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Abstract
With the advent of models such as ChatGPT and other models, large language models (LLMs) have demonstrated
unprecedented capabilities in understanding and generating natural language, presenting novel opportunities and
challenges within the medicine domain. While there have been many studies focusing on the employment of LLMs
in medicine, comprehensive reviews of the datasets utilized in this field remain scarce. This survey seeks to address
this gap by providing a comprehensive overview of the datasets in medicine fueling LLMs, highlighting their unique
characteristics and the critical roles they play at different stages of LLMs’ development: pre-training, fine-tuning, and
evaluation. Ultimately, this survey aims to underline the significance of datasets in realizing the full potential of LLMs
to innovate and improve healthcare outcomes.
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1. INTRODUCTION
Medicine stands as a critical field intricately connected to humanwell-being, where the integration of advanced
technologies such as large language models (LLMs) has shown promising potential [1]. Since the introduction
of ChatGPT [2], numerous studies have leveraged suchmodels for various medical applications, demonstrating
their adeptness at tasks ranging from biological information extraction [3], medical advice consultation, men-
tal health-related applications and clinical report generation. Furthermore, LLMs have demonstrated their
potential to improve patient care [4,5]. The utilization of LLMs in medicine is often facilitated by crafting spe-
cialized prompts or instructions, enabling these models to navigate the complexities of medical data effectively.

Existing LLMs can be classified into three types: encoder-only, encoder-decoder, and decoder-only LLMs.
Encoder-only LLMs (e.g., BERT [6]) are generally used for tasks that involve understanding text, such as clas-
sification and sentiment analysis. Encoder-decoder LLMs (e.g., ChatGLM [7]) are useful for tasks that involve
both understanding and generating text, such as summarization. Decoder-only LLMs (e.g., GPT-4 [8]) excel
at generative tasks such as sentence completion and open-ended generation. LLMs in medicine are devel-
oped through a two-stage process: pre-training and fine-tuning. To pre-train LLMs, two common tasks are
employed: language modeling and denoising autoencoding. Language modeling involves predicting the next
word in a sequence, helping the model to learn language patterns and semantic relationships effectively [9]. De-
noising autoencoding, on the other hand, requires the model to recover the replaced parts of the text, which
aids in understanding and generating language outputs precisely [10,11]. The pre-training phase involves train-
ing a language model on a large corpus of structured and unstructured text data. For LLMs in medicine,
the corpus may include electronic health records (EHR) [12], clinical notes [13], and medical literature [14]. Pre-
training lays the foundation for the LLMs, enabling them to grasp the broad nuances of language and acquire
generation skills [9,15], preparing LLMs for more specialized tasks in subsequent training stages. It is impor-
tant to note that some LLMs are pre-trained on general data and fine-tuned on medical data, while others
are trained on medical datasets from scratch. For instance, models such as PubMedBERT [16] are specifically
pre-trained on biomedical corpora, leading to improved performance in healthcare-specific tasks compared
to models that are fine-tuned on medical data after general pre-training.

Having established a solid foundation through pre-training, the fine-tuning phase focuses on domain-specific
adaptation. This stage involves diversemedical corpora, such as dialogue datasets, question-answer (QA) pairs,
and instructional texts, ensuring the model excels in specialized tasks [17]. Researchers have proposed some
fine-tuning methods [18–20] to develop effective medical LLMs. This phase ensures that the model becomes
proficient in handling healthcare-specific language, thereby enhancing its accuracy and efficiency. The choice
of datasets for training LLMs in medicine depends on the specific task and the type of data required. Com-
mon sources of data include EHR, scientific literature, web data, and public knowledge bases. These datasets
provide valuable information for training LLMs and enable them to understand and generate medical text,
making them versatile tools capable of providing accurate clinical decision support [21].

Lastly, the evaluation of LLMs employs datasets as benchmarks to rigorously assess their performance, such as
text classification [22], semantic understanding [23], question answering (QA) [24], and trustworthiness [25]. The
application of LLMs in the medical field has gained significant attention in recent years. Medical LLMs have
been evaluated and utilized in a range of medical applications, including medical queries [26], medical exami-
nations [27], and medical assistants [28]. By evaluating the model performance on different datasets, researchers
can identify areas where themodel excels and areas where it needs improvement [29]. This feedback helps refine
the model architecture and train methods. In Figure 1, we describe the construction process of the medical
Q&A LLMs.

While Q&A systems are a key application of LLMs in healthcare, they represent only a small part of their
broader potential. Our survey provides an overview of datasets used for both pre-training and fine-tuning
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Figure 1. Construction process of the medical Q&A LLMs.

LLMs across a variety of medical tasks. We focus on offering concise summaries and links to these datasets,
which can support LLM development across diverse medical applications. Compared with the recent work by
Wu et al., which focuses on the accessibility and characteristics of publicly available clinical text datasets, our
survey encompasses a broader scope by including multimodal datasets [30]. This provides valuable resources
for researchers developing LLMs for a wider range of tasks.

To further emphasize the significance of these datasets, it is crucial to recognize that comprehensive overviews
of the available data are still scarce. Figure 2 illustrates a timeline of dataset development, spanning dialogue,
QA, EHR, summarization, and multimodal data, which have collectively driven the advancement of medical
LLMs. By offering a detailed analysis of these datasets and their applications, our survey aims to address
this gap in the literature. We hope that this work not only underscores the critical role these datasets play
in advancing LLM technology but also encourages further research to unlock the full potential of LLMs in
medicine.
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Figure 2. Timeline diagram of the development of medical datasets.

2. OVERVIEW OF DATASETS
2.1. Collection
Datasets for medical LLMs originate from diverse sources. Open-source platforms such as Hugging Face
and GitHub provide immediate access to pre-curated datasets, while literature reviews and Google searches
uncover additional resources. Together, these strategies ensure a broad and comprehensive collection covering
a wide range of medical applications. A summary of these datasets is presented in Table 1.

2.2. Sources
In the realm of medical data analysis, especially for training LLMs tailored for healthcare applications, the
diversity and specificity of the datasets are paramount. Unlike earlier pretrained language models (PLMs),
contemporary LLMs, with their vast array of parameters, necessitate extensive training data encompassing
a comprehensive spectrum of medical knowledge. To meet this requirement, a variety of specialized medi-
cal datasets have become increasingly available for research purposes. We categorize these corpora into four
groups based on their sources: EHR, Scientific Literature, Web Data, and Public Knowledge Bases.

2.2.1 EHR
EHRs contain comprehensive information about patients’ medical history, diagnoses, treatments, medication
and allergies. They are widely used in medical research and analysis. In this category, MIMIC-III [31], MIMIC-
IV [32] and CPRD [33] are three commonly used datasets for LLM fine-tuning.

