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Abstract
In this study, a simple decentralized H∞ fault-tolerant observer-based proportional-integral-derivative formation tracking
design is proposed for network control systems of large-scale low earth orbit satellites under external disturbance,
coupling and malicious attack signals via wireless communication channels. First, a novel reference-based feedforward
linearization control scheme is introduced, transforming the nonlinear formation output feedback tracking control
problem into an equivalent linearized formation tracking control system of each satellite. To prevent faults from
corrupting the estimation and control of the satellite formation, two novel smoothing models of actuator and sensor
fault signals are embedded in the equivalent linearized formation system of each satellite. Then, a decentralized H∞
fault-tolerant observer-based proportional-integral-derivative control strategy is proposed to efficiently attenuate the
effect of actuator and sensor faults, measurement noise and satellite coupling on the overall team formation. We only
need to solve a linear matrix inequality-constrained optimization problem for each satellite to achieve the optimal H∞
formation problem. Finally, a team formation example with twelve satellites crossing four orbits for a specific mission
is provided to validate the proposed design, comparing it with other methods.

Keywords: H∞, network control system, LEO, team formation control, fault-tolerant control, PID control, observer,
smoothing model
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1. INTRODUCTION
Recently, due to the anticipated future development of 5G and 6G in wireless communication networks, low earth
orbit (LEO) satellites have gained attention for their low power consumption and minimal transmission delay,
making them a very popular topic in various research areas [1,2]. In the Amazon, Telesat and SpaceX’s project [3],
based on the above advantages in systematic characteristics, a very large amount of LEO satellites have been
employed for developing a team formation of large-scale satellites or satellite constellations. In the future, large-scale
team formations of satellites can enable LEO satellites to attain the global coverage of the earth and solve the
corresponding service of satellite coverage for global wireless communication networks in the 5G and 6G era.

Further, LEO satellites need to establish communication with other satellites through Laser Inter Satellite Links
(LISLs) [4]. Therefore, their communication is not retrieved to the ground station, but to achieve a more efficient
transmission in satellite communication. However, in order to attain an ideal large-scale team formation for ideal
service coverage, the altitude and attitude of large-scale LEO satellites must be efficiently estimated and precisely
controlled in the ground station based on the desired mission during their flying processes. Therefore, the team
formation observer-based trajectory estimation and reference tracking control of large-scale LEO satellites will
become an important research topic.

As for the team formation control methods, the leader-follower (L-F) method is the most common due to its relatively
simple implementation [5,6]. Followers can be controlled to achieve a desired team formation shape with the leader
by keeping at specific altitudes and attitudes. However, in the L-F method, if the leader crashes due to an accident,
the formation cannot be maintained [7]. Therefore, the virtual-leader (V-L) scheme is increasingly considered the
most suitable team formation control method for practical applications, as it does not crash under a disturbed
environment [8,9].

Except for the above methods, team formation tracking control schemes are also suitable for large-scale team
formation control systems. In general, they can be separated into centralized [10,11] and decentralized team formation
tracking control strategies [12,13]. In the centralized team formation tracking control strategy of satellites, all satellites
need to be integrated as a very large augmented system and coordinated by a single large controller. Therefore, this
may significantly increase the design difficulty and control computational complexity because the team formation
of all satellites has to be achieved simultaneously by one controller and the information of all satellites needs to
be processed at once. In general, it is very difficult to design a centralized team formation tracking control for
multiple quadrotor unmanned aerial vehicles (UAVs). However, the decentralized team formation control strategy of
large-scale satellites can be designed independently for each satellite [14,15]. Therefore, the decentralized strategy is
more suitable for the team formation control design of large-scale LEO satellites in this study.

In the future 5G and 6G era, to meet the development and application of wireless communication networks, the
network control technologies of multi-agents have been widely applied in various research areas [16]. Therefore,
in this paper, network control system (NCS) technologies are applied to team formation control design for large-
scale LEO satellites, i.e., transmitting the trajectory and control information of each LEO satellite via wireless
communication networks. In this situation, the trajectory information of LEO satellites is transmitted from a sender
to a ground control station (GCS). Then, GCS estimates the trajectory information by a Luenberger observer from
the measured signal and calculates the control signal back for each LEO satellite achieving the desired satellite
team formation for a coverage mission [17]. However, the transmission information of output measurement of
satellites to the receiver of GCS and control commands from its sender to actuators of satellites via wireless network
will suffer from measurement noise, channel noise and malicious attack signals, resulting in the degradation of
trajectory estimation and formation tracking performance of NCS of large-scale LEO satellites. In the conventional
proportional-integral-derivative (PID) control designs, they always lie in the local linearized systems. Further,
PID control designs are seldom applied to large-scale nonlinear dynamic systems with external disturbances,
measurement noise, attack signals, and couplings. Therefore, a decentralized observer-based PID control design
is appealing for the robust team formation tracking control design of large-scale NCS of LEO satellites in the
future. To overcome the effect of malicious attack signals on the degradation of trajectory estimation performance of
satellites by a Luenberger observer and on the degradation of PID team formation tracking control performance
of LEO satellites, a decentralized robust H∞ observer-based fault-tolerant PID team formation control strategy is
proposed to efficiently eliminate the effect of malicious attack signals on the trajectory estimation performance of
Luenberger observers and team formation tracking performance of PID controllers of NCS of large-scale LEO
satellites. Recently, fault-tolerant control (FTC) schemes have been a popular research topic and aimed at estimating
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these attack signals for compensating control of these attack signals [18,19]. In this study, a smoothing signal model
based on the extrapolation method is employed without updating model parameters to efficiently estimate attack
signals for compensation control to avoid their effect on trajectory estimation and control performance. With these
two smoothing signal models being embedded in the dynamic model of the LEO satellite, the two attack signals on
the actuator and sensor of LEO satellites can be efficiently estimated and their corruption on team formation can be
effectually eliminated by the proposed robust decentralized H∞ fault-tolerant observer-based PID team formation
control strategy for the NCS of LEO satellites.

To achieve global coverage for LEO satellite services in the 6G era, the number of LEO satellites in NCS needs
to be significantly increased. Therefore, the coupling effects among satellites are unavoidable in the wireless
communication network, i.e., co-channel interference (CCI), and must be considered in the observer-based team
formation traveling control design of NCS of large-scale LEO satellites [20]. Furthermore, sensor measurement noise
and external disturbances affecting satellites are inevitable in the trajectory estimation and formation control of
satellites. External disturbances in outer space include the Earth’s flattening, aerodynamic drag, solar radiation
pressure, and others [21–23]. Consequently, the H∞ fault-tolerant decentralized robust observer-based team formation
control strategy is essential for the NCS of large-scale satellites [24,25] to efficiently estimate the attack signals for
compensation, eliminate the effect of external disturbances, measurement noise and coupling from other satellites,
and achieve the desired team formation for coverage tasks of large-scale LEO satellite NCS. However, since the
system dynamic model of relative positions and attitudes of large-scale satellite systems is very complicated and
highly nonlinear, it is necessary to solve a corresponding highly nonlinear partial differential Hamilton Jacobi Isaac
equation (HJIE) for robust decentralized H∞ fault-tolerant observer-based team formation control design of each
satellite [24,25].

At present, it is still very difficult to efficiently solve this HJIE analytically or numerically. Previously, the altitude
and attitude control of satellites have always been designed separately [26]. Recently, to deal with this difficult
HJIE problem, the fuzzy interpolation method has been employed for interpolating several local linearized satellite
systems at some desired operation points to efficiently approximate the highly nonlinear satellite dynamic system so
that the HJIE of each satellite can be transformed to a set of Riccati-like equations and then a set of easier solvable
linear matrix inequalities (LMIs) [24,27]. Nevertheless, the transformation process from HJIE to a set of LMIs needs
to perform a series of inequality operations, leading to very conservative results. Furthermore, the observer-based
team formation fuzzy control requires very complex calculations for each satellite to obtain observer-based fuzzy
team formation control signals. More recently, a HJIE-reinforcement deep learning algorithm has been employed
to train deep neural networks (DNN) to solve HJIE for the robust H∞ observer-based fault-tolerant decentralized
formation control of NCS of large-scale LEO satellites [25]. However, the design procedure is divided into off-line
training and online operation phases, separately, and the implementation of decentralized H∞ HJIE-reinforcement
DNN-based observer-based fault-tolerant team formation tracking control of LEO satellites seems still complicated
and more effort is still needed for practice application.

The conventional PID control has been successfully applied to control designs of linear satellites with several
practical applications due to their simple structure and easy implementation with adequate performance [28–33].
Recently, an adaptive PID controller has been proposed for FTC of a quadrotor helicopter system [34]. Robust PID
control has been proposed in [31]. A nonlinear PID control has been employed for a quadrotor UAV [32]. However,
traditional PID control designs are always based on a local linearized mode at an operation point of a nonlinear
dynamic system. Since a nonlinear system such as a satellite has many operation points, a set of PID controllers are
typically required to operate at different operation points. Recently, approaches involving the fuzzy interpolation of
local linearized systems have been explored to approximate nonlinear systems such as quadrotor UAVs. For example,
PID controllers can be interpolated through fuzzy bases to achieve decentralized fuzzy reference tracking control
for large-scale quadrotor UAVs. However, if only output measurements are used and a fuzzy observer-based PID
controller is employed, the number of required local fuzzy observer-based PID controllers can grow significantly,
making the design overly complex. This complexity, combined with challenges such as external disturbances,
measurement noise, and system coupling, has hindered the development of observer-based PID control designs for
highly nonlinear systems such as quadrotor UAVs and satellites.

Therefore, in this study, a novel reference-based feedforward linearization observer-based PID team formation design
is proposed to achieve a decentralized robust H∞ fault-tolerant observer-based team formation tracking control of NCS
of large-scale LEO satellites under measurement noise, external disturbances and couplings. First, a reference-based
feedforward linearization tracking control is proposed for each satellite to achieve a linear team formation tracking

http://dx.doi.org/10.20517/ces.2024.70


Page 4 of 30 Chen et al. Complex Eng. Syst. 2025, 5, 1 I http://dx.doi.org/10.20517/ces.2024.70

error system with an equivalent actuator false signal including the error of reference-based feedforward linearization,
actuator attack signal, and coupling from other satellites, and an output measurement system with sensor false
signals including sensor attack signal and measurement noise. Then, a smoothing signal model is employed to
describe the actuator and sensor false signal. Furthermore, two smoothing signal models of equivalent actuator and
sensor fault signals are embedded in the decoupled augmented linear formation tracking system in (17) of each LEO
satellite to avoid the corruption of the estimation and formation tracking control due to actuator and sensor faults.
The actuator and sensor fault signals can be estimated by conventional Luenberger observers for compensating
their corruption effect on the team formation tracking control process. Then, an observer-based PID control design
in (19) is proposed to achieve the robust decentralized H∞ fault-tolerant estimation and team formation tracking
control strategy in (22) of each LEO satellite. This can be reformulated as a two-LMI-constrained problem, solvable
through a two-step design procedure for each satellite in team formation. In this situation, using the LMI Toolbox in
MATLAB, we can obtain the observer gain and control parameters for the observer-based PID controller easily to
satisfy a two LMIs-constrained problem, enabling the robust H∞ decentralized fault-tolerant observer-based PID
team formation design of NCS of large-scale LEO satellites with a prescribed disturbance attenuation level 𝜌. To
avoid the integration of the PID controller, an actuator saturation constraint is also considered with an equivalent
LMI constraint in the design procedure. Therefore, if the optimal H∞ fault-tolerant decentralized observer-based
PID team formation control strategy is considered with an actuator saturation constraint, then we only need to solve
a three-LMI-constrained optimization problem, which can be solved by decreasing 𝜌 until no solution of positive
definite matrix 𝑃𝑇 = 𝑃 > 0 of the quadratic Lyapunov function exists. Therefore, the corresponding PID control
parameters 𝑘𝑖 and observer gain 𝐿𝑖 , as given in (19), can be obtained in a single run using the LMI Toolbox via
MATLAB, thus avoiding the complex parametric tuning process of the conventional PID controller design. This
approach achieves the optimal robust H∞ fault-tolerant decentralized observer-based PID team formation design of
the NCS of large-scale LEO satellites.

In the future 5G and 6G wireless communication network era, a large-scale constellation of LEO satellites will be
developed for global service coverage of the Earth. In this situation, the crossing among these satellite orbits is
unavoidable in the limited space. Therefore, the team formation of large-scale LEO satellites of different satellite
orbits is necessary for the future satellite constellation era. At the end of this study, a simulation example of a team
formation of 12 LEO satellites in four different orbits under distinct environmental disturbances, couplings and
malicious attacks in NCS is provided for a specific coverage task to describe the design procedure and validate the
team formation performance of the optimal H∞ fault-tolerant decentralized observer-based PID team formation
tracking control design under actuator constraint for NCS of LEO satellites.

The main contributions of this work are described as follows:

1. Based on the proposed reference-based feedforward linearization scheme, the team formation tracking control
design problem of large-scale LEO satellites can be reformulated as an equivalent linear reference tracking control
design problem in (10) for each satellite with an equivalent actuator fault. This problem includes the tracking error
of reference-based feedforward linearization, external disturbances, coupling and actuator attack signals.Using the
two smoothing methods (14) and (16), or by accounting for equivalent actuator and sensor faults, the fault signals
are embedded in the formation tracking error system as an independent linear augmented system of each LEO
satellite to avoid corruption and simplify the observer-based team formation tracking control design. Finally, we can
employ a linear observer-based PID control scheme in (19) for each LEO satellite to achieve the H∞ fault-tolerant
decentralized observer-based team formation tracking control strategy in (22) for NCS of large-scale LEO satellites.

