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Abstract
As a promising mode of water transportation, unmanned surface vehicles (USVs) are used in various fields owing to
their small size, high flexibility, favorable price, and other advantages. Traditional navigation algorithms are affected by
various path planning issues. To address the limitations of the traditional deep deterministic policy gradient (DDPG)
algorithm, namely slow convergence speed and sparse reward and punishment functions, we proposed an improved
DDPG algorithm for USV path planning. First, the principle and workflow of the DDPG deep reinforcement learning
(DRL) algorithm are described. Second, the improved method (based on the USVs kinematic model) is proposed,
and a continuous state and action space is designed. The reward and punishment function are improved, and the
principle of collision avoidance at sea is introduced. Dynamic region restriction is added, distant obstacles in the
state space are ignored, and the nearby obstacles are observed to reduce the number of algorithm iterations and save
computational resources. The introduction of a multi-intelligence approach combined with a prioritized experience
replay mechanism accelerates algorithm convergence, thereby increasing the efficiency and robustness of training.
Finally, through a combination of theory and simulation, the DDPG DRL is explored for USV obstacle avoidance and
optimal path planning.
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1. INTRODUCTION
An unmanned surface vehicle (USV) is a vessel that can autonomously navigate on the surface of water and per-
form various tasks. Research on USVs is of great significance for marine development andmonitoring because
it can effectively improve efficiency, reduce risks and costs, and support the rational utilization and protection
of marine resources. As a type of water transportation with broad application prospects, unmanned vessels
have attracted considerable attention from researchers and industries, and they are used in various professional
domains [1]. These vehicles are capable of performing various tasks in the marine environment, such as patrol
security, anti-submarine warfare, marine survey, underwater detection, and rescue operations [2]. The study of
USVs can aid in understanding the marine environment and resource allocation, as these vehicles can perform
tasks at sea for a long time without being limited by factors such as personnel fatigue and safety. This method
can also be used to perform tasks instead of personnel in rescue, reducing the risk of casualties. It is more
advantageous in terms of operation and maintenance costs and does not require personnel to drive, which
reduces training costs. It is favored for its efficiency, safety, and low cost. Research on path planning can help
USVs to avoid obstacles, optimize navigation routes, improve efficiency, and ensure vessel safety [3]. In the dy-
namic and complex water environment, USVs have to travel to destinations autonomously, and therefore, they
have more rigorous requirements in terms of route planning and route adjustment depending on the actual
situation [4]. Traditional route planning methods have limitations and cannot adapt to real-time changes and
uncertainties in complex environments. Therefore, determining how to use reinforcement learning algorithms
to realize autonomous obstacle avoidance path planning has become a topic of focus in current research. For
example, Su et al. proposed multi-intelligence reinforcement learning and used it in unmanned ground vehi-
cles to capture escaping targets [5]. Moreover, they utilized the soft actor-critic (SAC) algorithm and introduced
an attention mechanism to prevent collision of the capturing vehicle. Additionally, they proposed a reward
function strategy by combining individual and collaborative rewards. In this context, the capturing vehicle
was deemed the obstacle, the escaping vehicle was deemed the destination, and path planning was performed
to reach the goal point. For example, Feng et al. proposed reinforcement learning to solve the UAV navigation
problem [6]. The UAV navigation task is modeled as a Markov decision process (MDP) with parameterized
actions. In addition, the sparse reward problem is also taken into account. To address these issues, develop the
HER-MPDQN by combining multi-pass deep Q-network (MP-DQN) and hindsight experience replay (HER).

Many traditional path planning algorithms have been proposed, such as the A* algorithm for global path plan-
ning, which can find solutions in a limited map space. Yu et al. combined a speed barrier with A* calculation,
unlike the traditional A* algorithm, to propose a new collision-proof path planning method that limits the
risk of being trapped in a local minimum [7]. Zhang et al. proposed to reduce the number of turning points
by increasing the cost function of the turning points to smooth a path [8]. These approaches represent sig-
nificant improvements over the traditional A* algorithm, but their memory consumption is excessive when
dealing with large-scale problems, and the search needs to be re-trained if the obstacles change. Yu et al. pro-
posed the improved D*lite algorithm with an enhanced path cost function to reduce the range of nodes and
shorten the path length by using the inverse distance weighted interpolation approach [9]. Jin et al. combined
conflict-based search algorithms for path planning in the presence ofmap transformations [10]. The approaches
proposed in the literature [9,10] are a significant improvement over traditional D*lite, D*lite is based on discrete
grids, and therefore, continuous space processing needs to be optimized. If a large number of obstacles are en-
countered, it will fall into local optimization. For example, the dynamic window approach (DWA) is associated
with local path planning algorithms. Zhang et al. proposed vector field adaptive DWA to clarify the obstacle
information in all directions [11]. This method differs from the traditional DWA algorithm, which improves the
evaluation function, solves the DWA route bypass problem, and provides the maximum acceleration to limit
dynamic performance. Cao et al. designed velocity transformation and safe distance evaluation coefficients by
considering the velocity and direction of movement between a robot and an obstacle [12]. They modified the
DWA algorithm, which is computationally less intensive and offers real-time capabilities. However, in more
complex environments, DWA falls into local minima points, and the local path planning method is more re-
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stricted in other environments. In summary, the traditional global and local path planning algorithms lack
generalization ability for new environments, tend to fall into local optima, and consume excessive memory. In
addition, they have insufficient ability to handle continuous space.

