNA, in order to promote cancer stemness and 
immune evasion[130]. Further research is warranted to fully unravel the complexity of ceRNA-mediated 
regulation and its implications on drug resistance.
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