2. The smoothing signal model is employed to efficiently model fault and attack signals and then is embedded in the
augmented team formation tracking error dynamic in (17) of each satellite to avoid their corruptive effect on the
estimation of Luenberger observer and PID team formation control in (19) through their precise estimation for the
fault and attack signal compensation by the proposed robust H∞ observer-based decentralized PID team formation
control strategy in (22), which is transformed to two LMIs; one LMI in (30) can be solved for PID controller 𝐾𝑖 and
another LMI in (31) can be solved for observer gain 𝐿𝑖 for the Luenberger observer-based PID control in (19) for
each LEO satellite.

3. The actuator saturation constraints on PID control signals are all transformed to LMIs in (33) for each LEO
satellite for more practical PID control designs.

4. The optimal H∞ fault-tolerant observer-based decentralized PID team formation control design of the NCS of
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Figure 1. Large-scale satellites with multiple orbits.

large-scale LEO satellites with actuator saturation constraints can be transformed into a three-LMIs-constrained
optimization problem in (34) for each satellite in the team. In this way, observer parameters and PID control
parameters can be easily obtained by solving the three-LMIs-constrained optimization problem in (34) in a single
run using the LMI Toolbox via MATLAB. Therefore, we can avoid the complex parameter tuning process of the
conventional PID control design, opening up significant potential for practical applications in the future team
formation control designs of large-scale LEO satellites.

The remainder of this paper is organized as follows: In Section 2, the large-scale satellite systems are introduced
and the problem formulation of the decentralized robust H∞ fault-tolerant observer-based PID control for the team
formation of NCS of large-scale satellites is presented. An observer-based H∞ fault-tolerant PID reference tracking
control scheme for large-scale LEO satellite team formation NCS with external disturbance and measurement noise
is proposed in Section 3. In Section 4, the proposed robust decentralized H∞ fault-tolerant observer-based PID team
formation tracking control design is confirmed by a team formation of 12 LEO satellites in four orbits through a
simulation example. Finally, the conclusion is given in Section 5.

2. SYSTEM MODEL AND PROBLEM FORMULATION
2.1. Satellite system model
In this paper, suppose that a team formation control scheme of NCS of large-scale LEO satellites is employed to
solve a service problem of satellite coverage, as shown in Figure 1. Therefore, the relative motion dynamic models
of satellite altitudes and attitudes are needed first to describe the trajectories of large-scale satellites with a desired
team formation as follows:

2.1.1 Relative translation dynamic of satellite system
A large-scale team formation system of LEO satellites in Figure 2 consists of a virtual leader satellite and a group
of follower satellites. In Figure 2, the coordinate [𝑋,𝑌, 𝑍] denotes the Earth-Centered-Inertial (ECI) frame with
the origin at the mass center of the Earth, and with 𝑋-axis pointing to the direction of the vernal equinox, 𝑍-axis
indicating the spin axis of the Earth and 𝑌 -axis completing the orthogonal triad. For the satellites, based on the
Local-Vertical-Local-Horizontal (LVLH) frame [𝑥, 𝑦, 𝑧], the relative distance between the virtual leader satellite and
a follower satellite can be described, with 𝑥-axis representing the orbit direction operation, 𝑦-axis pointing to the
radial direction, and 𝑧-axis standing for the direction orthogonal to other axes. Then, the relative dynamic model of
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Figure 2. The coordinate frames of a virtual leader satellite and its follower satellite in the team formation.

the 𝑖th follower satellite to the virtual leader satellite can be given as follows [23]:

¥𝑥𝑖 = ¤𝑣𝐸𝐶𝐼,𝑧𝑖 𝑦𝑖 + 2𝑣𝐸𝐶𝐼,𝑥𝑖 ¤𝑦𝑖 + 𝑣𝐸𝐶𝐼,𝑧𝑖 (𝑣𝐸𝐶𝐼,𝑧𝑖𝑥𝑖 − 𝑣𝐸𝐶𝐼,𝑥𝑖 𝑧𝑖) −
𝑢𝑒𝑥𝑖
𝑅3
𝑖

+ 𝐹𝑥𝑖

𝑚𝑖
+ 𝐷𝑑𝑥𝑖

𝑚𝑖

¥𝑦𝑖 = 𝑣2𝐸𝐶𝐼,𝑥𝑖
𝑦𝑖 + 2𝑣𝐸𝐶𝐼,𝑥𝑖 ¤𝑧𝑖 + 𝑣2𝐸𝐶𝐼,𝑧𝑖

𝑦𝑖 − 2𝑣𝐸𝐶𝐼,𝑧𝑖 ¤𝑥𝑖 − ¤𝑣𝐸𝐶𝐼,𝑧𝑖𝑥𝑖 + ¤𝑣𝐸𝐶𝐼,𝑥𝑖 𝑧𝑖 −
𝑢𝑒 (𝑦𝑖+𝑅𝑜 )

𝑅3
𝑖

+ 𝑢𝑒
𝑅2
𝑜
+ 𝐹𝑦𝑖

𝑚𝑖
+ 𝐷𝑑𝑦𝑖

𝑚𝑖

¥𝑧𝑖 = −¤𝑣𝐸𝐶𝐼,𝑥𝑖 𝑦𝑖 − 2𝑣𝐸𝐶𝐼,𝑥𝑖 ¤𝑦𝑖 − 𝑣𝐸𝐶𝐼,𝑥𝑖 (𝑣𝐸𝐶𝐼,𝑧𝑖𝑥𝑖 − 𝑣𝐸𝐶𝐼,𝑥𝑖 𝑧𝑖) −
𝑢𝑒𝑧𝑖
𝑅3
𝑖

+ 𝐹𝑧𝑖

𝑚𝑖
+ 𝐷𝑑𝑧𝑖

𝑚𝑖

𝑖 = 1, . . . 𝑁
(1)

where 𝑣𝐸𝐶𝐼,𝑥𝑖 and 𝑣𝐸𝐶𝐼,𝑧𝑖 denote the 𝑖th orbital velocity of the LVLH frame relative to the ECI frame in the X and Z
directions, respectively. 𝑢𝑒 is the gravitational constant of the Earth. 𝑅𝑜 denotes the radial distance from the center
of the virtual leader to the Earth and 𝑅𝑖 =

√︃
𝑥2
𝑖
+ (𝑦𝑖 + 𝑅𝑜)2 + 𝑧2𝑖 is the distance from the 𝑖th follower mass center

to the Earth. 𝐹𝑥𝑖 , 𝐹𝑦𝑖 ,𝐹𝑧𝑖 denote the control effort on each axis of the 𝑖th follower satellite and 𝐷𝑑𝑥𝑖
, 𝐷𝑑𝑦𝑖

, 𝐷𝑑𝑧𝑖
are

the external disturbance on each axis of the 𝑖th satellite and 𝑚𝑖 is the weight of the 𝑖th satellite, and 𝑁 denotes the
total number of satellites in the NCS.

2.1.2 Nonlinear attitude dynamic system of satellites
Since the attitude needs to account for the team formation of large-scale satellites, according to the body frame
[𝑏𝑖1, 𝑏𝑖2, 𝑏𝑖3], the orbital reference frame [𝑜𝑖1, 𝑜𝑖2, 𝑜𝑖3] and ECI frame [𝑋,𝑌, 𝑍] of the 𝑖th follower satellite, as shown
in Figure 3, the attitude dynamics of the 𝑖th follower satellite can be obtained by solving [35,36]:

¥𝜃𝑖1 (𝑡) = 𝐹𝑖1 (𝑡) +
𝜏𝑖
𝜃1

𝐽 𝑖1
+

𝐷𝑖
𝜃1

𝐽 𝑖1
+ sin 𝜃𝑖2 ¥𝜃𝑖3

¥𝜃𝑖2 (𝑡) = 𝐹𝑖2 (𝑡) +
𝜏𝑖
𝜃2

cos 𝜃 𝑖1𝐽
𝑖
2

+
𝐷𝑖

𝜃2

cos 𝜃 𝑖1𝐽
𝑖
2

− 1
cos 𝜃 𝑖1

(cos 𝜃𝑖2 sin 𝜃𝑖1 ¥𝜃𝑖3)

¥𝜃𝑖3 (𝑡) = 𝐹𝑖3 (𝑡) +
𝜏𝑖
𝜃3

cos 𝜃 𝑖1 cos 𝜃 𝑖2𝐽
𝑖
3

+
𝐷𝑖

𝜃3

cos 𝜃 𝑖1 cos 𝜃 𝑖2𝐽
𝑖
3

+ 1
cos 𝜃 𝑖1 cos 𝜃 𝑖2

(sin 𝜃𝑖1 ¥𝜃𝑖2)
𝑖 = 1, . . . 𝑁

(2)

where 𝐽𝑖
𝑘

is the inertial principal moment of the 𝑖th satellite, 𝜏𝑖
𝜃𝑖

denotes the control torque, 𝐷𝑖
𝜃𝑖

indicates the
external disturbance torque, and 𝐹𝑖𝑘 (𝑡) represents the complicated couplings of nonlinear attitude dynamic in the
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Figure 3. The frames of attitude of the satellite system model

rotation of the 𝑖th follower satellite for 𝑘 = 1, 2, 3, which consist of a large number of highly nonlinear sinusoidal
functions [24,25] and are given as follows:

𝐹𝑖1 (𝑡) = −𝑣𝐸𝐶𝐼,𝑧𝑖 cos 𝜃
𝑖
1 sin 𝜃

𝑖
3
¤𝜃𝑖1 − cos 𝜃𝑖3 sin 𝜃𝑖1 ¤𝜃𝑖3 + cos 𝜃𝑖1 cos 𝜃𝑖2 cos 𝜃𝑖3 ¤𝜃𝑖2 − cos 𝜃𝑖3 sin 𝜃𝑖1 sin 𝜃𝑖2 ¤𝜃𝑖1 − cos 𝜃𝑖1 sin 𝜃𝑖2

sin 𝜃𝑖3
¤𝜃𝑖3

+ cos 𝜃𝑖2
¤𝜃𝑖3 ¤𝜃𝑖2 + cos 𝜃𝑖3 sin 𝜃

𝑖
2𝑣𝐸𝐶𝐼,𝑥𝑖

¤𝜃𝑖2 + cos 𝜃𝑖2 sin 𝜃
𝑖
3𝑣𝐸𝐶𝐼,𝑥𝑖

¤𝜃𝑖3 + sin 𝜃𝑖1 sin 𝜃
𝑖
3 ¤𝑣𝐸𝐶𝐼,𝑧𝑖 − cos 𝜃𝑖2 cos 𝜃

𝑖
3 ¤𝑣𝐸𝐶𝐼,𝑥𝑖 +

cos 𝜃𝑖1 sin 𝜃
𝑖
2

×cos 𝜃𝑖3 ¤𝑣𝐸𝐶𝐼,𝑧𝑖+
(𝐽 𝑖2−𝐽 𝑖3 )

𝐽 𝑖1
[− cos 𝜃𝑖1 sin 𝜃𝑖1 ¤𝜃𝑖2 ¤𝜃𝑖2+cos 𝜃𝑖1 cos 𝜃𝑖2 cos 𝜃𝑖1 ¤𝜃𝑖2 ¤𝜃𝑖3+𝑣𝐸𝐶𝐼,𝑥𝑖 cos 𝜃

𝑖
1 sin 𝜃

𝑖
2
¤𝜃𝑖2+𝑣𝐸𝐶𝐼,𝑥𝑖 cos 𝜃

𝑖
2 sin 𝜃

𝑖
1
¤𝜃𝑖2

+𝑣𝐸𝐶𝐼,𝑥𝑖 sin 𝜃
𝑖
1 cos 𝜃

𝑖
2 sin 𝜃

𝑖
3
¤𝜃𝑖2−𝑣𝐸𝐶𝐼,𝑥𝑖 cos 𝜃

𝑖
2 cos 𝜃

𝑖
2 sin 𝜃

𝑖
3 cos 𝜃

𝑖
1
¤𝜃𝑖3−𝑣𝐸𝐶𝐼,𝑥𝑖 𝑣𝐸𝐶𝐼,𝑥𝑖 cos 𝜃

𝑖
2 sin 𝜃

𝑖
3 sin 𝜃

𝑖
2 −𝑣𝐸𝐶𝐼,𝑥𝑖𝑣𝐸𝐶𝐼,𝑧𝑖

×cos 𝜃𝑖2 sin 𝜃𝑖3 cos 𝜃𝑖1 cos 𝜃𝑖2+cos 𝜃𝑖1 cos 𝜃𝑖1 cos 𝜃𝑖2𝑣𝐸𝐶𝐼,𝑧𝑖
¤𝜃𝑖2−cos 𝜃𝑖2 sin 𝜃𝑖1 sin 𝜃𝑖1 ¤𝜃𝑖2 ¤𝜃𝑖3+cos 𝜃𝑖2 cos 𝜃𝑖2 sin 𝜃𝑖1 cos 𝜃𝑖1 ¤𝜃𝑖3 ¤𝜃𝑖3

+𝑣𝐸𝐶𝐼,𝑧𝑖 cos 𝜃
𝑖
2 sin 𝜃

𝑖
1 cos 𝜃

𝑖
1 cos 𝜃

𝑖
2
¤𝜃𝑖3−𝑣𝐸𝐶𝐼,𝑧𝑖 sin 𝜃

𝑖
1 sin 𝜃

𝑖
1 cos 𝜃

𝑖
3
¤𝜃𝑖2−𝑣𝐸𝐶𝐼,𝑧𝑖 sin 𝜃

𝑖
1 cos 𝜃

𝑖
1 sin 𝜃

𝑖
2 sin 𝜃

𝑖
3
¤𝜃𝑖2+𝑣𝐸𝐶𝐼,𝑧𝑖 sin 𝜃

𝑖
1

×cos 𝜃𝑖3 cos 𝜃𝑖2 cos 𝜃𝑖1+𝑣𝐸𝐶𝐼,𝑧𝑖 cos 𝜃
𝑖
1 cos 𝜃

𝑖
2 cos 𝜃

𝑖
1 sin 𝜃

𝑖
2 sin 𝜃

𝑖
3 +(𝑣𝐸𝐶𝐼,𝑧𝑖 )2 × sin 𝜃𝑖1 cos 𝜃𝑖3 cos 𝜃𝑖1 cos 𝜃𝑖2 +(𝑣𝐸𝐶𝐼,𝑧𝑖 )2 cos 𝜃𝑖1

× cos 𝜃𝑖1 cos 𝜃𝑖2 sin 𝜃𝑖2 sin 𝜃𝑖3];