Reinforcement learning has been considered widely by scholars at home and abroad since it was proposed,
and it is the current research hotspot in relation to path planning. The algorithms proposed thus far include
Q-learning, deep Q-network (DQN), and deep deterministic policy gradient (DDPG). Zhou et al. introduced
a Q-table initialization method by incorporating a new action-selection policy and a new reward function, in
addition to adapting the root mean square propagation (RMSprop) method for learning rate adjustment [13].
Wang et al. combined a radial basis function (RBF) neural network with the Q-learning algorithm for func-
tion approximation to improve the convergence speed of the algorithm from literature [14]. In addition, they
redesigned the reward function to take into account the USV’s heading angle and turning performance and
proposed a safety threshold. The improved Q-learning algorithm converged faster and planned better paths,
but the computational cost of the approach was higher for high-dimensional state spaces. Moreover, when
using function approximation, it may face problems such as overfitting and gradient explosion. Yu et al. de-
fined the state and action spaces in the double DQN architecture, in addition to designing a reward function to
evaluate and guide model training [15]. TheDQN algorithm is an extension of Q-learning that uses deep neural
networks to approximate the Q-function and handle complex, high-dimensional state spaces. Although these
approaches largely improved the traditional DQN algorithm, they were adapted to discrete spaces and required
increased computational effort for continuous actions. Moreover, the improved approaches were more sensi-
tive to hyperparameters. Therefore, we adopt the DDPG algorithm, which can deal with higher-dimensional
state spaces and continuous action spaces, instead of the previously described reinforcement learning algo-
rithm. The DDPG algorithm is stable, and the inclusion of two additional target networks helps reduce jitter
in the training process and improves stability. Liu et al. and Zhou et al. proposed multi-intelligence reinforce-
ment learning path planning, and their results indicated that multi-intelligence can improve system stability
in complex environments to a greater extent than single intelligence [16,17]. This shortens the training time
and increases computational efficiency. Liu et al. proposed multi-intelligence and combinatorial-prioritized
experience replay mechanisms to solve the problem of inefficient experience reuse [16]. However, when using a
large number of intelligences, the coordination and cooperation between themmust be considered, which will
increase the computational burden. Moreover, a large amount of space to store the experiences of these intelli-
gences in large-scale environments. Zhou et al. proposed the novel task decomposedmulti-agent twin delayed
deep deterministic policy gradient (TD-MATD3) and redesigned the reward function achieving good results
in complex dynamic environments, it still did not completely solve the problem of heavy computational bur-
den of multi-intelligence agent, and it did not involve the International Regulations for Preventing Collisions
at Sea (COLREGs), did not introduce constraints, and did not conform to the actual navigation situation [17].
Wu et al. proposed combines the original sparse reward de-coupling with an artificial potential field method to
design new reward and punishment functions to solve the problem of reward sparsity and improve algorithm
efficiency [18]. However, the problem of sensitive parameter settings remained unsolved, and in complex envi-
ronments, the artificial potential field may not be adjusted efficiently and would be extremely time-consuming
with a high probability of falling into a local optimum. Chen et al. attempted to reduce Q-value overestima-
tion and enhance the ability of an agent to explore the global optimum [19]. A warm-up stage was introduced
to improve stability at the beginning of training and accelerate the convergence speed of training. However,
excessive reliance on the warm-up phase, which requires substantial debugging to find the right value in more
complex environments, can increase the training time. Moreover, reducing Q-value overestimation can lead
to local optimality in complex environments. Feng et al. introduced intrinsic motivation and added HER
to the DDPG algorithm to improve its exploration ability [20]. They used the beluga whale optimization algo-
rithm for hyperparameter optimization to improve the algorithm training process. However, the combination
of intrinsic motivation and HER increases the computation burden, which can lead to over-exploration, and
HER needs to select the appropriate replay target, failing which the learning rate can decrease. Yang et al.
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proposed the use of the deep reinforcement learning (DRL) and velocity obstacle (VO) methods, introduced
the principle of COLREGs, and added the VO algorithm to the reward function to avoid collisions based on
the sailing speed [21]. In addition, they solved the problem of sparse rewards by using the fuzzy theory of com-
putation and introduced the navigational influence factor (NIF) to construct the state space. Although the
introduction of the speed barrier method is more consistent with the actual navigation situation, application
of the fuzzy theory may lead to uncertainty in the decision-making process, and the influence factor increases
the complexity of the state space and decreases the processing speed. Although the abovementioned studies
largely improved the DDPG algorithm, a few shortcomings persist. For example, the reward design is overly
complicated; the warm-up phase has been introduced, but a balance between exploration and utilization is yet
to be achieved; and coordinating the emergence of multiple intelligences needs to be realized. In addition, the
improved algorithm converges faster, but it is more complex, which leads to other problems.

According to the literature, this paper is integrated to provide different opinions. The DDPG reinforcement
learning algorithm improves the combinatorial reward function, sets the dynamic region restriction, uses dual
intelligences combined with a prioritized experience replay mechanism, sets the action space by considering
the actual situation of USV navigation, and incorporates the COLREGs principle.

The contributions of this paper can be summarized as follows:
1. A DDPG reinforcement learning framework based on actor critics is proposed. This framework uses the
properties of the DDPG algorithm and is applied to a continuous action space. Considering the problem of
reward sparsity, a new continuous reward function is designed to improve the motivation of intelligent bod-
ies, such that there exists a corresponding reward or punishment for each step. The convergence speed of the
algorithm is improved.
2. To save computational resources, we employ the dynamic region restriction method, which is designed to
let an intelligent agent ignore faraway obstacles and retain only a small number of obstacles around itself to
reduce the computational burden.
3. Dual intelligences are combined with the prioritized experience replay mechanism to allow the intelligences
to share their experiences with each other, which greatly reduces the training time, increases the overall plan-
ning efficiency, and improves the learning speed. Dual intelligences help avoid the scenario in which a large
number of intelligences increases the computational burden, and yet, they are more efficient than a single in-
telligence.
4. To ensure greater consistency with the actual USV navigation situation, we set up the action space to prevent
USV movement from being in line with actual large turns, such as 180 degrees, per the COLREGs principle.
Doing so enhances the safety and optimization of navigation routes.