MIMIC-III [31] is an openly available dataset featuring de-identified health data from over 40,000 patients who
were admitted to the intensive care units at Beth Israel Deaconess Medical Center from 2001 to 2012. This
extensive dataset includes records from 58,976 hospital admissions across 38,597 patients, positioning it as a
crucial resource for in-depth healthcare research. It is renowned for its substantial inclusion of 2,083,180 de-
identified notes, filled with detailed patient histories and clinician observations. MIMIC-III provides a wide
array of data, encompassing patient demographics, hourly vital sign measurements, lab test results, medical
procedures, medication records, caregiver notes, imaging reports, and mortality data, both during hospital
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Table 1. An overview of commonly used datasets in medicine for LLMs

Dataset Type Language Scale Highlight

MIMIC-III [31] EHR English 58 K hospital admissions Comprising over 58,000 hospital admissions for 46,520 patients (38,645 adults and 7,875 neonates)

MIMIC-IV [32] EHR English 504 K admissions Covering a decade of admissions between 2008 and 2019 and establishing a modular organization

CPRD [33] EHR English 2 K primary care practices Containing over 2,000 primary care practices and including 60 million patients

PubMed [34] Scientific literatureEnglish 36 M citations Comprising over 36 M citations and abstracts of biomedical literature

PMC [35] Scientific literatureEnglish 8 M articles Consisting of over 8 million available full-text article records

RCT [36] Scientific literatureEnglish 4 K abstracts Comprising 4,528 systematic reviews composed by members of the Cochrane collaboration

MSˆ2 [37] Scientific literatureEnglish 470 K abstracts The first large-scale, publicly available multi-document summarization dataset of over 470 K documents and 20 K summaries

CDSR [38] Scientific literatureEnglish 6 K abstracts Containing a training set of 5,195 abstract pairs, a validation set of 500 abstract pairs, and a test set of 1,000 abstract pairs

SumPubMed [39] Scientific literatureEnglish 33 K abstracts Consisting of 33,772 abstracts from PubMed biomedical research paper

The Pile [40] Scientific literatureEnglish 825 GB text Containing 825 GB of data from multiple sources, including books, websites, scientific papers, and social media platforms

S2ORC [41] Scientific literatureEnglish 81.1 M papers Containing 81.1 M English-language academic papers covering many academic disciplines

CORD-19 [42] Scientific literatureEnglish 1 M papers Containing over 1 M papers on COVID-19 and related historical coronavirus research

COMETA [43] Web data English 20 K entities Containing 20,015 English biomedical concept mentions from Reddit annotated with links to SNOMED CT

WebText [44] Web data English 40 GB text Containing highly upvoted links from Reddit

OpenWebText [45] Web data English 38 GB text An accessible open-source alternative to WebText

C4 [11] Web data English 750 GB text Containing about 750 GB clean English text scraped from the web

UMLS [46] Knowledge base English 2 M entities Containing over 2 million names for 900 K concepts from over 60 families of biomedical vocabularies

cMeKG [47] Knowledge base Chinese 10 K diseases Covering more than 10,000 diseases and nearly 20,000 drugs

DrugBank [48] Knowledge base English 16 K drug entries Containing 16,581 drug entries with 5,293 non-redundant protein sequences linked to these drug entries

cMedQA2 [49] QA Chinese 108 K QA pairs Containing 108,000 questions and 203,569 answers

webMedQA [50] QA Chinese 63 K QA pairs Consisting of 63,284 questions, covering most of the clinical departments of common diseases and health problems

Huatuo-26M [51] QA Chinese 26 M QA pairs Containing over 26 million QA pairs, covering diseases, symptoms, treatment methods, and drug information

ChatMed-Dataset [52] QA Chinese 110 K QA pairs Comprising 110,113 medical query-response pairs generated by OpenAI’s GPT-3.5 engine

PubMedQA [53] QA English 273 K QA pairs Containing 1 K expert-annotated, 61.2 K unlabeled and 211.3 K artificially generated QA instances

CMCQA [54] QA Chinese 1.3 M QA pairs Consisting of 1.3 million QA pairs, covering 45 departments, such as andrology, stomatology, gynecology and obstetrics

Medical Flashcards [19] QA English 33 K instances Containing 33,955 instances, covering subjects such as anatomy, physiology, pathology and pharmacology

Wikidoc [19] QA English 10 K instances Comprising 10,000 instances from a collaborative platform with up-to-date medical knowledge

WPI. [19] QA English 5 K instances Consisting of 5,942 QA pairs generated from paragraph headings and associated text content

medical [55] QA Chinese 2.4 M QA pairs Consisting of 2.4 million QA pairs, including pre-training, instruction fine-tuning and reward datasets

HuatuoGPT-sft [56] QA Chinese 220 K QA pairs Containing 220,000 QA pairs including distilled data from ChatGPT and real-world data from Doctors

HuatuoGPT2-sft [57] QA Chinese 50 K QA pairs Containing 50,000 QA pairs from diverse sources including encyclopedias, books, academic literature, and web content

HEQ. [51] QA Chinese 364 K QA pairs Consisting of 364,420 QA pairs sourced from medical encyclopedias and medical articles

CMD. [58] QA Chinese 792 K instances Containing 792,099 instances, covering andrology, internal medicine, obstetrics and gynecology, oncology, pediatrics and surgery

HealthSearchQA [59] QA English 3 K questions Consisting of 3,173 commonly searched consumer medical questions

MedDialog-EN [60] Dialogue English 260 K dialogues Comprising 260 K conversations between patients and doctors, covering 96 specialties

MedDialog-CN [60] Dialogue Chinese 1.1 M dialogues Comprising 1.1 million conversations between patients and doctors, covering 172 specialties

IMCS-21 [61] Dialogue Chinese 4 K annotated samples Containing a total of 4,116 annotated samples with 164,731 utterances, covering 10 pediatric diseases

CovidDialog [62] Dialogue English&Chinese1 K consultations Containing an English dataset containing 603 consultations and a Chinese dataset containing 1,393 consultations

MMMLU [19] Dialogue English 3 K instances Consisting of 3,787 instances from measuring massive multitask language understanding

Pubmed Causal [63] Dialogue English 2 K instances Consisting of 2,446 annotated sentences

HealthCareMagic-100k [64]Dialogue English 100 K conversations Containing 100 K patient-doctor conversations from an online medical consultation website

iCliniq [64] Dialogue English 10 K conversations Comprising 10,000 patient-doctor conversations from a separate source

GenMedGPT-5k [64] Dialogue English 5 K conversations Consisting of 5 K generated conversations between patients and doctors from ChatGPT

MedDG [65] Dialogue Chinese 17 K dialogues Containing 17,864 dialogues sourced from the gastroenterology department of a Chinese medical consultation website

CHIP-MDCFNPC [66] Dialogue Chinese 8 K dialogues Consisting of 8,000 annotated dialogues

DISC-Med-SFT [67] Dialogue Chinese 470 K dialogues Comprising over 470 K distinct examples from existing medical datasets

CMtMedQA [68] Dialogue Chinese 70 K dialogues Containing 70,000 real instances from 14 medical departments, including many proactive doctor inquiries

Alpaca-EN-AN [69] Instructions English 52 K instructions Containing 52 K instruction-following data based on the self-instruct method

Alpaca-CH-AN [70] Instructions Chinese 52 K instructions Containing 52 K instruction-following data with Alpaca prompts translated into Chinese by ChatGPT

sft-20k [71] Instructions Chinese 20 K instructions Containing 20 K instructions and applying specific question templates to semi-structured data

ShenNong-TCM [72] Instructions Chinese 110 K instructions Consisting of over 110,000 pieces of instructional data

MeQSum [73] Summarization English 1 K instances Comprising 1 K consumer health questions and their summaries based on this definition

CHQ-Summ [74] Summarization English 1 K instances Containing 1,507 question-summary pairs with annotations about question focus and question type

MEDIQA-AnS [75] Summarization English 156 instances Containing 156 consumer health questions, corresponding answers, and expert-created summaries

VQA-RAD [76] Multimodal English 3 K QA pairs Consisting of 3,515 visual questions of 11 types and 315 corresponding radiological images

SLAKE [77] Multimodal English&Chinese14 K QA pairs Containing 642 images with 14,028 QA pairs and 5,232 medical knowledge triplets