𝐹𝑖2 (𝑡) = 1
cos 𝜃 𝑖1

[−𝑣𝐸𝐶𝐼,𝑧𝑖 cos 𝜃
𝑖
1 cos 𝜃𝑖3

¤𝜃𝑖1+sin 𝜃𝑖1 sin 𝜃𝑖3 ¤𝜃𝑖3−cos 𝜃𝑖1 cos 𝜃𝑖2 sin 𝜃𝑖3 ¤𝜃𝑖2−cos 𝜃𝑖1 cos 𝜃𝑖3 sin 𝜃𝑖2 ¤𝜃𝑖3+ sin 𝜃𝑖1 sin 𝜃𝑖2 sin 𝜃𝑖3
× ¤𝜃𝑖1 + sin 𝜃𝑖1

¤𝜃𝑖2 ¤𝜃𝑖1 − cos 𝜃𝑖1 cos 𝜃
𝑖
2
¤𝜃𝑖3 ¤𝜃𝑖1 + cos 𝜃𝑖2 cos 𝜃

𝑖
3𝑣𝐸𝐶𝐼,𝑥𝑖

¤𝜃𝑖3 + sin 𝜃𝑖1 sin 𝜃𝑖2 ¤𝜃𝑖3 ¤𝜃𝑖2 − sin 𝜃𝑖2 sin 𝜃
𝑖
3 𝑣𝐸𝐶𝐼,𝑥𝑖

¤𝜃𝑖2 +
cos 𝜃𝑖2 sin 𝜃

𝑖
3 ¤𝑣𝐸𝐶𝐼,𝑥𝑖

− sin 𝜃𝑖1 cos 𝜃𝑖3 ¤𝑣𝐸𝐶𝐼,𝑧𝑖 − cos 𝜃𝑖1 sin 𝜃𝑖2 sin 𝜃𝑖3 ¤𝑣𝐸𝐶𝐼,𝑧𝑖 +
(𝐽 𝑖1−𝐽 𝑖3 )

𝐽 𝑖2
(− sin 𝜃𝑖1 ¤𝜃𝑖1 ¤𝜃𝑖2 + cos 𝜃𝑖2 cos 𝜃𝑖1 ¤𝜃𝑖1 ¤𝜃𝑖3 + 𝑣𝐸𝐶𝐼,𝑥𝑖 sin 𝜃

𝑖
2
¤𝜃𝑖1 +

𝑣𝐸𝐶𝐼,𝑧𝑖

×cos 𝜃𝑖1 cos 𝜃𝑖2 ¤𝜃𝑖1+sin 𝜃𝑖1 sin 𝜃𝑖2 ¤𝜃𝑖2 ¤𝜃𝑖3−sin 𝜃𝑖2 cos 𝜃𝑖2 cos 𝜃𝑖1 ¤𝜃𝑖3 ¤𝜃𝑖3−𝑣𝐸𝐶𝐼,𝑥𝑖 sin 𝜃
𝑖
2 sin 𝜃

𝑖
2
¤𝜃𝑖3−𝑣𝐸𝐶𝐼,𝑧𝑖 sin 𝜃

𝑖
2 cos 𝜃

𝑖
1 cos 𝜃

𝑖
2
¤𝜃𝑖3

−𝑣𝐸𝐶𝐼,𝑥𝑖 sin 𝜃
𝑖
1 cos 𝜃

𝑖
2 cos 𝜃

𝑖
3
¤𝜃𝑖2+𝑣𝐸𝐶𝐼,𝑥𝑖 cos 𝜃

𝑖
1 cos 𝜃

𝑖
2 cos 𝜃

𝑖
2 cos 𝜃

𝑖
3+(𝑣𝐸𝐶𝐼,𝑥𝑖 )2 cos 𝜃𝑖2 cos 𝜃𝑖3 sin 𝜃𝑖2 +𝑣𝐸𝐶𝐼,𝑥𝑖𝑣𝐸𝐶𝐼,𝑧𝑖 cos 𝜃

𝑖
2

×cos 𝜃𝑖3 cos 𝜃𝑖1 cos 𝜃𝑖2−𝑣𝐸𝐶𝐼,𝑧𝑖 sin 𝜃
𝑖
1 sin 𝜃

𝑖
1 sin 𝜃

𝑖
3
¤𝜃𝑖2+𝑣𝐸𝐶𝐼,𝑧𝑖 sin 𝜃

𝑖
1 sin 𝜃

𝑖
3 cos 𝜃

𝑖
2 cos 𝜃

𝑖
1
¤𝜃𝑖3+𝑣𝐸𝐶𝐼,𝑥𝑖𝑣𝐸𝐶𝐼,𝑧𝑖 sin 𝜃

𝑖
1 sin 𝜃

𝑖
2 sin 𝜃

𝑖
3

+(𝑣𝐸𝐶𝐼,𝑧𝑖 )2 sin 𝜃𝑖1 sin 𝜃𝑖3 cos 𝜃𝑖1 cos 𝜃𝑖2+𝑣𝐸𝐶𝐼,𝑧𝑖 cos 𝜃
𝑖
1 sin 𝜃

𝑖
1 sin 𝜃

𝑖
2 cos 𝜃

𝑖
3
¤𝜃𝑖2 −𝑣𝐸𝐶𝐼,𝑧𝑖 cos 𝜃

𝑖
1 sin 𝜃

𝑖
2 cos 𝜃

𝑖
3 cos 𝜃

𝑖
1 cos 𝜃

𝑖
2

− 𝑣𝐸𝐶𝐼,𝑥𝑖𝑣𝐸𝐶𝐼,𝑧𝑖 cos 𝜃
𝑖
1 sin 𝜃

𝑖
2 cos 𝜃

𝑖
3 sin 𝜃

𝑖
2 − (𝑣𝐸𝐶𝐼,𝑧𝑖 )2 cos 𝜃𝑖1 cos 𝜃𝑖1 cos 𝜃𝑖2 sin 𝜃𝑖2 cos 𝜃𝑖3)];

𝐹𝑖3 (𝑡) = 1
cos 𝜃 𝑖1 cos 𝜃 𝑖2

[cos 𝜃𝑖1 ¤𝜃𝑖1 ¤𝜃𝑖2−cos 𝜃𝑖2𝑣𝐸𝐶𝐼,𝑥𝑖
¤𝜃𝑖2+cos 𝜃𝑖2 sin 𝜃𝑖1 ¤𝜃𝑖1 ¤𝜃𝑖3+cos 𝜃𝑖1 sin 𝜃𝑖2 ¤𝜃𝑖2 ¤𝜃𝑖3+cos 𝜃𝑖2 sin 𝜃𝑖1𝑣𝐸𝐶𝐼,𝑧𝑖

¤𝜃𝑖1+
cos 𝜃𝑖1
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×sin 𝜃𝑖2𝑣𝐸𝐶𝐼,𝑧𝑖
¤𝜃𝑖2+sin 𝜃𝑖2 ¤𝑣𝐸𝐶𝐼,𝑥𝑖+cos 𝜃𝑖1 cos 𝜃𝑖2 ¤𝑣𝐸𝐶𝐼,𝑧𝑖+

(𝐽 𝑖2−𝐽 𝑖1 )
𝐽 𝑖3
(cos 𝜃𝑖1 ¤𝜃𝑖1 ¤𝜃𝑖2+cos 𝜃𝑖2 sin 𝜃𝑖1−𝑣𝐸𝐶𝐼,𝑥𝑖 cos 𝜃

𝑖
2 sin 𝜃

𝑖
3
¤𝜃𝑖1

+𝑣𝐸𝐶𝐼,𝑧𝑖 sin 𝜃
𝑖
1 cos 𝜃

𝑖
3
¤𝜃𝑖1+𝑣𝐸𝐶𝐼,𝑧𝑖 cos 𝜃

𝑖
1 sin 𝜃

𝑖
2 sin 𝜃

𝑖
3
¤𝜃𝑖1−sin 𝜃𝑖2 cos 𝜃𝑖1 ¤𝜃𝑖2 ¤𝜃𝑖3−sin 𝜃𝑖2 sin 𝜃𝑖1 cos 𝜃𝑖2 ¤𝜃𝑖3 ¤𝜃𝑖3+𝑣𝐸𝐶𝐼,𝑥𝑖 sin 𝜃

𝑖
2 cos 𝜃

𝑖
2

× sin 𝜃𝑖3 ¤𝜃𝑖3 − 𝑣𝐸𝐶𝐼,𝑧𝑖 sin 𝜃
𝑖
1 cos 𝜃

𝑖
3 sin 𝜃

𝑖
2
¤𝜃𝑖3 − 𝑣𝐸𝐶𝐼,𝑧𝑖 cos 𝜃

𝑖
1 sin 𝜃

𝑖
2 sin 𝜃

𝑖
3 sin 𝜃

𝑖
2
¤𝜃𝑖3 + 𝑣𝐸𝐶𝐼,𝑥𝑖 cos 𝜃

𝑖
2 cos 𝜃

𝑖
3 cos 𝜃

𝑖
1
¤𝜃𝑖2 +

𝑣𝐸𝐶𝐼,𝑥𝑖

× cos 𝜃𝑖2 cos 𝜃𝑖3 cos 𝜃𝑖2 sin 𝜃𝑖1 ¤𝜃𝑖3 − (𝑣𝐸𝐶𝐼,𝑥𝑖 )2 cos 𝜃𝑖2 cos 𝜃𝑖3 cos 𝜃𝑖2 sin 𝜃𝑖3 + 𝑣𝐸𝐶𝐼,𝑥𝑖𝑣𝐸𝐶𝐼,𝑧𝑖 cos 𝜃
𝑖
2 sin 𝜃

𝑖
1 cos 𝜃

𝑖
3 cos 𝜃

𝑖
3 +

𝑣𝐸𝐶𝐼,𝑥𝑖

×𝑣𝐸𝐶𝐼,𝑧𝑖 cos 𝜃
𝑖
2 cos 𝜃

𝑖
3 cos 𝜃

𝑖
1 sin 𝜃

𝑖
2 sin 𝜃

𝑖
3 −𝑣𝐸𝐶𝐼,𝑧𝑖 sin 𝜃

𝑖
1 sin 𝜃

𝑖
3 cos 𝜃

𝑖
1
¤𝜃𝑖2−𝑣𝐸𝐶𝐼,𝑧𝑖 cos 𝜃

𝑖
1 sin 𝜃

𝑖
2 cos 𝜃

𝑖
3 cos 𝜃

𝑖
2 sin 𝜃

𝑖
1
¤𝜃𝑖3

+𝑣𝐸𝐶𝐼,𝑥𝑖𝑣𝐸𝐶𝐼,𝑧𝑖 cos 𝜃
𝑖
1 sin 𝜃

𝑖
2 cos 𝜃

𝑖
3 cos 𝜃

𝑖
2 sin 𝜃

𝑖
3−(𝑣𝐸𝐶𝐼,𝑧𝑖 )2 cos 𝜃𝑖1 sin 𝜃𝑖2 cos 𝜃𝑖3 sin 𝜃𝑖1 cos 𝜃𝑖3−(𝑣𝐸𝐶𝐼,𝑧𝑖 )2 cos 𝜃𝑖1 sin 𝜃𝑖2

× cos 𝜃𝑖3 cos 𝜃𝑖1 sin 𝜃𝑖2 sin 𝜃𝑖3)];

Assumption 1 In this study, the orbit reference frame in the attitude dynamic model of LEO satellites is the same as
the LVLH reference model in the relative translation dynamic model [25].