The remainder of this paper is summarized as follows: Section 1 describes the working principle of the DDPG
reinforcement learning algorithm, and Section 2 describes how we improve the DDPG algorithm, with each
subsection explaining individual improvements. In Section 3, we describe experimental simulations con-
ducted using different-sized maps and obstacles to demonstrate algorithm feasibility and compare the pro-
posed approach to traditional DDPG algorithms, namely deep Q-network (DON) and combined prioritized
experience replay with multi-intelligent depth deterministic policy gradient (CPER-MADDPG). In the final
section, the future outlook is summarized.

2. DDPG DRL ALGORITHMS
The DDPG algorithm entails reinforcement learning, which can be represented by Markov decision making.
This algorithm mainly involves an intelligent agent, an environment, states, rewards, and punishments. The
intelligent agent obtains a state in the current environment, and based on this state, it performs the next action
and obtains a reward or punishment value. The agent interacts continuously with the environment to obtain
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Figure 1. Basic framework of reinforcement learning.

as many rewards as possible. The basic framework is illustrated in Figure 1.

The DDPG algorithm has prominent advantages over other reinforcement learning algorithms. It can han-
dle complex inputs such as high-dimensional state spaces, and it can use images as a function approximator
through neural networks. It is more capable at handling continuous action space problems, and it uses a deter-
ministic policy that outputs continuous actions, which helps improve the convergence of continuous action
space. The DDPG algorithm solves the continuous action problem, drawing mainly on the methods of DQNs,
namely experience replay and goal networks. Moreover, the DDPG algorithm adds a policy network on top of
DQNs to output actions directly, which is different from other reinforcement learning algorithms. The policy
network and the Q-network are essentially actor-critic (AC) structures. The policy network performs as an
actor, the Q-network scores each action of the actor, and the policy network adjusts its policy continuously
according to the scores of the Q-network; that is, it updates the parameters of the neural network.

The optimal strategy for a DQN is to learn a very good Q-network that will hopefully pick an action to max-
imize the Q-value. The actors cater to the critics, and therefore, the gradient of the optimal strategy network
aims to maximize the Q-value, whereas the loss function aims to cause Q to take a negative sign, as given in

𝑙𝑜𝑠𝑠 = −𝑄𝜔 (𝑠, 𝑎) , (1)

where variable 𝜔 represents the parameters of the Q-network, 𝑠 denotes the current state, and 𝑎 denotes the
current action. We optimize the Q-network in the same way as we optimize the DQN, that is, by using 𝑟 +
𝛾𝑄𝜔 (𝑠′, 𝑎′) to fit the future reward 𝑄_𝑡𝑎𝑟𝑔𝑒𝑡 and letting the output of the Q-network 𝑄𝜔 (𝑠, 𝑎) approximate
the 𝑄_𝑡𝑎𝑟𝑔𝑒𝑡, such that the loss function of the optimized Q-network can be used to determine the mean-
square deviation of the two values, as determined by

𝑙𝑜𝑠𝑠 = [𝑄𝜔 (𝑠, 𝑎) , 𝑟 + 𝛾𝑄𝜔 (𝑠′, 𝑎′)], (2)

where 𝑟 stands denotes real reward, 𝛾 denotes the discount factor, 𝜔 denotes the 𝑡𝑎𝑟𝑔𝑒𝑡_𝑄 network and
𝑡𝑎𝑟𝑔𝑒𝑡_𝑃 network, 𝑠′ denotes the next state, and 𝑎′ denotes the next action. However, DDPG draws on the
deep Q network and will inevitably have some defects of the deep Q network. For instance, if the 𝑄_𝑡𝑎𝑟𝑔𝑒𝑡
is unstable, the next 𝑄𝜔 (𝑠′, 𝑎′) is unstable as well. 𝑄𝜔 (𝑠′, 𝑎′) is also a prediction. To increase its stability, the
DDPG algorithm builds target networks for the Q network and the policy network, respectively (the 𝑡𝑎𝑟𝑔𝑒𝑡_𝑄
network and 𝑡𝑎𝑟𝑔𝑒𝑡_𝑃 policy network), as illustrated in Figure 2. The 𝑡𝑎𝑟𝑔𝑒𝑡_𝑄 network is used to calculate
the next 𝑄𝜔 (𝑠′, 𝑎′) value, and the 𝑡𝑎𝑟𝑔𝑒𝑡_𝑃 network is used to output the next action 𝑎′ = 𝜇𝜃 (𝑠′). The next
𝑄𝜔 (𝑠′, 𝑎′) value can be found only by using the next state and action. DDPG comprises four networks, and the
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Figure 2. Basic structure of DDPG algorithm. DDPG: Deep deterministic policy gradient.

two additional networks are used to ensure that the calculation of 𝑄_𝑡𝑎𝑟𝑔𝑒𝑡 is more stable. These two target
networks fix the parameters for a certain period before synchronizing the latest parameters with the evaluation
network, that is, 𝜔 for the Q network and 𝜃 for the strategy network, such that the target value fluctuates to a
lesser extent and prevents the estimates from increasing. This fixation period is called the update interval.

The training data required by the DDPG algorithm include the current state, current action, reward and pun-
ishment value, and next state, which is stored using a playback buffer and is sampled and trained to achieve
optimization. The basic structure of the DDPG algorithm is depicted in Figure 2.