PathVQA [78] Multimodal English 32 K QA pairs Consisting of 4,998 pathology images and 32,799 QA pairs

U-Xray [79] Multimodal English 3 K reports and 7 K images Containing 3,955 reports and 7,470 DICOM images

ROCO [80] Multimodal English 81 K image-caption pairs Consisting of 81,000 radiology images and corresponding captions

ROCOv2 [80] Multimodal English 79 K image-caption pairs An updated version of ROCO, including 35,705 new images and manually curated medical concepts

MedICaT [81] Multimodal English 217 K images Containing 217,060 images including subcaption and subfigure annotations

PMC-OA [82] Multimodal English 1.6 M image-caption pairs Consisting of 1.6 M image-caption pairs from PMC’s OpenAccess subset, covering diverse modalities or diseases

CheXpert [83] Multimodal English 224 K radiographs Comprising 224,316 chest radiographs of 65,240 patients with associated reports

PadChest [84] Multimodal English 160 K images with related textConsisting of over 160,000 images from 67,000 patients with related text

MIMIC-CXR Multimodal English 227 K imaging studies Containing 227,835 imaging studies with 377,110 images for 64,588 patients

PMC-15M [85] Multimodal English 15 M Figure-caption pairs Consisting of 15 million Figure-caption pairs from 4.4 million scientific articles

CT-RATE [86] Multimodal English 5 K chest CT volumes Comprising 50,188 non-contrast 3D chest CT volumes from 25,692 patients along with corresponding radiology text reports

OpenPath [87] Multimodal English 208 K pathology images Comprising 208,414 pathology images with related descriptions

stays and post-discharge.

Evolving from MIMIC-III, MIMIC-IV [32] is a relational database detailing actual patient admissions at a ter-
tiary academic medical center in Boston, MA, USA.This updated version includes modernized data spanning
from 2008 to 2019, capturing a wide array of medical information such as laboratory measurements, admin-
istered medications, and recorded vital signs. Designed to support a broad spectrum of healthcare research,
MIMIC-IV is instrumental for investigations in clinical decision-making, patient care optimization, and epi-

http://dx.doi.org/10.20517/ir.2024.27
https://mimic.mit.edu/docs/iii/
https://mimic.mit.edu/docs/iv/
https://cprd.com/data
https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/
https://ftp.ncbi.nlm.nih.gov/pub/pmc/
https://github.com/bwallace/RCT-summarization-data
https://github.com/allenai/ms2/
https://github.com/qiuweipku/Plain_language_summarization
https://github.com/vgupta123/sumpubmed
https://pile.eleuther.ai/
https://github.com/allenai/s2orc
https://github.com/allenai/cord19
https://github.com/cambridgeltl/cometa
https://commoncrawl.org/get-started
https://skylion007.github.io/OpenWebTextCorpus/
https://www.tensorflow.org/datasets/catalog/c4
https://www.nlm.nih.gov/research/umls/index.html
https://github.com/king-yyf/CMeKG_tools
https://go.drugbank.com/
https://github.com/zhangsheng93/cMedQA2
https://github.com/hejunqing/webMedQA?tab=readme-ov-file
https://github.com/FreedomIntelligence/Huatuo-26M
https://huggingface.co/datasets/michaelwzhu/ChatMed_Consult_Dataset
https://github.com/PubMedQA/PubMedQA
https://drive.google.com/file/d/1LgljQk91VeNGn3lCyUZ6Szm3ur-VVqwt/view
https://huggingface.co/datasets/medalpaca/medical_meadow_medical_flashcards
https://huggingface.co/datasets/medalpaca/medical_meadow_wikidoc
https://huggingface.co/datasets/medalpaca/medical_meadow_wikidoc_patient_information
https://huggingface.co/datasets/shibing624/medical
https://huggingface.co/datasets/FreedomIntelligence/HuatuoGPT-sft-data-v1
https://huggingface.co/datasets/FreedomIntelligence/HuatuoGPT2_sft_instruct_GPT4_50K
https://huggingface.co/datasets/FreedomIntelligence/huatuo_encyclopedia_qa
https://github.com/Toyhom/Chinese-medical-dialogue-data
https://huggingface.co/datasets/katielink/HealthSearchQA
https://paperswithcode.com/dataset/meddialog
https://paperswithcode.com/dataset/meddialog
https://github.com/lemuria-wchen/imcs21
https://www.kaggle.com/datasets/xuehaihe/covid-dialogue-dataset?select=COVID-Dialogue-Dataset-Chinese.txt
https://huggingface.co/datasets/medalpaca/medical_meadow_mmmlu
https://huggingface.co/datasets/medalpaca/medical_meadow_pubmed_causal
https://drive.google.com/file/d/1lyfqIwlLSClhgrCutWuEe_IACNq6XNUt/view
https://drive.google.com/file/d/1ZKbqgYqWc7DJHs3N9TQYQVPdDQmZaClA/view
https://drive.google.com/file/d/1nDTKZ3wZbZWTkFMBkxlamrzbNz0frugg/view
https://drive.google.com/drive/folders/109WnXlNhmqttxYwb4EEscYGcA_-eq8Eg
https://tianchi.aliyun.com/dataset/95414
https://huggingface.co/datasets/Flmc/DISC-Med-SFT
https://huggingface.co/datasets/Suprit/CMtMedQA
https://github.com/tatsu-lab/stanford_alpaca/blob/main/alpaca_data.json
https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM/tree/main/data
https://github.com/CMKRG/QiZhenGPT/blob/main/data/train/sft-20k.json
https://huggingface.co/datasets/michaelwzhu/ShenNong_TCM_Dataset
https://github.com/abachaa/MeQSum
https://github.com/shwetanlp/Yahoo-CHQ-Summ
https://huggingface.co/datasets/medalpaca/medical_meadow_mediqa
https://osf.io/89kps/
https://huggingface.co/datasets/BoKelvin/SLAKE
https://drive.google.com/drive/folders/1G2C2_FUCyYQKCkSeCRRiTTsLDvOAjFj5
http://openi.nlm.nih.gov/contactus.php
https://github.com/razorx89/roco-dataset
https://zenodo.org/records/10821435
https://github.com/allenai/medicat
https://huggingface.co/datasets/axiong/pmc_oa
https://aimi.stanford.edu/chexpert-chest-x-rays
https://bimcv.cipf.es/bimcv-projects/padchest/
https://mimic.mit.edu/docs/iv/modules/cxr/
https://arxiv.org/abs/2303.00915
https://huggingface.co/datasets/ibrahimhamamci/CT-RATE
https://laion.ai/blog/laion-5b/


Page 462 Zhang et al. Intell Robot 2024;4(4):457-78 I http://dx.doi.org/10.20517/ir.2024.27

demiological studies, providing a rich foundation for advancing medical knowledge and improving healthcare
outcomes.

In contrast to the U.S.-based datasets, CPRD [33] contains coded and anonymized EHR data from a network
of over 2000 practices in the UK. This dataset is linked to secondary care and other health and administrative
databases, providing a representative sample of the population by age, sex, and ethnicity. It includes infor-
mation on demographic characteristics, diagnoses and symptoms, drug exposures, and vaccination history.
Covering 60 million patients, among whom nearly 18 million are currently registered, CPRD notably provides
a significant longitudinal perspective on health outcomes and trends, with 25% of these patients having been
followed for at least 20 years.