2.2 Problem formulation
Given the Newton-Euler equations in (1) and (2), the relative altitude and attitude dynamic models of each follower
satellite in the team formation are highly complex and nonlinear. These models can be combined into the following
nonlinear dynamic system of each LEO satellite with control input 𝑢𝑖 (𝑡), coupling effect 𝑐𝑖 𝑗 (𝑡) from other satellites
and external disturbance 𝑑𝑖 (𝑡):

𝑀𝑖 ¥𝑞𝑖 (𝑡) + 𝐻 (𝑞𝑖 (𝑡), ¤𝑞𝑖 (𝑡)) = 𝑢𝑖 (𝑡) +
𝑁∑︁
𝑗≠𝑖

𝑐𝑖 𝑗 (𝑡) + 𝑑𝑖 (𝑡) 𝑖 = 1, ..., 𝑁 (3)

where 𝑞𝑖 (𝑡) =
[
𝑥𝑖 (𝑡) 𝑦𝑖 (𝑡) 𝑧𝑖 (𝑡) 𝜃𝑖1 (𝑡) 𝜃𝑖2 (𝑡) 𝜃𝑖3 (𝑡)

]𝑇
, 𝑀𝑖 = 𝑑𝑖𝑎𝑔[𝑚𝑖 , 𝑚𝑖 , 𝑚𝑖 , 𝐽

𝑖
1, 𝐽

𝑖
2, 𝐽

𝑖
3],

𝐻 (𝑞𝑖 (𝑡), ¤𝑞𝑖 (𝑡)) =
[
0 0 0 𝐽𝑖1𝐹𝑖1 𝐽𝑖2𝐹𝑖2 𝐽𝑖3𝐹𝑖3

]𝑇 − 𝑚 [
𝑉1 𝑂

𝑂 𝑂

]
𝑞𝑖 (𝑡) − 𝑚

[
𝑉2 𝑂

𝑂 𝑂

]
¤𝑞𝑖 (𝑡),

𝑉1 =


𝑣2
𝐸𝐶𝐼,𝑧𝑖

¤𝑣𝐸𝐶𝐼,𝑧𝑖 𝑣𝐸𝐶𝐼,𝑥𝑖𝑣𝐸𝐶𝐼,𝑧𝑖

−¤𝑣𝐸𝐶𝐼,𝑧𝑖 𝑣2
𝐸𝐶𝐼,𝑥𝑖

+ 𝑣2
𝐸𝐶𝐼,𝑧𝑖

¤𝑣𝐸𝐶𝐼,𝑥𝑖

−𝑣𝐸𝐶𝐼,𝑥𝑖𝑣𝐸𝐶𝐼,𝑧𝑖 −¤𝑣𝐸𝐶𝐼,𝑧𝑖 𝑣2
𝐸𝐶𝐼,𝑥𝑖

 , 𝑉2 =


0 2𝑣𝐸𝐶𝐼,𝑥𝑖 0

−2𝑣𝐸𝐶𝐼,𝑧𝑖 0 2𝑣𝐸𝐶𝐼,𝑥𝑖

0 −2𝑣𝐸𝐶𝐼,𝑥𝑖 0

 ,
𝑢𝑖 (𝑡) = 𝑑𝑖𝑎𝑔[1, 1, 1, 1, 1

cos 𝜃 𝑖1 (𝑡 )
, 1
cos 𝜃 𝑖1 (𝑡 ) cos 𝜃 𝑖2 (𝑡 )

] × [𝐹𝑥𝑖 , 𝐹𝑦𝑖 ,𝐹𝑧𝑖 , 𝜏1𝜃𝑖 , 𝜏2𝜃𝑖 , 𝜏3𝜃𝑖]𝑇

𝑢𝑖 (𝑡) ∈ R6 is the control input, 𝑞𝑖 (𝑡) ∈ R6 is the state vector, 𝑀𝑖 ∈ R6×6 is the inertia matrix, 𝐻 (𝑞𝑖 (𝑡), ¤𝑞𝑖 (𝑡)) ∈ R6

is the non-inertial force vector and 𝑐𝑖 𝑗 (𝑡) ∈ R6 denotes the coupling from the 𝑗 th satellite to the 𝑖th satellite via CCI.

To let 𝑁 satellites maintain a specific time-varying formation shape during the operating, the virtual leader method
is considered in this paper. The team formation shape of 𝑁 LEO satellites is constructed by a virtual leader and 𝑁
follower satellites and the 𝑁 followers will track the virtual leader’s trajectory with a specific time-varying team
formation shape (𝑟𝑇1 (𝑡), ...𝑟𝑇𝑖 (𝑡), ...𝑟𝑇𝑁 (𝑡))𝑇 to achieve a desired team formation for a coverage task. Based on the
feedforward linearization control scheme, the following reference-based feedforward linearization control law is
considered for each satellite system in the team formation:

𝑢𝑖 (𝑡) = 𝑀𝑖 (𝑢𝑝𝑖𝑑,𝑖 (𝑡) + ¥𝑟𝑖 (𝑡)) + 𝐻 (𝑟𝑖 (𝑡), ¤𝑟𝑖 (𝑡)) (4)

where 𝑟𝑖 (𝑡) ∈ R6 is the target reference trajectory of the 𝑖th LEO satellite, 𝑀𝑖 , ¥𝑟𝑖 (𝑡) and 𝐻 (𝑟𝑖 (𝑡), ¤𝑟𝑖 (𝑡)) are the
reference-based feedforward control terms to be employed to eliminate the nonlinearity of each LEO satellite system
to achieve the feedforward linearization in the sequel, and 𝑢𝑝𝑖𝑑,𝑖 (𝑡) is the PID controller of the 𝑖th LEO satellite in
the team, which will be further designed for enhancing the robust team formation tracking performance of large-scale
LEO satellites.

Assumption 2 In the team formation, the virtual leader information is always available for each follower
satellite [24,25].
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Given the widespread utilization of conventional PID controllers across various industrial automatic process control
applications, this study also leverages these controllers to govern individual satellites to attain the desired team
formation. The conventional PID control for the 𝑖th satellite is given as follows:

𝑢𝑝𝑖𝑑 (𝑡) = 𝐾𝑖,𝑃𝑒𝑖 (𝑡) + 𝐾𝑖,𝐼

∫ 𝑡

0

𝑒𝑖 (𝜏)𝑑𝜏 + 𝐾𝑖,𝐷

𝑑𝑒𝑖 (𝑡)
𝑑𝑡

𝑖 = 1, ...𝑁 (5)

where 𝐾𝑖,𝑃 ∈ R6×6,𝐾𝑖,𝐼 ∈ R6×6,𝐾𝑖,𝐷 ∈ R6×6 are the controller gains with respect to the PID controller, 𝑒𝑖 (𝑡) =
𝑞𝑖 (𝑡) − 𝑟𝑖 (𝑡) ∈ R6 denotes the formation tracking error of the positions and attitude of the 𝑖th satellite.

Nevertheless, traditional PID control techniques have their restrictions, primarily applying to linear or uncomplicated
nonlinear dynamic systems. Hence, there is a need to enhance the conventional PID control approach to address
the intricate decentralized 𝐻∞ team formation tracking control design challenges encountered in highly nonlinear
dynamic satellite NCSs, as illustrated in Figure 4. This study introduces the utilization of coordinate transformation
to enable a systematic analysis and design of the conventional PID control scheme for large-scale, highly nonlinear
LEO satellite systems, focusing on the decentralized 𝐻∞ fault-tolerant team formation tracking control. In order to
simplify the parameter tuning problem of a PID controller, the controller 𝑢𝑝𝑖𝑑 (𝑡) for each LEO satellite in (5) is
reformulated as follows:

𝑢𝑝𝑖𝑑 (𝑡) = 𝐾𝑖,𝑃𝑒𝑖 (𝑡) + 𝐾𝑖,𝐼

∫ 𝑡

0

𝑒𝑖 (𝜏)𝑑𝜏 + 𝐾𝑖,𝐷

𝑑𝑒𝑖 (𝑡)
𝑑𝑡

=
[
𝐾𝑖,𝐼 𝐾𝑖,𝑃 𝐾𝑖,𝐷

] 
∫ 𝑡

0
𝑒𝑖 (𝜏)𝑑𝜏
𝑒𝑖 (𝑡)
𝑑𝑒𝑖 (𝑡 )
𝑑𝑡


= 𝐾𝑖𝐸𝑖 (𝑡)

(6)

with 𝐾𝑖 =
[
𝐾𝑖,𝐼 𝐾𝑖,𝑃 𝐾𝑖,𝐷

]
and 𝐸𝑖 (𝑡) =


∫ 𝑡

0
𝑒𝑖 (𝜏)𝑑𝜏
𝑒𝑖 (𝑡)
𝑑𝑒𝑖 (𝑡 )
𝑑𝑡


3. ROBUST H∞OBSERVER-BASED PID FAULT-TOLERANT DECENTRALIZED
CONTROL OF NCS OF TEAM FORMATION OF LARGE-SCALE LEO
SATELLITES
In this research, the configuration of the team formation observer-based PID control of NCS of 𝑁 satellites is
shown in Figure 4 via a wireless communication network. In practical applications, the NCS of a team formation
of large-scale LEO satellites will suffer from actuator and sensor malicious attacks via a wireless communication
network, as shown in Figure 4. The dynamic model of each satellite in the team formation NCS in Figure 4 is given
as follows:

𝑀𝑖 ¥𝑞𝑖 (𝑡) + 𝐻 (𝑞𝑖 (𝑡), ¤𝑞𝑖 (𝑡)) = 𝑢𝑖 (𝑡) +
𝑁∑︁
𝑗≠𝑖

𝑐𝑖 𝑗 (𝑡) + 𝑎𝑖 (𝑡) + 𝑑𝑖 (𝑡)

𝑦𝑖 (𝑡) = 𝐶𝑖𝑋𝑖 (𝑡) + 𝐷𝑖 (𝑠𝑖 (𝑡) + 𝑛𝑖 (𝑡))

(7)

where 𝑋𝑖 (𝑡) = [
∫ 𝑡

0
𝑞𝑖 (𝜏)𝑑𝜏𝑇𝑞𝑖 (𝑡)𝑇 ¤𝑞𝑖 (𝑡)𝑇 ]𝑇 ∈ R18, 𝐶𝑖 ∈ R6×18 is the measurement output matrix, 𝑦𝑖 (𝑡) ∈ R6 is

the output vector. 𝑎𝑖 (𝑡) and 𝑠𝑖 (𝑡) denote the actuator and sensor malicious attack signal through wireless network
communication, respectively, 𝐷𝑖 is the sensor fault matrix, and 𝑛𝑖 (𝑡) denotes the measurement output noise.

Assumption 3 Actuator attack signal, sensor attack signal and external disturbance [24,25], 𝑎𝑖 (𝑡), 𝑠𝑖 (𝑡) and 𝑑𝑖 (𝑡)
are of finite energy, i.e., 𝑎𝑖 (𝑡), 𝑠𝑖 (𝑡) and 𝑑𝑖 (𝑡) 𝜖 𝐿2 [0,∞).

Now, substituting the control law 𝑢𝑖 (𝑡) in (4) into (7), we have:

𝑀𝑖 ( ¥𝑞𝑖 (𝑡) − ¥𝑟𝑖 (𝑡)) = 𝑀𝑖𝑢𝑝𝑖𝑑,𝑖 (𝑡) − Δ𝐻𝑖 (𝑡) +
𝑁∑︁
𝑗≠𝑖

𝑐𝑖 𝑗 (𝑡) + 𝑎𝑖 (𝑡) + 𝑑𝑖 (𝑡) (8)
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Figure 4. The observer-based PID team formation control of NCS of N satellites, where 𝑢𝑝𝑖𝑑,𝑖 (𝑡 ) denotes the PID control in (6), 𝑢𝑖 (𝑡 )
denotes the feedforward linearization reference control in (4) and 𝑈𝑖 (𝑡 ) is the actual control on the 𝑖th satellite system from the actuator.
𝑎𝑖 (𝑡 ) and 𝑠𝑖 (𝑡 ) denote the actuator and sensor attack signals via a wireless communication network, respectively.

with Δ𝐻𝑖 (𝑡) = 𝐻 (𝑞𝑖 (𝑡), ¤𝑞𝑖 (𝑡)) − 𝐻 (𝑟𝑖 (𝑡), ¤𝑟𝑖 (𝑡)) as the error term from reference-based feedforward linearization.
By multiplying 𝑀−1

𝑖
on both sides of (8) and after some adjustment, the differential of formation tracking errors of

the 𝑖th satellite is obtained as follows:
¥𝑒𝑖 (𝑡) = 𝑢𝑝𝑖𝑑,𝑖 (𝑡) + 𝑓𝑎,𝑖 (𝑡) (9)

where 𝑓𝑎,𝑖 (𝑡) = 𝑀−1
𝑖
(−Δ𝐻𝑖 (𝑡) +

∑𝑁
𝑗≠𝑖 𝑐𝑖 𝑗 (𝑡) + 𝑎𝑖 (𝑡) + 𝑑𝑖 (𝑡)) ∈ R6 is considered as an equivalent actuator fault

signal of PID controller. Since the sensor information will be transmitted back to the ground station for calculating
control command through the network communication channel of satellites, not only the sensor noise but also the
cyber-attack signal are concerned. So, to simplify the design procedure, we can rewrite the formation tracking error
of each LEO satellite as the following linear system:

¤𝐸𝑖 (𝑡) = 𝐴𝑖𝐸𝑖 (𝑡) + 𝐵𝑖 (𝑢𝑝𝑖𝑑,𝑖 (𝑡) + 𝑓𝑎,𝑖 (𝑡))
𝑦𝑖 (𝑡) = 𝐶𝑖𝑋𝑖 (𝑡) + 𝐷𝑖 𝑓𝑠,𝑖 (𝑡)

(10)

where 𝐸𝑖 (𝑡) =

∫ 𝑡

0
𝑒𝑖 (𝜏)𝑑𝜏
𝑒𝑖 (𝑡)
𝑑𝑒𝑖 (𝑡 )
𝑑𝑡

 , 𝐴𝑖 =

𝑂 𝐼6 𝑂

𝑂 𝑂 𝐼6
𝑂 𝑂 𝑂

 , 𝐵𝑖 =


𝑂

𝑂

𝐼6

 , the equivalent sensor fault signal 𝑓𝑠,𝑖 (𝑡) = 𝑠𝑖 (𝑡) + 𝑛𝑖 (𝑡).

Then, we define 𝑅𝑖 (𝑡) = [
∫ 𝑡

0
𝑟𝑖 (𝜏)𝑑𝜏𝑇𝑟𝑖 (𝑡)𝑇 ¤𝑟𝑖 (𝑡)𝑇 ]𝑇 so that we can rewrite (10) as:

¤𝐸𝑖 (𝑡) = 𝐴𝑖𝐸𝑖 (𝑡) + 𝐵𝑖 (𝑢𝑝𝑖𝑑,𝑖 (𝑡) + 𝑓𝑎,𝑖 (𝑡))
𝑦𝑖 (𝑡) = 𝐶𝑖𝐸𝑖 (𝑡) + 𝐶𝑖𝑅𝑖 (𝑡) + 𝐷𝑖 𝑓𝑠,𝑖 (𝑡)

(11)

In this study, to estimate fault signals by the following traditional for the equivalent actuator and sensor observer for
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the FTC design, a novel dynamic smoothing model is proposed for the equivalent actuator and sensor fault signals
𝑓𝑎,𝑖 (𝑡) and 𝑓𝑠,𝑖 (𝑡). First, based on the derivative definition of ¤𝑓𝑎,𝑖 (𝑡) = limℎ→0

𝑓𝑎,𝑖 (𝑡+ℎ)− 𝑓𝑎,𝑖 (𝑡 )
ℎ

, the smoothing
model of 𝑓𝑎,𝑖 (𝑡) is given as follows:

¤𝑓𝑎,𝑖 (𝑡) =
1

ℎ
( 𝑓𝑎,𝑖 (𝑡 + ℎ) − 𝑓𝑎,𝑖 (𝑡)) + 𝜖1,𝑎𝑖 (𝑡),

¤𝑓𝑎,𝑖 (𝑡 − ℎ) =
1

ℎ
( 𝑓𝑎,𝑖 (𝑡) − 𝑓𝑎,𝑖 (𝑡 − ℎ)) + 𝜖2,𝑎𝑖 (𝑡),

...