3. IMPROVING THE DDPG DRL ALGORITHM
In this paper, we improve and optimize the original DDPG algorithm, and in this section, we focus on the
state and action space, combined excitation function design, dynamic region restriction, prioritized empirical
replay mechanism, multi-intelligence agent, and introduction of Gaussian noise.

3.1 USVs kinematics model
We present a schematic of the coordinate system of USVs in Figure 3. Then, the second-order kinematic
equation of the USVs is established, as follows:

¤𝜐𝑖 = 𝑎𝑣
¤𝜔𝑖 = 𝑎𝜔

¤𝑥𝑖 = 𝜐𝑖 cos𝜓𝑖

¤𝑦𝑖 = 𝜐𝑖 sin𝜓𝑖

¤𝜓𝑖 = 𝜔𝑖


, (3)

where 𝜐𝑖 denotes speed, 𝜓𝑖 denotes heading,𝜔𝑖 is angular velocity, 𝑎𝜐 is acceleration, and 𝑎𝜔 represents angular
acceleration.

In this USV kinematics model, we use second-order kinematics equations that consider only the speed, head-
ing, angular velocity, acceleration, and angular acceleration; that is, only the forward speed of the USV, range
of the horizontal left and right directions, forward acceleration, and acceleration of the left and right steering
are considered. The heading speed 𝜐𝑖 and angular velocity 𝜔𝑖 are limited by the constraints 0 ⩽ 𝜐𝑖 ⩽ 𝜐max,
−𝜔max ⩽ 𝜔𝑖 ⩽ 𝜔max. The specific settings are presented in 3.2.2 Action space. The setting range allows
the USV to conform to the actual situation, which ensures that forward movement is smooth, turning action
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Figure 3. Schematic diagram of coordinate system of USV. USV: Unmanned surface vehicle.

Figure 4. USV state space. USV: Unmanned surface vehicle.

is not too fast, and steering action amplitude is not too large, avoiding the situation of instant 180 turn. The
proposed model is a relatively simple second-order equation that does not consider a few situations such as
wind and waves. We hope to add more situations in a subsequent study.

3.2 Designing state and action spaces
3.2.1 State spaces
In the DRL process, intelligence is based on the state information received from the environment to determine
what action to take next. Therefore, a reasonable state space must be designed. The state space should contain
the current position of the unmanned ship, position of the obstacle, and target position. We use the plane
right-angle coordinate system, that is, X-axis and Y-axis, to represent the positions of the USV, obstacle, and
target by coordinates, which indicate the distance between the current USV position and the obstacle and
target points. The state space of environmental observation information is presented in Figure 4.

3.2.2 Action spaces
TheDDPG is used to solve the continuous action space problem, where the action space needs to be designed
considering the possible actions that the USV may take to avoid obstacles and reach the target point. The
USV can change its heading by controlling the rudder angle to avoid obstacles and reach the target point.
The common continuous range for heading design is [−90◦, 90◦]. During training, if the steering angle is
excessively large, the USV path may not be smooth, the training time may be long, and other problems may be
encountered. In this paper, the designed heading range is [−30◦, 30◦], continuous angular velocity range is
[−20◦/𝑠, 20◦/𝑠], and angular acceleration is set to 20◦/𝑠2. Meanwhile, the propulsion magnitude is adjusted
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Figure 5. USV action space. USV: Unmanned surface vehicle.

to control the USV speed, which is adjusted in the obstacle avoidance process. The simulationmap is a 20×20
grid constructed using Python, and therefore, the continuous propulsion speed range could be designed as
[0, 1𝑚/𝑠], acceleration is set to an output of 0.8𝑚/𝑠2 continuous action in DDPG, and a tanh function layer
is added to the output layer. This function limits the output to [−1, 1] and then adds, subtracts, and scales the
output according to the actual action. The rudder angle and speed are combined to form a two-dimensional
(2D) action space, and they can be adjusted simultaneously in the USV obstacle avoidance process to increase
flexibility, as illustrated in Figure 5.

3.3 Improved combined reward and penalty functions
After designing the USV state and action spaces, we design the continuous reward and punishment functions
based on the motion, position, obstacles, start point, and endpoint of the USV. The reward and punishment
functions are used to evaluate the success of DRL decisions, which affect the convergence of the entire algo-
rithm and play a decisive role in the whole process. The common DDPG reward and punishment functions
are given as

𝑅 =


−2 , ℎ𝑖𝑡

5, 𝑎𝑟𝑟𝑖𝑣𝑎𝑙
0, 𝑜𝑡ℎ𝑒𝑟

 , (4)

where 𝑅 denotes the overall reward. To solve the reward sparsity problem, we design a new continuous re-
ward and punishment function to introduce the COLREGs principle, and we add the USV heading angle and
maintain a safe distance. Therefore, the USV can obtain the corresponding reward and punishment each time
it takes an action.

When the USV touches an obstacle, it is penalized 𝑟1. When it reaches the target point, it is rewarded 𝑟2.
The closer the target point, the higher is the reward, and the distance between the USV and target point is
computed as follows:

𝑑1 =
√
(𝑋1 − 𝑋2)2 + (𝑌1 − 𝑌2)2, (5)

where 𝑑1 denotes the straight-line distance between the USV and the target point. The current position coor-
dinates of the USV are (𝑋1, 𝑌1) and those of the target point are (𝑋2, 𝑌2 ). Then, the reward is designed using
the following exponential function:

𝑟3 = 𝑡𝑒−𝑑1 , (6)

where 𝑡 is a positive constant set to 10. The reward is lower when 𝑑1 is greater and higher when the distance is
smaller until the value of the exponential function reaches 𝑡, which indicates arrival at the target point. Herein,
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Table 1. Reward and punishment functions