2.2.2 Scientific literature
Scientific literature datasets, such as PubMed [34], provide access to a vast collection of research papers, articles,
and abstracts related to life sciences and biomedical topics. These datasets are valuable for training healthcare
language models as they contain high-quality academic and professional text.

PubMed is a freely accessible database that supports access to several National Library of Medicine (NLM)
literature resources, which contains citations and abstracts related to biomedical topics and life sciences. It
provides more than 36 million citations and abstracts of biomedical literature, including content from MED-
LINE, PubMed Central (PMC) [35], and online books. These citations may include links to full-text content
from other sources such as PMC or the publisher’s website. Launched online in 1996, PubMed is maintained
and upgraded by theNational Center for Biotechnology Information (NCBI).The dataset contains high-quality
text, making it particularly suitable for training medical LLMs.

Closely related to PubMed, PMC serves as a significant repository that archives open access full-text articles
published in biomedical and life sciences journals. PMC contains over eight million full-text article records
covering biomedical and life science research from the late 1700s to the present, including articles formally
published in a scholarly journal, authormanuscripts accepted for publication in a journal, and preprint versions
of articles. It is a crucial component of the NLM collection, complementing its extensive print and licensed
electronic journal holdings.

Turning to datasets tailored for systematic reviews, RCT [36] comprises 4,528 reviews conducted by theCochrane
collaboration’s members. These systematic reviews sourced from PubMed of all trials are relevant to specific
clinical questions. RCT is constructed from the abstracts of systematic reviews and the clinical trials’ titles
and abstracts that are summarized by these reviews. Similarly, CDSR [38] is a dataset of high-quality systematic
reviews in various medical domains. It contains a training set of 5,195 source-target pairs, a validation set of
500 abstract pairs, and a test set of 1,000 abstract pairs.

For summarization tasks in the biomedical field,MSˆ2 (multi-document summarization ofmedical studies) [37]

is a multi-document summarization dataset comprising over 470 K documents and 20 K summaries in the
biomedical domain. It is constructed from papers in the Semantic Scholar literature corpus, containing a large
amount of related markup.

Broadening the scope to multidisciplinary research, S2ORC [41] is a large corpus consisting of 81.1 million
English-language academic papers covering many academic disciplines. It represents a significant stride in
academic literature aggregation. S2ORC is meticulously constructed using data from the Semantic Scholar
literature corpus, which integrates papers from a variety of sources including publishers, archives such as arXiv
or PubMed and resources such as MAG.
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For highly specialized research, CORD-19 [42] is a dataset containing over 1Mpapers onCOVID-19 and related
historical coronavirus research, including full text content for nearly 370 K papers. This dataset is valuable for
pandemic research, emphasizing the essential role of domain-specific resources in meeting urgent biomedical
needs.

2.2.3 Web data
Web data includes a broad spectrum of text that can be sourced from the internet, embodying a vast array of
information types and formats. Among these, social media content stands out as one of the most prevalent
and rich data sources. Reddit is a popular online platform where users can submit various types of content,
including links, text posts, images, and videos. These submissions can be endorsed or disapproved by others
through “upvotes” or “downvotes”. Content that garners a significant number of upvotes is typically regarded
as valuable and can serve as a rich source for creating high-quality datasets.

WebText [44] is a well-known corpus, which is compiled from highly upvoted links on Reddit, but it is not pub-
licly available. In response to the limited availability ofWebText, OpenWebText [45], an open-source alternative,
is released.

COMETA [43] is an entity linking dataset ofmedical terminology. It contains 20,015 English biomedical concept
mentions from Reddit expert-annotated with their corresponding SNOMED-CT links, covering a wide range
of concepts such as symptoms, diseases, anatomical expressions and procedures across a range of conditions.

Colossal Clean Crawled Corpus (C4) [11] is a dataset containing about 750 GB clean English text scraped from
the Common Crawl web dump.

2.2.4 public knowledge bases
There exist many public knowledge bases in medicine, such as UMLS [46], CMeKG [47] and DrugBank [48].

UMLS [46] is one of the most popular repository of biomedical vocabularies, which is developed by the US
NLM. It has over two million names representing around 900,000 concepts sourced from over 60 families of
biomedical vocabularies, as well as 12 million relations among these concepts.

CMeKG [47] is a Chinese medical knowledge graph, which is a structured description of professional medical
knowledge. It is constructed by referencing authoritative international medical standards and a wide range of
sources such as clinical guidelines, industry standards and medical textbooks. This knowledge graph lays a
foundation for a medical QA system and serves as a comprehensive resource for medical information.

DrugBank [48] is a comprehensive freely available database containing detailed drug, drug-target, drug action
and drug interaction information. The most recent version (5.1.12) has 16,581 drug entries including 2,769
approved small molecule drugs, 1,620 approved biologics, 135 nutraceuticals and over 6,723 experimental
drugs. Additionally, 5,291 non-redundant protein sequences are linked to these drug entries. DrugBank’s
data is highly structured and accessible in various formats, including SMILES, SDF, MOL, PDB, InChI, and
InChIKey for chemical structures, FASTA for sequence data, and XML and JSON for textual data. These
standardized formats make DrugBank’s data easily usable for training LLMs in tasks such as drug discovery
and pharmacological research. Known for its high data quality, DrugBank curates information from peer-
reviewed scientific literature, patents, and reputable databases, offering extensive and comprehensive data on
drug targets. Regular updates ensure the dataset remains accurate and reliable. DrugBank’s structured data on
drug-target interactions makes it highly suitable for LLM tasks such as QA on drug-related topics. Addition-
ally, its detailed pharmacological data supports LLMs in generating accurate summaries of drug mechanisms,
and its information on interactions and metabolic pathways can be leveraged for dialogue generation in sys-

http://dx.doi.org/10.20517/ir.2024.27


Page 464 Zhang et al. Intell Robot 2024;4(4):457-78 I http://dx.doi.org/10.20517/ir.2024.27

tems assisting healthcare professionals in drug-related decision-making.

It is important to note that, while datasets such as MIMIC-III form the foundation for many LLMs, they
do have certain limitations. For example, MIMIC-III comes from a single institution - Beth Israel Deaconess
Medical Center in Boston, USA, which makes it less representative of healthcare practices and patient demo-
graphics in other regions or countries, limiting the generalizability of models trained on this data. The dataset
spans from 2001 to 2012, and medical practices, technologies, and treatment protocols have evolved signifi-
cantly since then. This makes LLMs trained on MIMIC-III potentially less effective when applied to current
healthcare scenarios. Moreover, MIMIC-III primarily contains data from critical care units, focusing on pa-
tients with severe conditions. As a result, it lacks coverage of broader healthcare settings, such as outpatient
care or chronic disease management, which limits the scope of models trained on this dataset. Even MIMIC-
III, one of the largest clinical text datasets available, contains only 0.5 billion tokens of clinical text from a
single hospital - far less than the tens of billions used in LLM training [88]. Similarly, while CPRD provides
a robust source of UK population health data, it has certain limitations. The dataset primarily reflects the
ethnic and disease distributions specific to the UK, which may introduce regional and population biases that
affect the model’s generalizability. Additionally, CPRD data are primarily derived from primary care practices,
making it more representative of outpatient care. Although CPRD includes linkages to hospital care and other
health-related datasets, its emphasis on primary care may limit the depth of information available for studies
that require detailed inpatient or intensive care data. This highlights the pressing need for more extensive and
diverse clinical text datasets to advance clinical LLMs.

2.3. Datasets structure
Datasets for medical LLMs can be classified into two broad categories based on their structure: conventional
text data and multimodal data.