¤𝑓𝑎,𝑖 (𝑡 − 𝑘𝑎ℎ) =
1

ℎ
( 𝑓𝑎,𝑖 (𝑡 − (𝑘𝑎 − 1)ℎ) − 𝑓𝑎,𝑖 (𝑡 − 𝑘𝑎ℎ) + 𝜖𝑘,𝑎𝑖 (𝑡)

(12)

where 𝜖1,𝑎,𝑖 (𝑡), ..., 𝜖𝑘𝑎 ,𝑎,𝑖 (𝑡) denote approximation errors of the derivative at different smoothing time points for
actuator fault signal 𝑓𝑎,𝑖 (𝑡). The constant ℎ > 0 denotes a small time interval, 𝑘𝑎 ∈ N represents the number of
actuator fault signal smoothing steps. By the extrapolation scheme [37], the next fault signal 𝑓𝑎,𝑖 (𝑡 + ℎ) in (12) can be
predicted as follows:

𝑓𝑎,𝑖 (𝑡 + ℎ) =
𝑘𝑎∑︁
𝑗=0

𝑎 𝑗 𝑓𝑎,𝑖 (𝑡 − 𝑗 ℎ) + 𝛿𝑎,𝑖 (𝑡) (13)

where 𝑎 𝑗 , 𝑗 = 0, ...𝑘𝑎 are the extrapolation coefficients and 𝛿𝑎,𝑖 (𝑡) denotes the extrapolation error of 𝑓𝑎,𝑖 (𝑡 + ℎ).
Then, the smoothing model of actuator fault signal 𝑓𝑎,𝑖 (𝑡) is obtained:

¤𝐹𝑎,𝑖 (𝑡) = 𝐴𝑎,𝑖𝐹𝑎,𝑖 (𝑡) + 𝑣𝑎,𝑖 (𝑡)
𝑓𝑎,𝑖 (𝑡) = 𝑍𝑎,𝑖𝐹𝑎,𝑖 (𝑡)

(14)

where 𝐹𝑎,𝑖 (𝑡) = [ 𝑓 𝑇𝑎,𝑖 (𝑡), 𝑓 𝑇𝑎,𝑖 (𝑡 − ℎ), ..., 𝑓 𝑇𝑎,𝑖 (𝑡 − (𝑘𝑎 − 1)ℎ), 𝑓 𝑇𝑎,𝑖 (𝑡 − 𝑘𝑎ℎ)]𝑇 , the smoothed model error of actuator
𝑣𝑎,𝑖 (𝑡) = [(𝜖1,𝑎𝑖 (𝑡) + 𝛿𝑎,𝑖 (𝑡)/ℎ)𝑇 , 𝜖𝑇2,𝑎𝑖 (𝑡), ..., 𝜖𝑇𝑘𝑎 ,𝑎𝑖 (𝑡)]

𝑇 , 𝑍𝑎,𝑖 = [1, 0, ..., 0] ⊗ 𝐼𝑛 where 𝑛 is the window size of
smoothing signal model and

𝐴𝑎,𝑖 =



−1+𝑎0

ℎ
𝐼𝑛

𝑎1

ℎ
𝐼𝑛

𝑎2

ℎ
𝐼𝑛 ...

𝑎𝑘𝑎

ℎ
𝐼𝑛

1
ℎ
𝐼𝑛 − 1

ℎ
𝐼𝑛 𝑂 ... 𝑂

𝑂 1
ℎ
𝐼𝑛 − 1

ℎ
𝐼𝑛 ... 𝑂

...
...

. . .
...

𝑂 ... 𝑂 1
ℎ
𝐼𝑛 − 1

ℎ
𝐼𝑛


In the same way, we could extrapolate the future sensor fault signal 𝑓𝑠,𝑖 (𝑡 + ℎ) as follows:

𝑓𝑠,𝑖 (𝑡 + ℎ) =
𝑘𝑠∑︁
𝑙=0

𝑏𝑙 𝑓𝑠,𝑖 (𝑡 − 𝑗 ℎ) + 𝛿𝑠,𝑖 (𝑡) (15)

where 𝑏𝑙 , 𝑙 = 0, ...𝑘𝑠 are the extrapolation coefficients, 𝛿𝑠,𝑖 (𝑡) denotes the extrapolation error of 𝑓𝑠,𝑖 (𝑡 + ℎ). Then,
the following smoothing model of sensor fault signal 𝑓𝑠,𝑖 (𝑡) is obtained:

¤𝐹𝑠,𝑖 (𝑡) = 𝐴𝑠,𝑖𝐹𝑠,𝑖 (𝑡) + 𝑣𝑠,𝑖 (𝑡)
𝑓𝑠,𝑖 (𝑡) = 𝑍𝑠,𝑖𝐹𝑠,𝑖 (𝑡)

(16)

where 𝐹𝑠,𝑖 (𝑡) = [ 𝑓 𝑇𝑠,𝑖 (𝑡), 𝑓 𝑇𝑠,𝑖 (𝑡 − ℎ), ..., 𝑓 𝑇𝑠,𝑖 (𝑡 − (𝑘𝑠 − 1)ℎ), 𝑓 𝑇𝑠,𝑖 (𝑡 − 𝑘𝑠ℎ)]𝑇 , the smoothing model error of sensor
𝑣𝑠,𝑖 (𝑡) = [(𝜖1,𝑠𝑖 (𝑡) + 𝛿𝑠,𝑖 (𝑡)/ℎ)𝑇 , 𝜖𝑇2,𝑠𝑖 (𝑡), ..., 𝜖𝑇𝑘𝑠 ,𝑠𝑖 (𝑡)]

𝑇 , 𝑍𝑠,𝑖 = [1, 0, ..., 0] ⊗ 𝐼𝑚 where 𝑚 is the window size of
smoothing signal model and

𝐴𝑠,𝑖 =



−1+𝑏0

ℎ
𝐼𝑚

𝑏1

ℎ
𝐼𝑚

𝑏2

ℎ
𝐼𝑚 ...

𝑏𝑘𝑠

ℎ
𝐼𝑚

1
ℎ
𝐼𝑚 − 1

ℎ
𝐼𝑚 𝑂 ... 𝑂

𝑂 1
ℎ
𝐼𝑚 − 1

ℎ
𝐼𝑚 ... 𝑂

...
...

. . .
...

𝑂 ... 𝑂 1
ℎ
𝐼𝑚 − 1

ℎ
𝐼𝑚


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Embedding (14) and (16) into (11), we get the following linear decoupled augmented tracking error system of each
satellite:

¤̄𝐸𝑖 (𝑡) = 𝐴𝑖𝐸𝑖 (𝑡) + 𝐵𝑖𝑢𝑝𝑖𝑑,𝑖 (𝑡) + 𝑣𝑖 (𝑡)
𝑦𝑖 (𝑡) = 𝐶𝑖𝐸𝑖 (𝑡) + 𝐶𝑖𝑅𝑖 (𝑡)

(17)

Where 𝐸𝑖 (𝑡) =

𝐸𝑖 (𝑡)
𝐹𝑎,𝑖 (𝑡)
𝐹𝑠,𝑖 (𝑡)

 is the augmented tracking error vector, 𝐴𝑖 =


𝐴𝑖 𝐵𝑖𝑍𝑎,𝑖 𝑂

𝑂 𝐴𝑎,𝑖 𝑂

𝑂 𝑂 𝐴𝑠,𝑖

 , 𝐵𝑖 =


𝐵𝑖

𝑂

𝑂

 , 𝐶𝑖 =

[
𝐶𝑖 𝑂 𝐷𝑖𝑍𝑠,𝑖

]
, and 𝑣𝑖 (𝑡) =


𝑂

𝑣𝑎,𝑖 (𝑡)
𝑣𝑠,𝑖 (𝑡)

 . It can be seen that the fault signals 𝑓𝑎,𝑖 (𝑡) and 𝑓𝑠,𝑖 (𝑡) in (10) are embedded

in 𝐸𝑖 (𝑡) to be estimated for compensation control to avoid corruption on the team formation observer-based PID
control of each LEO satellite in the sequel.

Assumption 4 The augmented tracking error system in (17) is observable, i.e.,

𝑟𝑎𝑛𝑘

[
𝑧𝐼 − 𝐴𝑖
𝐶𝑖

]
= 3 × 6 + (𝑘𝑎 + 1)𝑛 + (𝑘𝑠 + 1)𝑚 ∀𝑧 ∈ 𝑒𝑖𝑔(𝐴𝑖) (18)

that is, the dimension of 𝐴𝑖 = 3 × 6 + (𝑘𝑎 + 1)𝑛 + (𝑘𝑠 + 1)𝑚 is the total dimension of 𝐴𝑖 , 𝐴𝑎,𝑖 and 𝐴𝑠,𝑖 .

Remark 1 In order to satisfy the observability condition in (18), the extrapolation coefficients 𝑎0, ...𝑎 𝑗 , ...𝑎𝑘𝑎 and
𝑏0, ...𝑏𝑙 , ...𝑏𝑘𝑠 should be specified so that 𝐴𝑎,𝑖 in (14) and 𝐴𝑠,𝑖 in (16) have not any common eigenvalue.

Because the fault signals are embedded into a state vector of the augmented tracking error system in (17), we can not
only estimate them by a Luenberger observer but also compensate the corruption effect of these fault signals by a
PID controller. The following fault-tolerant Luenberger observer-based PID controller is proposed, at the remote
side in Figure 4, to accomplish an active decentralized H∞ team formation FTC of the NCS of LEO satellites:

¤̄̂
𝐸𝑖 (𝑡) = 𝐴𝑖 ˆ̄𝐸𝑖 (𝑡) + 𝐵𝑖𝑢𝑝𝑖𝑑,𝑖 (𝑡) − 𝐿𝑖 (𝑦𝑖 (𝑡) − 𝑦𝑖 (𝑡))

𝑢𝑝𝑖𝑑,𝑖 (𝑡) = 𝐾𝑖
ˆ̄𝐸𝑖 (𝑡)

(19)

where 𝑦𝑖 (𝑡) = 𝐶𝑖
ˆ̄𝐸𝑖 (𝑡) + 𝐶𝑖𝑅𝑖 (𝑡).

Remark 2 From (6), the fault-tolerant observer-based PID controller is given by 𝑢𝑝𝑖𝑑,𝑖 (𝑡) = 𝐾𝑖
ˆ̄𝐸𝑖 (𝑡) =

[𝐾𝑖 , 𝐾𝐹𝑎𝑖 , 𝐾𝐹𝑠𝑖] [𝐸𝑇
𝑖
(𝑡) , 𝐹𝑇

𝑎,𝑖
(𝑡) , 𝐹𝑇

𝑠,𝑖
(𝑡)]𝑇 , where the estimated fault signals 𝐹𝑇

𝑎,𝑖
(𝑡) and 𝐹𝑇

𝑠,𝑖
(𝑡) are fed back to

compensate for fault signals 𝑓𝑎,𝑖 (𝑡) and 𝑓𝑠,𝑖 (𝑡) in (10). This fault-tolerant observer-based PID control law 𝑢𝑝𝑖𝑑,𝑖 (𝑡),
as shown in (19), combines both fault-tolerant capability and PID control functionality.

Let 𝐸𝑖 (𝑡) = 𝐸𝑖 (𝑡) − ˆ̄𝐸𝑖 (𝑡); then, the augmented estimation error system of Luenberger observer can be obtained
from (17) and (19) as follows:

¤̃
𝐸𝑖 (𝑡) = 𝐴𝑖𝐸𝑖 (𝑡) + 𝐿𝑖𝐶𝑖𝐸𝑖 (𝑡) + 𝑣𝑖 (𝑡)

= (𝐴𝑖 + 𝐿𝑖𝐶𝑖)𝐸𝑖 (𝑡) + 𝑣𝑖 (𝑡) (20)

Combining (17), (19) and (20), we can get the following augmented reference tracking and estimation error system
of each satellite: ¤̃

𝑆𝑖 (𝑡) = 𝐴𝑖𝑆𝑖 (𝑡) + 𝑣𝑖 (𝑡) (21)

where 𝑆𝑖 (𝑡) =
[
𝐸𝑖 (𝑡)
𝐸𝑖 (𝑡)

]
, 𝐴𝑖 =

[
𝐴𝑖 + 𝐵𝑖𝐾𝑖 −𝐵𝑖𝐾𝑖

𝑂 𝐴𝑖 + 𝐿𝑖𝐶𝑖

]
, and 𝑣𝑖 (𝑡) =

[
𝑣𝑖 (𝑡)
𝑣𝑖 (𝑡)

]
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To specify PID control gains 𝐾𝑖 and observer gains 𝐿𝑖 in (19) to accomplish a robust estimation and tracking
performance for the augmented system in (21) with disturbance 𝑣(𝑡), the 𝐻∞ robust fault-tolerant observer-based
decentralized PID team formation tracking control strategy for the NCS of LEO satellites below a prescribed
disturbance attenuation level 𝜌𝑖 for each satellite is proposed as follows:

∫ 𝑡 𝑓

0
(𝐸𝑇

𝑖
(𝑡)𝑄𝑖1𝐸𝑖 (𝑡) + 𝐸𝑇

𝑖
(𝑡)𝑄𝑖2𝐸𝑖 (𝑡) + 𝑢𝑇𝑝𝑖𝑑,𝑖 (𝑡)𝑅𝑖𝑢𝑝𝑖𝑑,𝑖 (𝑡))𝑑𝑡 −𝑉 (𝑆𝑖 (0))∫ 𝑡 𝑓

0
𝑣𝑇
𝑖
(𝑡)𝑣𝑖 (𝑡)𝑑𝑡

≤ 𝜌2𝑖 , 𝑖 = 1, . . . , 𝑁. (22)

∀ 𝑣𝑖 (𝑡) 𝜖 𝐿2 [0,∞), where 𝑡 𝑓 is the terminal time, 𝑄𝑖1 ≥ 0, 𝑄𝑖2 ≥ 0, 𝑅𝑖 > 0 are respectively the weighting matrix of
tracking error, estimation error and control input, 𝑉 (𝑆𝑖 (0)) is the initial condition effect on the augmented tracking
and estimation error system in (21), and 𝑣𝑖 (𝑡) is the total error term that needs to be attenuated.