Reward Current status of USVs

𝑟1 = 10 Get to the target point
𝑟2 = −5 Hit an obstacle
𝑟3 = 𝑡𝑒−𝑑1 Distance to target point
𝑟4 = −1 0 ⩽ 𝑑𝑖 ⩽ 1/6
𝑟5 = 𝑘 cos 𝜃 Angle between forward direction and target point
0 Other

USVs: Unmanned surface vehicles.

the map designed using the distance formula is a 20 × 20 environment, and therefore, it is set to assign a
penalty of 𝑟4 when 0 ⩽ 𝑑𝑖 ⩽ 1/6, as follows:

𝑑𝑖 =
√
(𝑋1 − 𝑋𝑖)2 + (𝑌1 − 𝑌𝑖)2, (7)

where 𝑖 denotes each obstacle, (𝑋1, 𝑌1) denote the current position coordinates of the USV, and (𝑋𝑖 , 𝑌𝑖) denote
the position coordinates of the obstacle. The rewards are designed based on the cosine function, intercept 0
to 180◦. The cosine function 0 to 180◦ is a monotonically decreasing function. As the angle 𝜃 decreases, the
USV moves toward the target point, and the reward increases. When the angle is greater than 180◦, a penalty
is assigned (the greater the angle, the higher is the penalty). When the angle is 180◦, the USV is moving in
the direction opposite to that of the target point. The reward and penalty functions are expressed as follows:

𝑟5 = 𝑘 cos 𝜃, (8)

where 𝑘 is a positive constant set to 5, 𝜃 denotes the angle between the direction of advance of the USV and
the target point. The details are summarized in Table 1, and the final reward function is expressed as follows:

𝑅 = 𝑟1 + 𝑟2 + 𝑟3 + 𝑟4 + 𝑟5 (9)

3.4 Dynamic area restrictions
On top of the original foundation of state-space obstacles, we performed dynamic region restriction. The
dynamic region limiting mechanism allows us to ignore the influence of those obstacles that are farther from
theUSV.Only the obstacles near theUSV are observed, and the information of these obstacles is removed from
the state space, so that the USV can explore little by little and adapt better to the complexity of the environment.
State space tailoring is performed to adjust the state space according to the training process and changes in the
environment around the USV at the current location. In this work, the USV is designed to observe five nearby
obstacles, ignore other obstacles, reduce the number of algorithm iterations, and reduce computer resource
usage, as illustrated in Figure 6.

3.5 Replay buffer
When using the DDPG algorithm for path planning, after completion of the design of the above sections, the
design of the experience pool is considered, which largely determines the convergence speed of the algorithm
and whether the planned path is shorter and smoother. The traditional replay buffer uses uniform random
sampling batches, and consequently, certain experiences are not sampled at one time or are sampled multiple
times. Intelligent agents collect samples with different degrees of importance, and to speed up the training
of intelligent agents and increase training efficiency, all the experiences in the experience pool are sampled at
least once by incorporating a prioritized experience replay mechanism, as follows:

𝑃 (𝑖) =
𝑝𝛼𝑖∑
𝑘 𝑝

𝛼
𝑘

, (10)
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Figure 6. USVs observation space. USVs: Unmanned surface vehicles.

where 𝑃 (𝑖) is the sampling probability of each experience, and 𝑝𝑖 is the priority of the 𝑖 experience. When
Equation (2) is smaller, the better the strategy, the higher is the priority. Theweight of the priority to control the
degree of priority is 𝛼. When 𝛼 is 0, the sampling is uniform. The total number of samples in the experience
pool is represented by 𝑘 . In priority sampling, uneven samples, which are biased, are utilized. To solve this
problem, importance is assigned to sampling weights, as follows:

𝜔𝑖 =

(
1
𝑁

1
𝑝 (𝑖)

) 𝛽
. (11)

where 𝜔𝑖 is the importance of sampling weights for each experience, 𝑁 denotes the experience size of each
batch, and 𝛽 is the degree to which the control introduces offsetting biases.

3.6 Bidirectional search method
We use prioritized experience replay, on the basis of which we introduce the multi-intelligence agent idea. Two
commonmethods are used for multi-intelligence agent experience replay. In the first method, an independent
experience replay buffer is set up for each intelligent agent, where each intelligent agent uses its own prioritized
experience replay mechanism. In the second method, the experiences of multiple intelligences are shared and
merged into a shared replay buffer, and then, a prioritized experience replay is implemented for this buffer. In
the prioritized experience replay mechanism introduced herein, dual intelligences and distributed prioritized
replay, which applies the prioritized experience replay mechanism in a distributed environment by using the
experience of multiple intelligences to update the priority level together, are employed. Multi-intelligences
can store experiences in a buffer for sample training and learn from shared experiences. The shared experi-
ence buffer increases the diversity of experiences, provides more sample data, and accelerates the optimization
of strategies in cooperative tasks, which helps increase the training efficiency. Moreover, a shared buffer can
reduce the amount of maintenance required compared to individual buffers, which reduces resource consump-
tion, just as a single intelligence does. The two intelligent agents begin at the start and endpoints and move
toward the end and start points, respectively, before they collide in the middle and finally find the optimal
path, as illustrated in Figure 7.

3.7 Gaussian noise
Upon the introduction of noise in the DDPG algorithm, the policy network outputs a deterministic action
value instead of randomly sampled actions. However, to add explorability to the DDPG algorithm, Gaussian
noise is added to the deterministic action. A randomized Gaussian noise process is used to maintain a degree
of exploration while maintaining continuity and smoothness.

The action value output from the strategy network is added to the random noise obtained by sampling the
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Figure 7. USV bidirectional search. USV: Unmanned surface vehicle.