2.3.1 Conventional text data
This category comprises datasets primarily centered on text, which are essential for training models to under-
stand and generate human language. Within this category, QA and dialogue datasets stand out as the most
widely utilized.

QA datasets
QA datasets are designed to train models capable of answering human-posed questions. These datasets typi-
cally consist of question-answer pairs, which are used to enable models to comprehend the question context
and generate accurate responses based on the information available in the dataset or linked knowledge bases.

cMedQA2 [49], the extension and amendment of version 1.0, is a dataset designed specifically for Chinese com-
munity medical QA. It is collected from an online Chinese medical QA forum, where users post their queries
and receive answers from qualified doctors. It contains 108,000 questions and 203,569 answers, doubling the
number of questions and answers compared to version v1.0, and performs some data cleaning preprocessing
steps, such as eliminating greeting words and replacing English punctuation with Chinese punctuation.

webMedQA [50] is a real-world Chinese medical QA dataset collected from professional health-related con-
sultancy websites. The dataset is collected through some steps including data preprocessing and removing
questions with more than one best-adopted reply. It consists of 63,284 questions, covering most of the clinical
departments of common diseases and health problems.

Huatuo-26M [51], named after the ancient Chinese physician Hua Tuo, stands as the largest Chinese medical
QA dataset available today. It is collected from multiple sources through text cleaning and data deduplication
methods, including an online medical consultation website, medical encyclopedias, and medical knowledge
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bases. It contains over 26 million QA pairs, covering various aspects such as diseases, symptoms, treatment
methods, and drug information. Huatuo-26M significantly expands the scale of existing medical QA datasets
and offers an unprecedented resource in the Chinese medical domain.

PubMedQA [53] is a novel biomedical QA dataset collected from PubMed abstracts. It aims to answer research
questions with yes/no/maybe, using the corresponding abstracts. PubMedQA has 1K expert-annotated, 61.2
K unlabeled and 211.3 K artificially generated QA instances. It is the first QA dataset where reasoning over the
contexts, especially their quantitative contents, is required to answer the questions.

HealthSearchQA [59] is a new dataset of 3,173 commonly searched consumer medical questions. It is curated
using seed medical conditions and their associated symptoms. The dataset diverges from other medical text
QA datasets in three significant ways including question only, free text response and open domain.

Dialogue
Dialogue datasets record conversational exchanges, mirroring real human-to-human interactions. They are
crucial for training models to understand conversational nuances, and provide accurate and contextually ap-
propriate responses.

MedDialog-CN [60] is a Chinese dataset containing conversations between doctors and patients. It contains
1.1 million dialogues, covering 29 broad categories of specialties and 172 fine-grained specialties. The data
is collected from an online consultation website. MedDialog-EN [60] is an English dataset with 0.26 million
dialogues, covering 51 categories of communities and 96 specialties. The data is collected from two online
platforms of healthcare services.

IMCS-21 [61] is a dialogue dataset that contains a total of 4,116 annotated samples with 164,731 utterances,
covering ten pediatric diseases: bronchitis, fever, diarrhea, upper respiratory infection, dyspepsia, cold, cough,
jaundice, constipation and bronchopneumonia.

Pubmed Causal [63] is a dataset for causal statements in science publications, containing 2,446 annotated sen-
tences.

Instructions
Instruction datasets comprise step-by-step directives or guidelines intended to trainmodels to perform specific
tasks or understand procedural language, which is particularly useful for instructional AI applications.

Alpaca [69] is a dataset based on the self-instruct [89] method. This dataset employs the text-davinci-003 model
on the 175 human-crafted instruction-output pairs from Self-Instruct to generate 52,000 new instructions
along with inputs and outputs. Moreover, around 40% of the examples have an input in the final dataset.

sft-20k [71] is a dataset originating from the QiZhen medical knowledge base, which includes real medical QA
data between patients and doctors, and drug text knowledge. It constructs an instructional dataset by applying
specific question templates to semi-structured data. Qizhen Medical Knowledge Base collects QA data on
various topics such as diseases, medications, diagnostic tests, surgeries, prognoses, and dietary information,
summing up to 560,000 instructional entries.

ShenNong-TCM-Dataset [72] is constructed on the foundation of TCM-neo4j, an open-source medical knowl-
edge graph. It employs an innovative entity-centric self-instruction method, leveraging ChatGPT to generate
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over 110,000 pieces of instructional data centered around TCM.

Summarization
Summarization is a concise description that captures the salient details of information. In the medical domain,
summarization can be useful for helping people easily understand and address the diverse nature of questions
and answers.

MeQSum [73] is a dataset comprising 1,000 consumer health questions and their expert-crafted summaries.
The questions are carefully chosen from a collection provided by the U.S. NLM, ensuring a diverse and rep-
resentative selection of consumer health questions. The dataset is particularly noteworthy for its method of
summarization, meticulously carried out by three medical experts adhering to stringent guidelines to ensure
the quality and utility of the summaries. The summarization process followed by these experts is governed
by two critical principles. First, the summary must allow the retrieval of correct and complete answers to the
original questions. Second, the summary cannot be shortened further without meeting the first condition.

CHQ-Summ [74] is a CHQ summarization dataset consisting of 1,507 consumer health questions and corre-
sponding summaries. It is created from the Yahoo community QA forum that has a diverse set of users’ ques-
tions. It contains additional annotations about question focus and question type of the original question, which
are all annotated by domain experts.

MEDIQA-AnS [75] is a dataset designed for question-driven, consumer-focused summarization. It contains
156 consumer health questions, corresponding answers to these questions, andmanually generated summaries
of these answers.

In Table 2, we compare some medical QA datasets. A notable distinction among the datasets is their source.
Most datasets, such as cMedQA2, webMedQA, and Huatuo-26M, are sourced from community-driven med-
ical consultation platforms such as Xywy Community, Baidu Doctor, and Qianwen Health. These platforms
are primarily Chinese-language websites, which means the datasets predominantly represent Chinese patients
and healthcare practitioners, resulting in limited ethnic and geographical diversity. Additionally, the range
of diseases covered may not be fully comprehensive, and the quality and reliability of the answers can vary
due to differences in expertise among the responding doctors. Despite the limitations, these datasets provide
a rich repository of user-generated medical inquiries and professional responses, making them particularly
useful for developing consumer-facing medical QA systems. On the other hand, PubMedQA and MeQSum
leverage more formal medical literature and research databases such as PubMed and the U.S. NLM. While
these datasets do include some international content, they are primarily based on U.S. sources, thus reflecting
healthcare practices, patient demographics, and disease prevalence patterns that are more representative of the
American population. This may limit their generalizability to other ethnic groups and geographical regions. A
major limitation of datasets sourced from online communities is the variability in the accuracy and reliability
of the information. These datasets may have limited coverage of diseases, and the quality of responses can vary
significantly based on the expertise of the contributing doctors. Conversely, datasets such as PubMedQA offer
a higher degree of reliability but may lack the diversity of inquiries that arise from everyday medical concerns.