If we can find the PID control gain 𝐾𝑖 and the observer gain 𝐿𝑖 in (19) such that (22) holds, then the total error
term effect 𝑣𝑖 (𝑡) on the augmented tracking error 𝐸𝑖 (𝑡) and the augmented estimation error 𝐸𝑖 (𝑡) can be less than
a prescribed level 𝜌2

𝑖
from the viewpoint of energy. Before solving the H∞ robust fault-tolerant observer-based

decentralized PID team formation tracking control design problem of large-scale LEO satellites in (22), the following
two lemmas are given:

Lemma 1 For any matrices 𝐴 and 𝐵 with appropriate dimensions and matrix 𝑋 = 𝑋𝑇 > 0, the following inequality
holds [38] :

𝐴𝑇𝐵 + 𝐵𝑇 𝐴 ≤ 𝐴𝑇𝑋−1𝐴 + 𝐵𝑇𝑋𝐵 (23)

Lemma 2 (Schur Complement [38]) For the matrices 𝐴 = 𝐴𝑇 , 𝐵 = 𝐵𝑇 and matrix 𝑋 with appropriate dimensions,
the following statement is true: [

𝐴 𝑋

𝑋𝑇 𝐵

]
> 0⇔ 𝐵 > 0, 𝐴 − 𝑋𝐵−1𝑋𝑇 > 0 (24)

Then, the following theorem is proposed:

Theorem 1 (i) If there exist matrices 𝑃𝑖 = 𝑃𝑇
𝑖
> 0, 𝐾𝑖 , 𝐿𝑖 such that the following Riccati-like matrix inequalities

hold:
𝑄𝑖 + 𝑃𝑖𝐴𝑖 + 𝐴𝑇𝑖 𝑃𝑖 + 𝐾𝑇

𝑖 𝑅𝑖𝐾𝑖 +
1

𝜌2
𝑖

𝑃𝑖𝑃𝑖 ≤ 0, 𝑖 = 1, ..., 𝑁 (25)

where 𝐾𝑖 =
[
𝐾𝑖 −𝐾𝑖

]
, 𝑄𝑖 =

[
𝑄𝑖1 0
0 𝑄𝑖2

]
, then the robust 𝐻∞ fault-tolerant decentralized observer-based PID

team formation control strategy in (22) of each satellite of NCS of LEO satellites can be achieved.
(ii) If 𝑣𝑖 (𝑡) ∈ 𝐿2 [0,∞), then 𝐸𝑖 (𝑡) → 0, 𝐸𝑖 (𝑡) → 0 and 𝑢𝑝𝑖𝑑,𝑖 (𝑡) → 0 quadratically as 𝑡 → ∞ for each LEO
satellite NCS of the large-scale team formation of LEO satellites.

Proof. (i) Choose the Lyapunov function 𝑉 (𝑆𝑖 (𝑡)) = 𝑆𝑇𝑖 (𝑡)𝑃𝑖𝑆𝑖 (𝑡) for the augmented system (21) with 𝑃𝑖 = 𝑃𝑇
𝑖
> 0,

we have: ∫ 𝑡 𝑓

0

(𝑆𝑇𝑖 (𝑡)𝑄𝑖𝑆𝑖 (𝑡) + 𝑢𝑇𝑝𝑖𝑑,𝑖 (𝑡)𝑅𝑖𝑢𝑝𝑖𝑑,𝑖 (𝑡))𝑑𝑡

= 𝑉 (𝑆𝑖 (0)) −𝑉 (𝑆𝑖 (𝑡 𝑓 )) +
∫ 𝑡 𝑓

0

(𝑆𝑇𝑖 (𝑡)𝑄𝑖𝑆𝑖 (𝑡) + 𝑢𝑇𝑝𝑖𝑑,𝑖 (𝑡)𝑅𝑖𝑢𝑝𝑖𝑑,𝑖 (𝑡) + ¤𝑉 (𝑆𝑖 (𝑡)))𝑑𝑡

≤ 𝑉 (𝑆𝑖 (0)) +
∫ 𝑡 𝑓

0

(𝑆𝑇𝑖 (𝑡)𝑄𝑖𝑆𝑖 (𝑡) + 𝑢𝑇𝑝𝑖𝑑,𝑖 (𝑡)𝑅𝑖𝑢𝑝𝑖𝑑,𝑖 (𝑡) +
¤̃
𝑆𝑇𝑖 (𝑡)𝑃𝑖𝑆𝑖 (𝑡) + (

¤̃
𝑆𝑇𝑖 (𝑡)𝑃𝑖𝑆𝑖 (𝑡))𝑇 )𝑑𝑡

(26)

By (21) and Lemma 1, we have:

¤̃
𝑆𝑇𝑖 (𝑡)𝑃𝑖𝑆𝑖 (𝑡) + (

¤̃
𝑆𝑇𝑖 (𝑡)𝑃𝑖𝑆𝑖 (𝑡))𝑇

= (𝐴𝑖𝑆𝑖 (𝑡) + 𝑣𝑖 (𝑡))𝑇𝑃𝑆𝑖 (𝑡) + ((𝐴𝑖𝑆𝑖 (𝑡) + 𝑣𝑖 (𝑡))𝑇𝑃𝑆𝑖 (𝑡))𝑇

≤ 𝑆𝑖
𝑇 (𝑡) (𝑃𝑖𝐴𝑖 + 𝐴𝑖

𝑇
𝑃𝑖 +

1

𝜌2
𝑖

𝑃𝑖𝑃𝑖)𝑆𝑖 (𝑡) + 𝜌2𝑖 𝑣𝑖𝑇 (𝑡)𝑣𝑖 (𝑡)
(27)
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Substituting (19), (27) and 𝑆𝑖
𝑇 (𝑡)𝑄𝑖𝑆𝑖 (𝑡) = 𝐸𝑖

𝑇 (𝑡)𝑄𝑖1𝐸𝑖 (𝑡) + 𝐸𝑖
𝑇 (𝑡)𝑄𝑖2𝐸𝑖 (𝑡) into (26), we get:∫ 𝑡 𝑓

0

(𝐸𝑖
𝑇 (𝑡)𝑄𝑖1𝐸𝑖 (𝑡) + 𝐸𝑖

𝑇 (𝑡)𝑄𝑖2𝐸𝑖 (𝑡)𝑑𝑡 + 𝑢𝑇𝑝𝑖𝑑,𝑖 (𝑡)𝑅𝑖𝑢𝑝𝑖𝑑,𝑖 (𝑡))𝑑𝑡

≤ 𝑉 (𝑆𝑖 (0)) +
∫ 𝑡 𝑓

0

(𝑆𝑖
𝑇 (𝑡) (𝑄𝑖 + 𝑃𝑖𝐴𝑖 + 𝐴𝑖

𝑇
𝑃𝑖 + 𝐾𝑖

𝑇
𝑅𝑖𝐾𝑖 +

1

𝜌2
𝑖

𝑃𝑖𝑃𝑖)𝑆𝑖 (𝑡) + 𝜌2𝑖 𝑣𝑖𝑇 (𝑡)𝑣𝑖 (𝑡))𝑑𝑡
(28)

Thus, if (25) holds, (22) also holds.

(ii) If 𝑣𝑖 (𝑡) ∈ 𝐿2 [0,∞), since 𝑉 (𝑆𝑖 (0)) and
∫ ∞
0
𝑣𝑖

𝑇 (𝑡)𝑣𝑖 (𝑡)𝑑𝑡 < ∞, then from (28) we get
∫ 𝑡 𝑓

0
(𝐸𝑖

𝑇 (𝑡)𝑄𝑖1𝐸𝑖 (𝑡) +
𝐸𝑖

𝑇 (𝑡)𝑄𝑖2𝐸𝑖 (𝑡)𝑑𝑡+𝑢𝑇𝑝𝑖𝑑,𝑖 (𝑡)𝑅𝑖𝑢𝑝𝑖𝑑,𝑖 (𝑡))𝑑𝑡 ≤ 𝑉 (𝑆𝑖 (0))+𝜌𝑖
∫ 𝑡 𝑓

0
𝑣𝑖

𝑇 (𝑡)𝑣𝑖 (𝑡)𝑑𝑡 < ∞. It implies that, lim𝑡→∞ 𝐸𝑖
𝑇 (𝑡)𝐸𝑖 (𝑡) →

0, 𝐸𝑖
𝑇 (𝑡)𝐸𝑖 (𝑡) → 0 and 𝑢𝑇

𝑝𝑖𝑑,𝑖
(𝑡)𝑢𝑝𝑖𝑑,𝑖 (𝑡) → 0 as 𝑡 𝑓 →∞

Although the Riccati-like matrix inequalities in (25) for the existence of the 𝐻∞ decentralized fault-tolerant
observer-based PID tracking control strategy in (22) have been derived, they cannot be easily solved because they
represent a bilinear matrix inequality (BMI). Additionally, strong coupling exists between the designed variables 𝑃𝑖 ,
𝐾𝑖 and 𝐿𝑖 [39]. Therefore, a two-step design procedure is developed to solve BMI in (25) by two corresponding LMIs
as follows:

Step 1: To begin with, let the Lyapunov energy function of the augmented system in (21) be the sum of two Lya-
punov functions of two subsystems (17) and (20), i.e., 𝑉 (𝑆𝑖 (𝑡)) = 𝑆𝑇𝑖 (𝑡)𝑃𝑖𝑆𝑖 (𝑡) = 𝐸𝑇

𝑖
(𝑡)𝑃𝑖1𝐸𝑖 (𝑡) + 𝐸𝑇

𝑖
(𝑡)𝑃𝑖2𝐸𝑖 (𝑡).

Substituting 𝑃𝑖 =
[
𝑃𝑖1 𝑂

𝑂 𝑃𝑖2

]
and 𝑄𝑖 =

[
𝑄𝑖1 𝑂

𝑂 𝑄𝑖2

]
into (25), we get:[

𝑄𝑖1 𝑂

𝑂 𝑄𝑖2

]
+ (

[
𝑃𝑖1 𝑂

𝑂 𝑃𝑖2

] [
𝐴𝑖 + 𝐵𝑖𝐾𝑖 −𝐵𝑖𝐾𝑖

𝑂 𝐴𝑖 + 𝐿𝑖𝐶𝑖

]
) + (

[
𝑃𝑖1 𝑂

𝑂 𝑃𝑖2

] [
𝐴𝑖 + 𝐵𝑖𝐾𝑖 −𝐵𝑖𝐾𝑖

𝑂 𝐴𝑖 + 𝐿𝑖𝐶𝑖

]
)𝑇

+
[
𝐾𝑇
𝑖
𝑅𝑖𝐾𝑖 −𝐾𝑇

𝑖
𝑅𝑖𝐾𝑖

−𝐾𝑇
𝑖
𝑅𝑖𝐾𝑖 𝐾𝑇

𝑖
𝑅𝐾𝑖

]
+ 1

𝜌2
𝑖

[
𝑃𝑖1𝑃𝑖1 𝑂

𝑂 𝑃𝑖2𝑃𝑖2

]
=

[
𝑀1 −𝑃𝑖1𝐵𝑖𝐾𝑖 − 𝐾𝑇

𝑖
𝑅𝑖𝐾𝑖

∗ 𝑀2

]
≤ 0

(29)

where 𝑀1 = 𝑄𝑖1 + (𝑃𝑖1 (𝐴𝑖 + 𝐵𝑖𝐾𝑖)) + (𝑃𝑖1 (𝐴𝑖 + 𝐵𝑖𝐾𝑖))𝑇 + 𝐾𝑇
𝑖
𝑅𝑖𝐾𝑖 + 1

𝜌2
𝑖

𝑃𝑖1𝑃𝑖1,
𝑀2 = 𝑄𝑖2 + (𝑃𝑖2 (𝐴𝑖 + 𝐿𝑖𝐶𝑖)) + (𝑃𝑖2 (𝐴𝑖 + 𝐿𝑖𝐶𝑖))𝑇 + 𝐾𝑇

𝑖
𝑅𝑖𝐾𝑖 + 1

𝜌2
𝑖

𝑃𝑖2𝑃𝑖2.

By the fact that
[
𝑀1 −𝑃𝑖1𝐵𝑖𝐾𝑖 − 𝐾𝑇

𝑖
𝑅𝑖𝐾𝑖

∗ 𝑀2

]
≤ 0⇒ 𝑀1 ≤ 0, 𝑀2 ≤ 0, the inequality 𝑀1 ≤ 0 is used to find 𝑃𝑖1, 𝐾𝑖 .