Gaussian distribution, and the result is then used as the final action output. Noise variance is reduced gradually
during the training process, and in the later training stages, the output of the strategy network itself is relied
upon. As the number of training steps increases, the noise variance decreases, as follows:

𝜑 =
1

𝑠𝑡𝑒𝑝
, (12)

where 𝜑 denotes noise variance, and 𝑠𝑡𝑒𝑝 denotes the number of steps in the current training process.

By introducing random Gaussian noise and gradually decreasing its variance, we can balance the exploratory
and exploitative aspects and improve the performance and stability of the algorithm to some extent.

3.8 Improved DDPG algorithm pseudo-code
To enhance the understanding of the running process of the improved DDPG reinforcement learning algo-
rithm 1, its pseudocode is provided, as follows:

3.9 Comparison of advantages and disadvantages of existing algorithms
In Table 2, the strengths and weaknesses of the existing DDPG algorithms described in the Introduction are
presented concisely and clearly.

The advantages of the algorithm proposed herein compared to the existing algorithms are as follows: A new
continuity reward function is designed considering the problem of reward sparsity. A dynamic region re-
striction method is introduced to reduce the computational burden by allowing an intelligent agent to ignore
faraway obstacles and retain only a few obstacles around itself. A dual-intelligent agent combined with a pri-
oritized experience replay mechanism method is added, where the dual-intelligent agent avoids the problem
of too many intelligences leading to a larger burden and improves the efficiency compared to that of a sin-
gle intelligent agent. Intelligent agents are allowed to share experiences with each other, which reduces the
training time substantially and increases the overall planning efficiency and learning speed. To ensure greater
consistency with the actual USV sailing situation, we set up the action space such that large USV movements
such as 180-degree turns are avoided; the COLREGs principle is introduced; and the planned path is away
from obstacles to improve safety and optimize sailing routes.
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Algorithm 1: Improving the DDPG reinforcement learning algorithm
Initialization :Parameters of the Q-network and the policy network for each intelligence.

Two target network parameters for each intelligence.
Store, the experience playback pool, sets the prioritization adjustment parameter 𝛼 and

the importance sampling parameter 𝛽.

1 for episode in range(M): do
2 Initialize the noise function 𝑠𝑡𝑒𝑝 for action exploration.
3 Initialize environment initialization 𝑆.
4 Initialize dynamic region limit = 5.
5 for t in range(T) do
6 for i in range(Two_agents) do
7 Consider dynamic region restriction to select action a, a = dynamic region restriction (a).
8 end
9 Execute action a and observe reward r, next s_next.
10 for i in range(Two_agents) do
11 compute improved reward function, R = compute improved reward function (s, a, r,

s_next).
12 end
13 Store to the prioritized experience playback buffer Store=(s,a,R,s_next) and take a small batch

from it.
14 for i in range(Two_agents) do
15 Optimize the gradient loss function of the policy network with loss so that Q takes a

negative sign 𝑙𝑜𝑠𝑠 = −𝑄𝜔 (𝑠, 𝑎).
16 Optimize the loss function loss for the Q network is to find the mean square deviation of

these two values 𝑙𝑜𝑠𝑠 = [𝑄𝜔 (𝑠, 𝑎) , 𝑟 + 𝛾𝑄𝜔 (𝑠′, 𝑎′)].
17 Update the priority in the priority experience playback buffer.
18 end
19 Update the target network.
20 Update current observation s=s_next.
21 end
22 end

4.1 Modeling of the mission environment
We used Python to construct a 2D raster map representing the environment of the USVmoving on the surface
of water. The size of the raster map was set as 20 × 20. In Figure 8, the black part indicates the obstacles on
the water surface and those under the water; red dot indicates the starting point; distant green point indicates
the endpoint; and empty white part indicates the free passage area.

4.2 Parameter setting
A few specific parameter settings of the improved DDPG algorithm proposed herein are presented in Table 3.

4.3 Algorithm comparison
The start point is (0, 0), endpoint is (19, 19), and path planning is performed using the improved DDPG
algorithm, original DDPG algorithm, and DQN algorithm proposed herein.

As illustrated in Figure 9, from the path planning perspective, the original DDPG algorithm and the improved
DDPG algorithm proposed herein were able to reach the destination from the starting point. The proposed
improved DDPG algorithm planned a smoother path than that planned by the original DDPG algorithm; the

4. RESULTS
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Table 2. Comparison of the existing algorithms

Existing algorithms Advantages Disadvantages

Liu et al. [16] A combination of multi-intelligentsia and combinatorial
prioritization of experience replay mechanisms

Multi-intelligence coordination and cooperation. Re-
quires a lot of space to store experience

Zhou et al. [17] Multi-intelligent agent TD-MATD3 binding, a new re-
ward function

Multi-intelligence coordination and cooperation. Re-
quires a lot of space to store experience

Wu et al. [18]
Artificial potential field method for designing reward
and punishment functions to improve prioritized expe-
rience replay structure

The parameter settings are sensitive, and the man-
ual potential field is not efficiently adjusted, time-
consuming, and trapped in a local optimum

Chen et al. [19] Reducing the overestimation ofQ, improving the reward
function, and introducing a warm-up phase

Relies on a warm-up phase that requires extensive de-
bugging to increase training time. Reduces overestima-
tion of Q and falls into local optimality in complex envi-
ronments

Feng et al. [20] Introducing intrinsic dynamics HER, beluga whale opti-
mization algorithm for hyperparameter optimization

The combination of intrinsic motivation and HER in-
creases computation, leading to over-exploration, and
HER requires suitable targets for replay

Yang et al. [21]
DRL and speed barriers combined, COLREGs intro-
duced, VO algorithm incorporates reward functions,
fuzzy theory calculations, NIF constructs state spaces

The application of fuzzy theory leads to uncertainty in
the decision making process and the influence factors
increase the state space complexity

TD-MATD3: Task decomposed multi-agent twin delayed deep deterministic policy gradient; HER: hindsight
experience replay; DRL: deep reinforcement learning; COLREGs: International Regulations for Preventing Colli-
sions at Sea; VO: velocity obstacle; NIF: navigational influence factor.