A critical factor in the utility of these datasets is the inclusion of real versus generative data. Datasets such as
Huatuo-26M, Chatmed, and ShenNong incorporate both real and synthetic data. The inclusion of generative
data, when carefully modeled, can significantly enhance the coverage of edge cases and underrepresentedmed-
ical conditions. It enables QA systems to handle rare or hypothetical medical inquiries, which may not often
arise in real-world consultations. However, generative data can also introduce noise into the training pro-
cess, particularly if the synthetic data is of lower quality or inaccurately generated. This underscores the need
for careful validation of generated content to prevent the dissemination of incorrect or harmful medical advice.
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Table 2. Overview of medical question answering datasets

Dataset Format Size Release time Field Source Contain real data Contain generative data Language

cMedQA2 Q+A 108k+203k 2017 General medical field Xywy Community Yes No Chinese

webMedQA Q+A 316k+63k 2019 General medical field Baidu Doctor & 120ask Yes No Chinese

Huatuo-26M Q+A 26m+26m 2023 General medical field Wiki, Qianwen Health Yes Yes Chinese

Chatmed Q+A 500k+500k 2023 Medical Question & Answering Search Engines No Yes Chinese

PubMedQA Q+context+A 500+500 2019 General medical field PQA-Labeled, PQA-Unlabeled, PQA-Artificial Yes Yes English

HealthSearchQA Q 3175 2023 General medical field Search Engines Yes No English

CovidDialog Q+A 15k 2020 COVID-19 and pneumonia Haodf Yes No Chinese

IMCS-21 Q+context+A 164k 2022 Pediatric medicine Muzhi Doctor Yes Yes Chinese

sft-20k Q+A 560k+180k+298k 2023 General medical field Qizhen Yes Yes Chinese

ShenNong Q+A 110k 2023 Traditional Chinese Medicine Open-source medical knowledge graph No Yes Chinese

MeQSum Q+A 1k+4k+3k 2019 General medical field U.S. National Library of Medicine, Quora Yes No English

CHQ-Summ Q+A 1560 2022 Healthcare Yahoo! Answers Yes No English

Each dataset is suited for specific applications in medical QA. For instance, IMCS-21 is tailored to pediatric
medicine, making it highly specialized for QA systems focusing on children’s health. The detailed, context-
specific nature of this dataset makes it ideal for systems that require deep, domain-specific knowledge. Simi-
larly, CovidDialog, released in 2020 in response to the COVID-19 pandemic, offers targeted information on
COVID-19 and other pneumonia-related conditions, making it an invaluable resource for QA applications
focused on respiratory diseases. The release dates of these datasets are indicative of their relevance to current
healthcare challenges. For example, datasets such as Huatuo-26M and Chatmed, released in 2023, reflect the
latest developments in large-scale QA system training and integrate recent developments in medical knowl-
edge, making them well-suited for modern medical applications.

In summary, each dataset within this comparative analysis offers unique strengths depending on the target
application, the need for real or synthetic data, and the specific medical domain. While large datasets such
as Huatuo-26M and sft-20k are indispensable for building comprehensive, large-scale QA models, smaller
datasets such as PubMedQA and MeQSum remain critical for high-accuracy tasks that demand evidence-
based answers. Thus, the choice of dataset should be guided by the specific needs of the QA system - whether
for broad coverage, specialized knowledge, or linguistic precision.

2.3.2 Multimodal data
This category includes datasets that involve multiple modalities, such as text, images, and time series data. In
the medical domain, multimodal language models offer a promising direction for further research. In Figure 3,
we present a partial display of the content from four multimodal datasets.

VQA Datasets
Medical visual question answering (Med-VQA) has tremendous potential in medicine, particularly in fields
such as radiology and pathology. These two fields are rich in both imaging data and textual reports, making
them prime candidates for VQA applications.

VQA-RAD [76] is a manually-crafted dataset in radiology where questions and answers are given by clinicians.
It contains 3,515 visual questions of 11 types and 315 corresponding radiological images.

SLAKE [77] is a large bilingual dataset with comprehensive semantic labels annotated by experienced physicians
and an extendable knowledge base for Med-VQA. It contains 642 radiology images including 12 diseases and
39 organs of the whole body, with 14,028 QA pairs and 5232 medical knowledge triplets.

PathVQA [78] is a pathology VQA dataset containing 32,799 QA pairs of eight categories, generated from 4,998
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Figure 3. Partial content display of multimodal dataset.

images. The majority of questions in PathVQA are open-ended, and the other half are “yes/no” questions.

ROCO [80] is a multimodal image dataset, containing over 81K radiology images with several medical imaging
modalities. It is constructed by retrieving all image-caption pairs from PMC. All images have corresponding
captions, keywords extracted from the image caption, UMLS Concept Unique Identifiers and Semantic Type.

MedICaT [81] is a dataset that encompasses medical figures, captions, subfigures and subcaptions, and inline
references that enable the study of these figures in context. The dataset’s content is meticulously extracted
from open-access articles available in PMC, ensuring figures and captions. Additionally, the corresponding
reference texts are sourced from the S2ORC [41]. It contains 217,060 figures collected from 131,410 open-access
scientific papers. Moreover, the dataset includes inline references for approximately 25,000 figures from the
ROCO [80] dataset.

Among these datasets, VQA-RAD is a pioneering dataset for radiology VQA, consisting of radiological im-
ages and related medical questions. It focuses on enhancing the understanding of diagnostic images through
QA, making it valuable for medical decision support systems. SLAKE extends the concept by incorporating a
broader set of modalities (CT, MRI, X-rays) and both visual and textual inputs. This allows for more complex,
multimodal reasoning tasks. PathVQA is specific to pathology images, such as histopathological slides, and is
valuable for disease diagnosis in pathology using VQA techniques.

U-Xray, CheXpert, PadChest, and MIMIC-CXR focus on chest X-ray classification and segmentation. These
datasets are widely used in developing models for automatic disease detection (e.g., pneumonia, pneumotho-
rax) and diagnosis from X-rays. CheXpert, with over 224,000 labeled images, provides precise annotations for
several lung diseases, making it a benchmark for chest disease classification. PadChest contains over 160,000
labeled images and expands its scope with Spanish-language reports, contributing to multilingual model train-
ing. ROCO and ROCOv2 are aimed at report generation frommedical images. They cover a variety of medical
imaging modalities, such as X-rays, CT scans, and MRIs, along with their corresponding textual descriptions.
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These datasets enable models to generate human-readable medical reports, which can assist radiologists in
producing structured reports efficiently.

MIMIC-CXR, with over 370,000 chest X-rays and associated clinical reports, is one of the largest and most
diverse datasets available for medical imaging research. It is widely used for tasks such as disease classification,
report generation, and clinical decision support. Similarly, CheXpert and PadChest offer large volumes of an-
notated images but focus more specifically on X-ray data, whereas MIMIC-CXR includes a broader range of
accompanying clinical information, making it suitable for more complex multimodal tasks. U-Xray, though
smaller in size, remains valuable for tasks such as detecting lung diseases in X-ray images. Its specialized focus
on specific modalities and conditions makes it ideal for benchmarking models on chest X-ray classification
tasks.

SLAKE, ROCO, MedlCaT, and PMC-15M offer multimodal data, which combines medical images with tex-
tual annotations or descriptions. This allowsmodels to tackle tasks that require understanding bothmodalities
simultaneously, such as VQA, report generation, or image-text matching. PMC-15M, with its combination of
images and full-text articles, supports complex natural language processing (NLP) tasks in medical research,
while ROCO enables report generation tasks that can directly influence clinical workflow efficiency.

Multi-omics datasets
Multi-omics datasets, which integrate various types of biological data such as genomics, proteomics, and
metabolomics, provide a rich and multidimensional foundation for developing LLMs.

Cancer multi-omics datasets [90] include ten datasets that contain multi-omics data from different cancer types,
with each dataset corresponding to a specific cancer. These datasets typically include three key omics layers:
gene expression, DNAmethylation, andmiRNA expression. The number of patients ranges from 170 for acute
myeloid leukemia (AML) to 621 for breast invasive carcinoma (BIC), offering a diverse range of data for train-
ing LLMs in cancer research.