We premultiply and postmultiply 𝑀1 ≤ 0 by𝑊𝑖1 = 𝑃−1
𝑖1 and applying Lemma 2, we obtain the following LMI

Δ11 𝑊𝑖1 𝑄
1/2
𝑖1 𝑌𝑇

𝑖1
∗ −𝐼 𝑂

∗ ∗ −𝑅−1
𝑖

 ≤ 0 (30)

where Δ11 = 𝐴𝑖𝑊𝑖1 + 𝐵𝑖𝑌𝑖1 + (𝐴𝑖𝑊𝑖1 + 𝐵𝑖𝑌𝑖1)𝑇 + 1
𝜌2
𝑖

𝐼, and 𝑌𝑖1 = 𝐾𝑖𝑊𝑖1. By solving the LMI in (30), we can obtain
𝑊𝑖1, 𝑌𝑖1 and therefore the PID controller gain 𝐾𝑖 = 𝑌𝑖1𝑊

−1
𝑖1 .

Step 2: By substituting 𝑃𝑖1 = 𝑊−1
𝑖1 and 𝐾𝑖 = 𝑌𝑖1𝑊

−1
𝑖1 , as obtained in Step 1, into (29) and applying Lemma 2, we

derive 
𝑀1 −𝑃𝑖1𝐵𝑖𝐾𝑖 − 𝐾𝑇

𝑖
𝑅𝑖𝐾𝑖 𝑂

∗ Δ22 𝑃𝑖2
∗ ∗ −𝜌2

𝑖
𝐼

 ≤ 0 (31)

where Δ22 = 𝑄𝑖2 + 𝑃𝑖2𝐴𝑖 + 𝑌𝑖2𝐶𝑖 + (𝑃𝑖2𝐴𝑖 + 𝑌𝑖2𝐶𝑖)𝑇 + 𝐾𝑇
𝑖
𝑅𝑖𝐾𝑖 , and 𝑌𝑖2 = 𝑃𝑖2𝐿𝑖 . By solving the LMI in (31)

using the LMI TOOLBOX in MATLAB, the values of 𝑃𝑖2, 𝑌𝑖2 can be determined, from which the observer gain
𝐿𝑖𝑖𝑠𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑑𝑎𝑠𝑃

−1
𝑖2 𝑌𝑖2.
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However, due to the integral action of the controller, actuator saturation is always a concern in this PID control
design. This is because the control law is inevitably limited and restricted by the physical saturation of the
actuator in the practical application of LEO satellites. The PID control law of the 𝑖th LEO satellite 𝑢𝑝𝑖𝑑,𝑖 (𝑡) =
[𝑢𝑖1 (𝑡), 𝑢𝑖2 (𝑡), 𝑢𝑖3 (𝑡), 𝑢𝑖4 (𝑡), 𝑢𝑖5 (𝑡), 𝑢𝑖6 (𝑡)]𝑇 differs in operational ranges. As a result, applying a distinctive
constraint on each physical input is necessary. Suppose that ˆ̄𝐸𝑖 (𝑡) is restricted to stay in an invariant ellipsoid
𝜀𝑟 = { ˆ̄𝐸𝑖 (𝑡) ∈ R(18+(𝑘𝑎+1)𝑛+(𝑘𝑠+1)𝑚) | ˆ̄𝐸𝑇

𝑖
(𝑡)𝑊−1

𝑖1
ˆ̄𝐸𝑖 (𝑡) ≤ 1} for 𝑡 ≥ 0, and if 𝜈2

𝑖 𝑝
𝑊−1

𝑖1 ≥ (𝑇𝑝𝐾𝑖)𝑇𝑇𝑝𝐾𝑖 for actuator
saturation constraint 𝜈𝑖 𝑝 ∈ R+, then we can obtain [1]:

max
𝑡≥0
|𝑢𝑖 𝑝 (𝑡) |

= max
𝑡≥0
∥𝑢𝑖 𝑝 (𝑡)∥2

= max
𝑡≥0
∥𝑇𝑝𝑢𝑝𝑖𝑑,𝑖 (𝑡)∥2

≤ max
𝑡≥0
∥𝑇𝑝𝐾𝑖

ˆ̄𝐸𝑖 (𝑡)∥2

≤ max
𝐸𝑖∈𝜀𝑟

∥𝑇𝑝𝐾𝑖
ˆ̄𝐸𝑖 (𝑡)∥2

≤ max
𝐸𝑖∈𝜀𝑟

∥𝜈𝑖 𝑝𝑊
− 1

2

𝑖1
ˆ̄𝐸𝑖 (𝑡)∥2

= max
𝐸𝑖∈𝜀𝑟

√︃
𝜈2
𝑖 𝑝

ˆ̄𝐸𝑇
𝑖
(𝑡)𝑊−1

𝑖1
ˆ̄𝐸𝑖 (𝑡)

≤ 𝜈𝑖 𝑝 𝑓 𝑜𝑟 𝑝 = 1, ..., 6, 𝑖 = 1, ..., 𝑁

(32)

where 𝑇1 = 𝑑𝑖𝑎𝑔(1, 0, 0, 0, 0, 0), 𝑇2 = 𝑑𝑖𝑎𝑔(0, 1, 0, 0, 0, 0), 𝑇3 = 𝑑𝑖𝑎𝑔(0, 0, 1, 0, 0, 0), 𝑇4 = 𝑑𝑖𝑎𝑔(0, 0, 0, 1, 0, 0),
𝑇5 = 𝑑𝑖𝑎𝑔(0, 0, 0, 0, 1, 0), 𝑇6 = 𝑑𝑖𝑎𝑔(0, 0, 0, 0, 0, 1)

That is, if 𝜈2
𝑖 𝑝
𝑊−1

𝑖1 ≥ 𝐾𝑇
𝑖
(𝑡)𝐾𝑖 (𝑡) or 𝜈2

𝑖 𝑝
𝑊𝑖1 ≥ (𝐾𝑖𝑊𝑖1)𝑇𝐾𝑖𝑊𝑖1 = 𝑌𝑇

𝑖1𝑌𝑖1 holds , then max𝑡≥0 |𝑢𝑖 𝑝 (𝑡) |
≤ 𝜈𝑖 𝑝 for 𝑡 ≥ 0, 𝑝 = 1, ..., 6; in other words, 𝑢𝑖 𝑝 (𝑡) is under the actuator saturation 𝜈𝑖 𝑝. Therefore, by Schur
complement in Lemma 2, the above actuator saturation constraints are equivalent to the following LMIs:[

𝜈2
𝑖 𝑝
𝑊𝑖1 𝑌𝑇

𝑖1𝑇
𝑇
𝑝

∗ 𝐼

]
≥ 0, 𝑓 𝑜𝑟 𝑝 = 1, ..., 6 (33)

If the optimal robust 𝐻∞ decentralized fault-tolerant observer-based PID team formation tracking control strategy in
(22) with the consideration of actuator saturation 𝜈𝑖 𝑝 in (32) and (33) is employed for the augmented tracking and
estimation error system in (21) of each satellite in the large-scale team formation of LEO satellites, we need to solve
the following LMIs-constrained optimization problem for each LEO satellite in the team formation:

𝜌∗2𝑖 = min
𝑌𝑖1 ,𝑌𝑖2 ,𝑊𝑖1>0,𝑃𝑖2>0

𝜌2𝑖

𝑠.𝑡.((30)), ((31)), ((33))
(34)

Remark 3 (i) The actuator saturation constraints in (32) are based on ˆ̄𝐸𝑇
𝑖
(𝑡)𝑊−1

𝑖1
ˆ̄𝐸𝑖 (𝑡) ≤ 1, meaning that ˆ̄𝐸𝑖 (𝑡)

remains within an invariant ellipsoid and finite. As a result, the stability of the proposed 𝐻∞ fault-tolerant
decentralized observer-based PID team formation control strategy of (22), as presented in Theorem 1, is guaranteed.
(ii) Applying the above optimization technique to addressing LMI problems in (33) frequently yields a conservative
solution, potentially imposing excessive restrictions (i.e., inequalities) on the calculated input gain in (32),
consequently compromising performance. To fully harness the control potential, it is advisable to set the constrained
value 𝜈𝑖 𝑝 at a level higher than the actual one in (33). (iii) The design complexity in (34) mainly lies in how to
solve three LMIs in (30), (31) and (33), which is mainly based on Newton searching algorithm to search 𝑃𝑖2 > 0
in (31) and 𝑊𝑖1 > 0 in (30) and (33). The computational complexity is 𝑂 (𝑙 (𝑙 + 1)), where 𝑙 is the dimension of
𝑃𝑖2 or𝑊𝑖1

[38]. Therefore, the design complexity of solving the LMIs-constrained optimization problem in (34) is
𝑂 (3𝑁 (𝑙 + 1)𝑙), where 𝑁 is the number of LEO satellites.
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Remark 4 The optimal H∞ decentralized observer-based PID team formation control design problem with actuator
saturation constraint in (34) can be solved by decreasing 𝜌2

𝑖
until there exists no 𝑊𝑖1 > 0 or 𝑃𝑖2 > 0 to obtain

the minimum 𝜌∗2
𝑖

with 𝑌 ∗
𝑖1, 𝑌

∗
𝑖2,𝑊

∗
11 > 0 and 𝑃∗

𝑖
> 0, which can be solved by MATLAB in Algorithm 1 using the

LMI TOOLBOX. Therefore, the decentralized 𝐻∞ fault-tolerant observer-based team formation PID control gain
𝐾∗
𝑖
= 𝑌 ∗

𝑖1𝑊
∗−1
𝑖1 and observer gain 𝐿∗

𝑖
= 𝑝∗

𝑖2𝑌
∗
𝑖2 can be obtained in a single run of decreasing 𝜌2

𝑖
in (34) with the

help of LMI TOOLBOX in MATLAB, unlike the conventional PID control design algorithms, which need a very
complicated parameter tuning.

Based on the above analyses, the main challenge of implementing this 𝐻∞ fault-tolerant decentralized observer-based
PID formation tracking control strategy is mainly divided into two steps: (i) Based on the solution 𝑌 ∗

𝑖1, 𝑌
∗
𝑖2,𝑊

∗
𝑖1 and

𝑃∗
𝑖2 of the LMIs-constrained optimization problem in (34) for PID control gain 𝐾∗

𝑖
and observer gain 𝐿∗

𝑖
of the

Luenberger observer-based PID controller in (19), (ii) Based on the PID controller and target reference 𝑟𝑖 (𝑡), it is
easy to implement the reference-based feedforward linearization control law 𝑢𝑖 (𝑡) in (4) for each LEO satellite in (3)
of the team formation. The implementation of the decentralized observer-based PID team formation tracking control
strategy of large-scale LEO satellites is shown in Figure 4.

Remark 5 The design complexity of the solution of the LMI-constrained optimization problem in
(34) for 𝜌∗2

𝑖
with 𝑌 ∗

𝑖1, 𝑌
∗
𝑖2,𝑊

∗
11 > 0 and 𝑃∗

𝑖
> 0 to obtain observer gain 𝐿∗

𝑖
= 𝑝∗−1

𝑖2 𝑌 ∗
𝑖2 and control gain 𝐾∗

𝑖
= 𝑌 ∗

𝑖1𝑊
∗−1
𝑖1

for the Luenberger observer-based PID controller in (19) mainly lies in solving LMIs in (30), (31) and (34).

The design procedure of the optimal decentralized 𝐻∞ fault-tolerant observer-based PID team formation control
design problem for each satellite in (3) is shown as follows:

1. Apply the feedforward control 𝑢𝑖 (𝑡) in (4) for each LEO satellite in (3) to obtain the linearized tracking error
dynamic system in (11) for each satellite.

2. Construct the smoothing signal models (14) and (16) for the actuator fault 𝑓𝑎,𝑖 (𝑡) and sensor fault 𝑓𝑠,𝑖 (𝑡), and
embed these smoothing signal models into the linearized system (11) to get the augmented tracking error system
of each satellite in (17).

3. Employ the observer-based fault-tolerant PID control tracking design in (19) to achieve the decentralized robust
H∞ fault-tolerant observer-based PID team formation control strategy in (22) with adequate weighting matrices
𝑄𝑖1, 𝑄𝑖2 and 𝑅𝑖 , actuator saturation 𝜈𝑖 𝑝 in (33) and initial 𝜌𝑖 .

4. Solve the LMI-constrained optimization problem in (34) for 𝑌 ∗
𝑖1, 𝑌

∗
𝑖2,𝑊

∗
𝑖1 > 0 and 𝑃∗

𝑖2 > 0 under the actuator
saturation 𝜈𝑖 𝑝 by the two-step design procedure to obtain the fault-tolerant PID control gain 𝐾∗

𝑖
= 𝑌 ∗

𝑖1𝑊
∗−1
𝑖1 and

observer gain 𝐿∗
𝑖
= 𝑃∗−1

𝑖2 𝑌 ∗
𝑖2 for fault-tolerant observer-based controller in (19) of each satellite.