Figure 8. 2D grid environment. 2D: Two-dimensional.

Table 3. Parameter setting

Parameters Retrieve a value

𝐴𝑐𝑡𝑜𝑟 − 𝑙𝑟 0.001
𝐶𝑟𝑖𝑡𝑖𝑐 − 𝑙𝑟 0.001
𝑔𝑎𝑚𝑚𝑎 0.99
𝑡𝑎𝑢 0.005
𝑠𝑒𝑒𝑑 10
𝑛𝑜𝑖𝑠𝑒 0.1
𝑁1 512
𝑁2 512
𝑠𝑡𝑒𝑝 300
𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒_𝑛𝑢𝑚 50
𝑎𝑔𝑒𝑛𝑡_𝑠𝑖𝑧𝑒 0.3
𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒_𝑠𝑖𝑧𝑒 0.5
𝑚𝑎𝑥_𝑣𝑖𝑠𝑖𝑏𝑙𝑒_𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠 5

http://dx.doi.org/10.20517/ir.2024.22


Page 376 Hua et al. Intell Robot 2024;4(4):363-84 I http://dx.doi.org/10.20517/ir.2024.22

Figure 9. Paths planned using original and improved DDPG algorithms. DDPG: Deep deterministic policy gradient.

Figure 10. Steering angle and forward distance.

planned paths were shorter and did not exhibit excessive jitter.

Meanwhile, depending on the actual situation, the reward functions of the action space and continuity were
changed such that the planned path was far away from obstacles and smoother without excessive steering.
The steering angle and forward distance of the final path planned using the improved DDPG algorithm are
illustrated in Figure 10, where the steering angle is not excessively jittery and is stable, and the forward distance
is maintained at 0.99m.

Figure 11 depicts the number of coordinate points of the X- and Y-axes of the path planned using the improved
DDPG algorithm.

As illustrated in Figure 12, herein, we use dual intelligences combined with a prioritized experience replay
mechanism. The proposed improved DDPG algorithm can reach relatively stable values within a shorter time
in the early stages of training compared to the original DDPG algorithm, and the combined rewards for each
episode in the early stage of training are higher than those of the original algorithm. The improved DDPG
algorithm tends to reach higher values at around 500 episodes and stabilizes at 670 episodes, while the original
DDPG algorithm stabilizes at 900 episodes.
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Figure 11. X- and Y-axes’ coordinate points.

Figure 12. Algorithm convergence comparison.

In the same environment, we apply the DQN algorithm, and the results are presented in Figure 13, along with
a comparison of the paths planned by the three algorithms. The DQN algorithm is trained, and in the current
environment from the starting point, the jitter of the planned path is excessive, and the path does not reach
the target point. The convergences of the DQN, DDPG, and the proposed improved DDPG algorithms are
illustrated Figure 14.

The improved DDPG algorithm was compared to the original DDPG and DQN algorithms. The results indi-
cated that the DQN algorithm planned an incomplete path, and it did not converge. The proposed improved
DDPG algorithm changed the state and action spaces and redesigned the continuity reward and punishment
functions such that the ranges of steering and advancement were narrowed. This, to a certain extent, restricted
excessive fluctuation of the USV trajectory and smoothed and shortened the planned path, as illustrated in
Figure 13. Simultaneously, the multi-intelligence agent priority experience replay mechanism was used, one
from the middle to the starting point and one from the starting point to the endpoint. This reduced the plan-
ning distance to a certain extent. In addition, the dynamic area restriction was used to observe five obstacles in
the vicinity while ignoring the other obstacles to reduce the number of algorithmic iterations, save computer
resources, and accelerate the convergence speed of the algorithm, as depicted in Figure 14. The path planned
by the improved DDPGwas 16.81% shorter than that planned by the traditional DDPG algorithm. Moreover,
the convergence speed of the proposed algorithm was 34.32% faster than that of the traditional algorithm.
The details are presented in Table 4.
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Figure 13. Comparison of three paths.

Figure 14. Comparison of convergences of three algorithms.

Table 4. Comparison of traditional and proposed DDPG algorithms

Path length Comprehensive incentives

DQN Unfinished Not converged
DDPG 34.05 900
Improvement of DDPG 29.15 670

DDPG: Deep deterministic policy gradient; DQN:
deep Q-network.

The parameters 𝑛𝑜𝑖𝑠𝑒 and 𝑡𝑎𝑢 were revised considering the original parameters, as summarized in Table 3.
The 𝑛𝑜𝑖𝑠𝑒 value was changed to 0.2 to increase the magnitude of noise and add exploration. The value of 𝑡𝑎𝑢
was changed to 0.009 to increase the speed of parameter update of the target network. The path planning
results obtained using the above parameter settings are presented in Figure 15.

The length of the planned path was 31.35, which was longer and slightly more jittery than the path planned
before changing the parameters. Additionally, the proposed improved DDPG had a consistently higher conver-
gence speed than that of the algorithm with the changed parameters, as illustrated in Figure 16. Changing the
values of other parameters yielded unsatisfactory results, and the results indicated that the parameter settings
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Figure 15. Comparison of paths planned using the improved DDPG with parameter changes. DDPG: Deep deterministic policy gradient.

Figure 16. Convergences of improved DDPG algorithm and the algorithm with changed parameters. DDPG: Deep deterministic policy
gradient.

presented in Table 3 were more appropriate.