Each dataset offers unique benefits depending on the intended use case and the specific tasks in medical
image processing, report generation, or VQA. CheXpert, PadChest, and MIMIC-CXR stand out in disease
detection and classification from chest X-rays due to their size and rich annotations. VQA-RAD, SLAKE, and
PathVQA are essential for advancing VQA tasks in radiology and pathology. Datasets such as PMC-15M and
MedlCaT provide invaluable resources for multimodal tasks that combine medical images with textual data,
enabling more sophisticated models for clinical decision support and medical research. What is more, the
integration of multi-omics data serves as both a guide for biomedical researchers in identifying suitable deep
learning-based fusion methods and an indication of promising directions for improving multi-omics data fu-
sion techniques.

In summary, the diversity and richness of data sources lay a solid foundation for the development of medi-
cal LLMs, facilitating significant advancements in understanding medical language, processing medical data,
and providing medical decision support. Each dataset’s unique structure and characteristics cater to specific
aspects of healthcare AI technology, ranging from basic QA systems to complex diagnostic tools and patient
management systems. By leveraging these resources, LLMs demonstrate substantial potential to enhance pa-
tient care quality and accelerate medical research.

3. DATASET APPLICATION
Datasets are fundamental to the deployment of LLMs in medicine. They are mainly employed in three aspects:
pre-training, fine-tuning, and evaluation. The application of datasets has been presented in Figure 4.
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Figure 4. The application of datasets in developing medical Q&A LLMs.

3.1. Pre-training
In the pre-training phase, a large corpus of text data including both structured and unstructured text is used
to train the LLMs. The corpus typically consists of various sources such as EHRs, clinical notes, and medi-
cal literature [91]. Some of the most commonly used medical datasets for pre-training medical LLMs include
PubMed [34], MIMIC-III clinical notes [31], and PMC literature [35]. High-quality datasets form the backbone
of LLM pre-training, with MIMIC-III and PubMed serving as pivotal resources. MIMIC-III provides valuable
and extensive data for research, which has facilitated the development of several LLMs, such as ClinicalBert [14],
GatorTron [92], and BlueBERT [93]. PubMed, known for its extensive biomedical literature, has been the foun-
dation for training models such as PubMedBERT [16], BioBERT [94]and GatorTron. These models benefit from
PubMed’s extensive collection of research articles and studies, which enables them to capture a wide range of
biomedical knowledge essential for engaging with scientific texts.

A notable example is GatorTronGPT, which is trained on a massive corpus of 82 billion words of de-identified
clinical text [13] and 195 billion words of general English text from the Pile dataset [40]. GatorTronGPT is
trained from scratch using the GPT-3 [95] architecture with five billion and 20 billion parameters. By leverag-
ing such diverse datasets, models such as GatorTronGPT gain the ability to understand both general English
and domain-specific medical language, enhancing their utility in clinical applications. These datasets can be
employed in combination to enrich the pre-training phase. BlueBERT combines both PubMed and MIMIC-
III for pre-training; BioBERT is pre-trained on both PubMed and PMC; MEDITRON [96] is pre-trained on
the GAP-REPLAY data mixture that contains papers from PubMed and PMC. Through pre-training on these
medical corpora, LLMs are equipped with rich medical knowledge and to tackle various healthcare-related
tasks.

3.2. Fine-tuning
After pre-training, LLMs require further fine-tuning to enhance their abilities. This phase leverages domain-
specific datasets, such as dialogue data, QA pairs, and instructional texts, enabling the models to develop a
nuanced understanding of both natural language and medical terminology. It tailors the model for specific
medical tasks, allowing it to interpret and generate medical texts effectively.

For LLMs in medicine, supervised fine-tuning (SFT) and instruction fine-tuning (IFT) are two commonly
used methods. These methods involve training the model on specific datasets to adapt it to the desired do-
main or task. SFT utilizes high-quality medical corpus such as physician-patient conversations, medical QA,
and knowledge graphs. IFT constructs instruction-based training datasets, typically comprising instruction-
input-output triples, to enhance the ability of instruction following. An example of IFT is the training process
ofMed-PaLM 2 [18], where the base LLM is PaLM 2 [97]. Med-PaLM 2 is fine-tuned using the datasets including
MedQA, MedMCQA, HealthSearchQA, LiveQA, and MedicationQA. The fine-tuning followed the protocol
used by Chung et al., resulting in improved performance on medical Q&A benchmarks [98].
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In addition, building upon the CMeKG [47], BenTsao [99] utilizes diverse instructional data for its instruction
tuning process. MedAlpaca [19], built upon the LLaMA [100], is fine-tuned using over 160,000 medical QA
pairs sourced from Medical Meadow [19]. Similarly, ChatDoctor [64] is obtained by fine-tuning the LLaMA
model [100] on HealthCareMagic-100k [64] following the Stanford Alpaca [69] training method. It is first fine-
tuned with Alpaca’s data and further refined on HealthCareMagic-100k to improve its medical knowledge ac-
curacy. Other models such as Qilin-Med [101] and Zhongjing [68] are obtained by incorporating the knowledge
graph from ChiMed [101] and CMtMedQA [68] to perform fine-tuning on the Baichuan [102] and LLaMA [100]

respectively to enhance their medical reasoning capabilities.

3.3. Evaluation
Evaluation is critical to the success of LLMs, which helps us better understand their strengths and weaknesses.
Evaluating LLMs for medical applications typically involves using Q&A benchmarks where the models an-
swer questions from a dataset, and their responses are scored based on predefined metrics, such as accuracy,
precision, and recall, which are highly relevant to clinical applications. For text generation tasks, BLEU and
ROUGE metrics are commonly applied to assess how closely the generated output matches the ground truth.
For example, MultiMedQA [59] is designed to evaluate the capabilities of LLMs in answering medical questions
across various formats, including multiple-choice and long-form answers. This benchmark compiles datasets
from diverse sources, such as professional medical exams, medical research, and consumer health inquiries,
providing a more thorough assessment of LLM performance beyond traditional multiple-choice accuracy or
standard natural language generation metrics such as BLEU. The evaluation process tests LLMs not only on
their factual accuracy but also on their medical reasoning capabilities and ability to handle both open-domain
and closed-domain questions.

In addition, metrics such as Recall@K for retrieval tasks and AUC for classification tasks are frequently em-
ployed. For instance, PMC-CLIP [82], pretrained on the PMC-OA dataset, is evaluated using Recall@K for
image-text retrieval on ROCO [80] and AUC and accuracy metrics for image classification, where it showed
strong capabilities in these tasks. Clinical prediction with LLMs (CPLLM) [103] is evaluated on four predic-
tion tasks: patient hospital readmission prediction, along with three specific diagnosis predictions for Chronic
Kidney Disease, Acute and Unspecified Renal Failure, and Adult Respiratory Failure. The first two diagnoses
are derived from the MIMIC-IV dataset, while the last diagnosis is derived from the eICU-CRD dataset [104].
MIMIC-IV provides the start time for admission and discharge times, and eICU-CRD associates each diagno-
sis with a timestamp, making them similarly applicable for patient readmission prediction tasks.