Based on the original environment, the starting and endpointswere changed to (5, 15), endpointwas (19, 2.5),
and triangular obstacles were added randomly to verify the feasibility of the algorithm. The results are pre-
sented in Figure 17, indicating that the improved algorithm was able to avoid the obstacles and find the end-
point.

To further verify the effectiveness of the proposed improved algorithm, based on the initial environment, we
added 20more obstacles to increase the complexity of the environment, as shown in Figure 18. The improved
algorithm was still able to find the target point, the planned path did not have much jitter, and the path length
was 33.98.

In the above experiments, we increased only the number and type of obstacles and changed the starting and
endpoints. To explore further, we increased the map size to 25×25, where the endpoint was (24, 24), and set
the number of obstacles to 80 to verify the feasibility of the improved DDPG algorithm. As shown in Figure 19,
the improved algorithm was still able to plan the path, and the jitter was not excessive.
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Figure 17. Adding obstacles and changing the starting point.

Figure 18. Improving DDPG algorithm path in complex environments. DDPG: Deep deterministic policy gradient.

The results of the above experiments indicate that the proposed improved DDPG algorithm performed path
planning effectively. To further validate this result, we used the method proposed by Liu et al., which mainly
adopts MADDPG combined with a prioritized empirical replay mechanism, and makes a small change to the
prioritized replay mechanism to redefine the prioritized ordering [16]. We extracted only the method (CPER-
MADDPG) and applied it to USV path planning in this work. The method proposed by Liu et al. has some
similarities to the improved method proposed herein, and therefore, it was selected for comparison [16].

Because only the method was extracted, to verify whether the method could plan the path in the environment
considered herein, the experimental environment was changed to a simpler 15 × 15 map, but the number of
obstacles remained unchanged at 50. As depicted in Figure 20, the performance of the proposed improved
algorithmwas still considerable. We used normal priority experience replay and added dynamic region restric-
tion to save computer resources and accelerate algorithm convergence. The reward function was modified to
ensure that the planned paths were less jittery and distant from obstacles.
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Figure 19. Paths obtained by applying improved DDPG algorithm to different map sizes. DDPG: Deep deterministic policy gradient.

Figure 20. Comparison of the paths planned using the improved DDPG algorithm and the CPER-MADDPG algorithm. DDPG: Deep deter-
ministic policy gradient; CPER-MADDPG: combined prioritized experience replay withmulti-intelligent depth deterministic policy gradient.

The results of the above experiments verified the feasibility of the proposed method, and therefore, the envi-
ronment was changed to the initial environment for comparison; the results are presented in Figure 21. The
improved DDPG algorithm planned a smoother path with less jitter and fewer sharp corners compared to
that planned by the CPER-DDPG algorithm. The lengths of the paths planned by the improved DDPG algo-
rithm andCPER-DDPG algorithmwere 29.15 and 30.92, respectively, indicating that the proposed algorithm
planned a shorter path. The proposed algorithm changed the continuity reward function and action space,
such that the planned paths were shorter and less jittery. As depicted in Figure 22, the convergence rate of the
CPER-DDPG algorithm was consistently slower than that of the proposed algorithm in the early stages, and
it reached the same level gradually at around 1, 500 iterations. The proposed algorithm stabilized after 670
iterations, but the CPER-DDPG algorithm stabilized after 860 iterations. The CPER-DDPG algorithm used a
multi-intelligence agent combined with a priority experience replaymechanism, while the proposed algorithm
additionally used dynamic region restriction to reduce the number of iterations and accelerate convergence.
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Figure 21. Comparison of paths planned using the proposed improved DDPG algorithm and CPER-MADDPG for different maps. DDPG:
Deep deterministic policy gradient; CPER-MADDPG: combined prioritized experience replay with multi-intelligent depth deterministic pol-
icy gradient.

Figure 22. Convergences of improved DDPG and CPER-MADDPG algorithms. DDPG: Deep deterministic policy gradient; CPER-MADDPG:
combined prioritized experience replay with multi-intelligent depth deterministic policy gradient.

In sum, we compared the proposed algorithm with the traditional DDPG algorithm and DQN algorithm. By
changing the parameter settings of the proposed improved DDPG algorithm for comparison, increasing the
number of irregular triangular obstacles in the original environment, using different map sizes, and extracting
the method proposed in [16] and applying it to the experimental environment of this paper for comparison, we
verified the feasibility of the proposed improved DDPG algorithm.

5. CONCLUSIONS
In this paper, the improved DDPG algorithm was proposed for USV path planning. Based on the DDPG algo-
rithm, the continuity reward function was redesigned, and the COLREGs principle was introduced to solve the
reward sparsity problem. Dynamic region restriction was added to reduce the number of algorithm iterations
and save computational resources. The multi-intelligence body bidirectional search method and distributed
priority replay mechanism were introduced to accelerate algorithm convergence. Through experiments, it
was demonstrated that the improved DDPG algorithm converged faster, and the paths planned using it were
smoother and shorter, thereby verifying the feasibility of the improved algorithm. The improved DDPG al-
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gorithm increased the efficiency and accuracy of path planning, as well as the safety of USV navigation by
introducing COLREGs, which helps USVs navigate complex environments. In terms of the dynamics of the
setup, the state space still does not consider the real sailing situation. Meanwhile, in the future, the perfor-
mance of the proposed algorithm should be explored in different environments by considering more real-time
factors such as the wind, waves, and weather conditions. Additionally, the algorithm could also be extended to
other types, such as financial trading to optimize the timing of automated buying and selling, and healthcare to
dynamically adjust drug dosages. Furthermore, deep learning techniques could be incorporated to optimize
the continuous reward function and dynamic region restriction.
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