Models such asMed-PaLM [59] andMed-PaLM 2 [18] are tested onMultiMedQA. USMLE [105], PubMedQA [53],
andMedMCQA [106] are three popular datasets to evaluate their effectiveness. Codex-Med [107], PMC-LLaMA [108],
Galactica [109], GatorTronGPT [12] and Med-PaLM 2 [18] are evaluated on these three datasets. USMLE is also
used to evaluate the performance of MedAlpaca in a zero-shot setting. Additionally, iCliniq [64] is used to test
ChatDoctor’s performance for a quantitative evaluation. HuatuoGPT [56] undergoes evaluation using three
Chinese QA datasets: cMedQA2 [49], webMedQA [50], and Huatuo26M [51] with GPT-4 and doctors compar-
ing the responses from HuatuoGPT and making evaluations. The cMedQA2 dataset is also used to evaluate
ClinicalGPT [110], which is conducted using automated evaluation metrics, with GPT-4 serving as the refer-
ence model. Other models such as LLaVA-Med [111] and Med-Flamingo [112] are evaluated on VQA datasets.
VQA-RAD [76], SLAKE [77] and Path-VQA [78] are used to evaluate LLaVA-Med. VQA-RAD, Path-VQA and
Visual USMLE are used to evaluate Med-Flamingo to measure their performance in medical-related tasks. Re-
cently, MMedBench, covering 21 medical fields, has been designed to assess the accuracy of multiple-choice
QA tasks and the ability to generate rationales across multiple languages [113]. The evaluation of eleven LLMs
shows that MMed-Llama 3, built on the foundation of LLaMA 3, demonstrates strong performance compared
with models such as LLaMA, ChatDoctor, and MedAlpaca. The linguistic diversity of datasets used in evalua-
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tions provides deeper insights into the models’ capabilities, not only across various medical domains but also
in their adaptability to multilingual healthcare contexts.

4. CHALLENGES
Several important factors such as data availability, data curation, quality, and deserve careful consideration.

4.1. Availability and open access
Accessibility of datasets is a key factor in determining their usability for external researchers. They can generally
be categorized into three groups based on their accessibility [114,115]. Open access datasets are easily available
to external researchers, often requiring only simple registration or an email request. These datasets provide
valuable resourceswithout the need for complex approvals. In contrast, regulated access datasets require formal
agreements, such as institutional approvals, ethical clearance, or payments, due to the sensitive nature of the
data. While these safeguards ensure compliance with regulations, they also create barriers that can slow down
access. Lastly, inaccessible datasets are publicly listed as available but are often difficult to obtain due to issues
such as non-responsiveness or outdated access links. Many medical datasets fall into the regulated access
category, requiring formal approvals to protect sensitive information, while some may be inaccessible despite
being listed as available [30]. These barriers highlight the challenges researchers face when trying to access
medical data for LLM development.

4.2. Data curation and quality
Data curation tasks, including discovering, extracting, transforming, cleaning, and integrating data, remain
critical yet resource-intensive efforts for organizations [116]. Data scientists often spend over 80% of their time
on these tasks [117], as generic tools are rarely sufficient for the diverse and domain-specific requirements en-
countered in practice. The quality of available datasets also varies significantly, as many datasets are poorly
curated, with incomplete or unlabeled data, making it difficult to train effective models. The process of human
labeling is resource-intensive and requires domain expertise, while unsupervised learning methods face chal-
lenges due to the need for high accuracy [118]. Improved data curation practices, such as better structuring and
labeling, are essential to enhance the quality and usability of medical datasets for LLM training.

4.3. Data scarcity and fragmentation
Data scarcity and fragmentation remain significant obstacles in medical research, as medical data is frequently
siloed across different institutions and stored in various formats. Multimodal biomedical data fusion has
become essential in modern healthcare research, integrating diverse data sources such as medical images,
biomarkers, and physiological signals to provide amore comprehensive understanding of biological systems [119].
This approach enhances decision-making in key areas such as disease diagnosis, treatment planning, and pa-
tient monitoring by leveraging the strengths of each data modality.

4.4. Ethical considerations
Ethical concerns about using LLMs in the medical domain are significant, particularly around patient privacy,
safety, and sensitive data use. A key issue is the collection and potential exposure of protected health infor-
mation input into LLM application programming interfaces (APIs), which could be accessed by unauthorized
parties. The lack of transparency from companies on how they store and use this data raises ethical questions
about submitting sensitive information. Thus, strict controls for de-identification and informed consent must
be implemented when handling protected health information in LLMAPIs. Another major issue is the leakage
of personally identifiable information (PII) [120,121]. LLMs trained on large datasets may inadvertently expose
sensitive PII, such as email addresses or other confidential details, through vulnerabilities such as prompt injec-
tion attacks. So, it is essential to implement rigorous safeguards and data protection measures when deploying
LLMs in clinical settings.
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Moreover, data that disproportionately represents certain populations may result in biased models that per-
form poorly for underrepresented groups, exacerbating health disparities. Researchers must consider these
ethical factors and, where possible, implement bias mitigation strategies and uphold the highest standards of
data privacy and protection. There are also concerns about bias in medical datasets, which can result in LLMs
that benefit certain populations while marginalizing others. In particular, the datasets used to train these mod-
els typically come from well-funded institutions in high-income, English-speaking countries. This leads to a
significant under-representation of perspectives from other regions of the world, causing LLMs to adopt views
that are biased toward the healthcare processes of high-income countries [122]. As a result, additional training
could be integrated into the model development process to ensure that LLMs serve diverse patient populations
equitably, and global datasets should be incorporated to reduce geographical and socioeconomic biases.

4.5. Limitations and future directions
Current medical datasets are relatively smaller than those used for general LLMs, covering a limited portion
of the medical knowledge domain [59]. LLMs trained on these datasets may perform well on benchmarks, but
they often struggle with real-world tasks such as differential diagnosis and personalized treatment planning [18].
While generating high-quality synthetic datasets for training could help broaden themodel’s knowledge, it risks
causing LLMs to experience forgetting [123]. Further research is necessary to validate the effectiveness of syn-
thetic data for medical LLMs and to develop techniques that mitigate such risks.

For evaluation, existing medical Q&A benchmarks often rely on metrics such as classification accuracy or
natural language generation scores (e.g., BLEU [124]), which may not cover the full breadth of clinical scenarios
and decision-making processes that occur in real-worldmedical practice. Multiple-choice tasks, often featured
in these benchmarks, are much easier than real-world medical decisions that require synthesizing patient in-
formation and formulating individualized treatment plans, as they are grounded by experts. Although the
MultiMedQA benchmark addresses some of these gaps by offering a diverse set of questions from medical
exams, research, and consumer health queries, it is not exhaustive enough. It currently lacks coverage across
all medical and scientific domains and is limited to English-language datasets, which restricts its applicability
in global healthcare settings. To effectively evaluate LLMs, it is crucial to expand these datasets to include
multilingual evaluations and more comprehensive clinical tasks, such as open-ended assessments that mirror
actual clinical workflows. This expansion will enable models to be tested on their ability to reason through
medical complexities, and provide accurate responses that are essential in real-world clinical environments.

5. CONCLUSIONS
This survey presents a comprehensive overview of the datasets in medicine and their pivotal role in developing
LLMs. Datasets serve not only as a foundation for training LLMs but also as benchmarks for evaluating their
performance. Each stage of datasets’ application is critical for ensuring that the models are practically effective
in real-worldmedical settings. Looking forward, the continued expansion and refinement of these datasets will
be essential. Future research should focus on enhancing dataset transparency and quality, addressing privacy
concerns, and integrating multimodal data to enrich model training. The development of medical datasets is
a dynamic and evolving field that holds the key to unlocking the full potential of LLMs in medicine.
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