For more practical application, the above design procedure can be designed in

Algorithm 1 Optimal Robust Decentralized 𝐻∞ Fault-Tolerant Observer-Based PID Team Formation Tracking
Control Design for NCS of Large-Scale LEO Satellites

Require: Smooth signal model parameters 𝑎 𝑗 , 𝑏𝑙; weighting matrices 𝑄𝑖1 ≥ 0, 𝑄𝑖2 ≥ 0, 𝑅𝑖 > 0; initial 𝜌◦
𝑖
;

decreasing step 𝜌𝑖,𝑠; actuator saturation upper bound 𝜈𝑖 𝑝;
Ensure: Optimal PID control gain 𝐾∗

𝑖
, optimal observer gain 𝐿∗

𝑖
in (19) and optimal attenuation level 𝜌∗

𝑖

1: while 𝑖 ≤ 𝑁 do
2: if Assumption 2 holds then
3: Solve the BMI problem in (25) with two-step LMIs;
4: Step 1:
5: Solve LMIs in (30) and (33) to get 𝑌𝑖1,𝑊𝑖1 and control gain 𝐾𝑖 = 𝑌𝑖𝑊

−1
𝑖1 ;

6: if 𝑃𝑖1 > 0 and 𝑀1 < 0 in (29) then
7: Step 2:
8: Substituting𝑊𝑖1, 𝑌𝑖1 and 𝐾𝑖 into (31);
9: Solve the LMIs problem (31) to get 𝑌𝑖2, 𝑃𝑖2 and 𝐿𝑖 = 𝑃−1𝑖2 𝑌𝑖2;

10: if 𝑃𝑖2 > 0 and (31) holds then
11: Update optimal solution
12: 𝐾∗

𝑖
← 𝐾𝑖; 𝐿∗𝑖 ← 𝐿𝑖; 𝜌∗𝑖 ← 𝜌◦

𝑖
;
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13: 𝜌◦
𝑖
← 𝜌◦

𝑖
− 𝜌𝑖,𝑠

14: end if
15: else
16: Can’t solve LMIs problem, redesign;
17: end if
18: else
19: Smooth signal models are unobservable, redesign 𝑎 𝑗 in (13) and 𝑏𝑙 in (15);
20: end if
21: end while

4. SIMULATION AND COMPARISON
In the future 6G wireless communication era, large-scale satellite constellations will be developed using low-orbit
satellites. In the limited space of LEO, the intersection of satellite orbits seems unavoidable. In this simulation
scenario, we consider not only the altitude and attitude of satellites within a single orbit but also the team formation
involving the crossing of four different satellite orbits at the same altitude. By implementing appropriate orbit
planning and maintaining precise altitude and attitude control, these LEO satellites can not only be easily employed
for coverage service tasks but also effectively prevent collision incidents.

4.1 Design specifications of the satellites system
Suppose 12 satellites in a team [Figure 5] are employed for a mission with four different orbits with an inclination
of 50◦ and an altitude of 1,000 km. Each orbit has three followers to form an equilateral angle and one virtual
leader in the centroid of the triangle, as shown in Figure 6. In the relative dynamic of each LEO satellite in (1), the
earth gravitational parameter 𝑢𝑒 = 398, 600 km3/s2, the orbital velocity 𝑣𝐸𝐶𝐼,𝑧𝑖 =

√︃
𝑢𝑒
𝑅𝑜
, where 𝑅𝑜 = 7, 371 km

from the virtual leader to the earth [35]. The other parameters in (1) are given as follows: 𝑚𝑖 = 150 kg, the inertia
matrix 𝐽𝑖

𝑘
= 𝑑𝑖𝑎𝑔(35, 20, 16) kg/m2, 𝑘 = 1, 2, 3, 𝑖 = 1, . . . 12 [36]. Moreover, the sampling period ℎ = 0.001 s in

this simulation.

Due to the corruption effect of malicious attack signals via two wireless network channels [Figure 4], two fifth-order
(𝑘𝑎 = 𝑘𝑏 = 4) smoothing models in (14) and in (16) are used to model actuator and sensor fault signals, respectively.
In this simulation example, the equivalent actuator fault signal 𝑓𝑎,𝑖 (𝑡) and sensor fault signal 𝑓𝑠,𝑖 (𝑡) on the 12th
satellite system are shown in Figure 7 and Figure 8, respectively, and the extrapolation parameters are specified as
𝑎0 = 0.8, 𝑎1 = 0.1, 𝑎2 = 0.06, 𝑎3 = 0.03, 𝑎4 = 0.01, 𝑏0 = 0.9, 𝑏1 = 0.06, 𝑏2 = 0.02, 𝑏3 = 0.01 and 𝑏4 = 0.01 to
satisfy the observability condition in (18).

Besides, the effect of the following environmental disturbances in each satellite orbit such as solar radiation pressure,
earth flattening, and aerodynamic drag in (1), (2), [21], [36] must be considered in the design procedure:

𝑑𝑖 (𝑡) = [10−7 (38.9 sin2 (𝑣𝐸𝐶𝐼,𝑧𝑖 𝑡) + 7.88 cos(𝑣𝐸𝐶𝐼,𝑧𝑖 𝑡) sin(𝑣𝐸𝐶𝐼,𝑧𝑖 𝑡) − 88.8),
10−8 (−131 sin(2𝑣𝐸𝐶𝐼,𝑧𝑖 𝑡) + 833 cos2 (𝑣𝐸𝐶𝐼,𝑧𝑖 𝑡) − 4.96 cos(𝑣𝐸𝐶𝐼,𝑧𝑖 𝑡) − 13.5),
− 6.28 × 10−6 sin(𝑣𝐸𝐶𝐼,𝑧𝑖 𝑡), 5 × 10−3 sin(0.1𝑡), 5 × 10−3 cos(0.1𝑡), 5 × 10−3 sin(0.15𝑡)]𝑇

for 𝑖 = 1, ..., 12. (35)

The CCI can manifest between satellites. Based on the characteristics of CCI, its potency correlates with the
separation distance between the two transmitters. In essence, when two satellites are in close proximity, the CCI’s
influence becomes more pronounced. Consequently, CCI predominantly emerges between two neighboring satellites
within the formation consortium. Within this simulation, the coupling terms are employed to depict the impact of
CCI on the satellite system as follows [40]:

𝑐𝑖 𝑗 (𝑡) = [0.01 ¤𝑥𝑖 (𝑡) ¤𝑥 𝑗 (𝑡 − 0.1), 0.01 ¤𝑦𝑖 (𝑡) ¤𝑦 𝑗 (𝑡 − 0.1), 0.01 ¤𝑧𝑖 (𝑡) ¤𝑧 𝑗 (𝑡 − 0.1)
, 0.01 ¤𝜃𝑖1 (𝑡) ¤𝜃

𝑗

1 (𝑡 − 0.1), 0.01 ¤𝜃
𝑖
2 (𝑡) ¤𝜃

𝑗

2 (𝑡 − 0.1), 0.01 ¤𝜃
𝑖
3 (𝑡) ¤𝜃

𝑗

3 (𝑡 − 0.1)]
𝑇

for 𝑖 = 1, ..., 12, 𝑗 ≠ 𝑖, 𝑗 = 1, ..., 12. (36)

where the velocity and angle velocity of the 𝑗 th satellite ¤𝑥 𝑗 , ¤𝑦 𝑗 , ¤𝑧 𝑗 , ¤𝜃 𝑗1, ¤𝜃
𝑗

2,
¤𝜃 𝑗3 are related to the CCI effect caused by

the 𝑗 th neighboring satellite on the 𝑖th satellite.
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Figure 5. A team formation of 12 LEO satellites with coverage service in four crossing orbits (the fourth virtual leader is on another
hemisphere).

For the decentralized H∞ fault-tolerant observer-based PID team formation Control design strategy of LEO satellites
in (22), the weighting matrices 𝑄𝑖1, 𝑄𝑖2, 𝑅𝑖 , the initial 𝜌◦

𝑖
, the decreasing step 𝜌𝑖,𝑠 and the actuator saturation upper

bound 𝜈𝑖 𝑝 are assigned to execute a task as follows:

𝑄𝑖1 = 𝑑𝑖𝑎𝑔(Ξ1,Ξ2,Ξ3), 𝑄𝑖2 = 𝑑𝑖𝑎𝑔(Ξ4,Ξ5,Ξ6), 𝑅𝑖 = 10−6 × 𝐼6, 𝜌◦𝑖 = 100, 𝜌𝑖,𝑠 = 0.01, (37)
𝜈𝑖1, 𝜈𝑖2, 𝜈𝑖3 = 3500, 𝜈𝑖4 = 1600, 𝜈𝑖5 = 1500, 𝜈𝑖6 = 1400, 𝑡 𝑓 = 5400𝑠𝑒𝑐

where Ξ1 = 𝑑𝑖𝑎𝑔(0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 1, 1, 1, 10, 10, 10, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1),Ξ2 = 𝑂30,Ξ3 =

𝑂30,

Ξ4 = 𝑑𝑖𝑎𝑔(0.12, 0.12, 0.12, 0.12, 0.12, 0.12, 12, 12, 12, 120, 120, 120, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2),
Ξ5 = 0.3 × 𝑑𝑖𝑎𝑔(0.1, 0.01) ⊗ 𝐼15 and Ξ6 = 60 × 𝑑𝑖𝑎𝑔(0.1, 0.01) ⊗ 𝐼15

In this simulation example, the orbits of the virtual leaders are shown in Figure 5. The orbital elements are given as
follows:

𝑠𝑒𝑚𝑖 − 𝑚𝑎 𝑗𝑜𝑟 𝑎𝑥𝑖𝑠 = 7371𝑘𝑚, 𝑒𝑐𝑐𝑒𝑛𝑡𝑟𝑖𝑐𝑖𝑡𝑦 = 0,
𝑖𝑛𝑐𝑙𝑖𝑛𝑎𝑡𝑖𝑜𝑛 = 50◦, 𝑡𝑟𝑢𝑒 𝑎𝑛𝑜𝑚𝑎𝑙𝑦 = 0, 𝑎𝑟𝑔𝑢𝑚𝑒𝑛𝑡 𝑜 𝑓 𝑝𝑒𝑟𝑖𝑎𝑝𝑠𝑖𝑠 = 0
𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒 𝑜 𝑓 𝑡ℎ𝑒 𝑎𝑠𝑐𝑒𝑛𝑑𝑖𝑛𝑔 𝑛𝑜𝑑𝑒 = 0◦, 90◦, 180◦, 270◦

(38)

The followers of each virtual leader are shown in Figure 6, with three followers forming an equilateral triangle in
which the length of three sides are all 50km and the virtual leader lies in the centroid of the triangle. In the satellite
attitude for this task of coverage service, the desired attitude reference trajectories are specified for 12 satellites as
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Figure 6. A virtual leader in satellite formation system.

Table 1. The reference trajectories of 12 satellites (i.e., the formation shape (𝑟𝑇1 (𝑡 ) , ...𝑟𝑇𝑖 (𝑡 ) , ...𝑟𝑇12 (𝑡 ) )𝑇 ) of a team formation for
the mission of coverage service in four orbits in simulation, where 𝜃 𝑖

𝑟1
(𝑡 ) , 𝜃 𝑖

𝑟2
(𝑡 ) and 𝜃 𝑖

𝑟3
(𝑡 ) are given in (39)

Orbit Satellite The reference 𝑟𝑖 (𝑡 )

Orbit I Satellite1 𝑟1 (𝑡 ) = [28.8675, 0, 0, 𝜃1
𝑟1
, 𝜃1

𝑟2
, 𝜃1

𝑟3
, 0, 0, 0, ¤𝜃1

𝑟1
, ¤𝜃1

𝑟2
, ¤𝜃1

𝑟3
]𝑇

Orbit I Satellite2 𝑟2 (𝑡 ) = [−14.4338, 0, 25, 𝜃2
𝑟1
, 𝜃2

𝑟2
, 𝜃2

𝑟3
, 0, 0, 0, ¤𝜃2

𝑟1
, ¤𝜃2

𝑟2
, ¤𝜃2

𝑟3
]𝑇

Orbit I Satellite3 𝑟3 (𝑡 ) = [−14.4338, 0, −25, 𝜃3
𝑟1
, 𝜃3

𝑟2
, 𝜃3

𝑟3
, 0, 0, 0, ¤𝜃3

𝑟1
, ¤𝜃3

𝑟2
, ¤𝜃3

𝑟3
]𝑇

Orbit II Satellite4 𝑟4 (𝑡 ) = [28.8675, 0, 0, 𝜃4
𝑟1
, 𝜃4

𝑟2
, 𝜃4

𝑟3
, 0, 0, 0, ¤𝜃4

𝑟1
, ¤𝜃4

𝑟2
, ¤𝜃4

𝑟3
]𝑇

Orbit II Satellite5 𝑟5 (𝑡 ) = [−14.4338, 0, 25, 𝜃5
𝑟1
, 𝜃5

𝑟2
, 𝜃5

𝑟3
, 0, 0, 0, ¤𝜃5

𝑟1
, ¤𝜃5

𝑟2
, ¤𝜃5

𝑟3
]𝑇

Orbit II Satellite6 𝑟6 (𝑡 ) = [−14.4338, 0, −25, 𝜃6
𝑟1
, 𝜃6

𝑟2
, 𝜃6

𝑟3
, 0, 0, 0, ¤𝜃6

𝑟1
, ¤𝜃6

𝑟2
, ¤𝜃6

𝑟3
]𝑇

Orbit III Satellite7 𝑟7 (𝑡 ) = [28.8675, 0, 0, 𝜃7
𝑟1
, 𝜃7

𝑟2
, 𝜃7

𝑟3
, 0, 0, 0, ¤𝜃7

𝑟1
, ¤𝜃7

𝑟2
, ¤𝜃7

𝑟3
]𝑇

Orbit III Satellite8 𝑟8 (𝑡 ) = [−14.4338, 0, 25, 𝜃8
𝑟1
, 𝜃8

𝑟2
, 𝜃8

𝑟3
, 0, 0, 0, ¤𝜃8

𝑟1
, ¤𝜃8

𝑟2
, ¤𝜃8

𝑟3
]𝑇

Orbit III Satellite9 𝑟9 (𝑡 ) = [−14.4338, 0, −25, 𝜃9
𝑟1
, 𝜃9

𝑟2
, 𝜃9

𝑟3
, 0, 0, 0, ¤𝜃9

𝑟1
, ¤𝜃9

𝑟2
, ¤𝜃9

𝑟3
]𝑇

Orbit IV Satellite10 𝑟10 (𝑡 ) = [28.8675, 0, 0, 𝜃10
𝑟1

, 𝜃10
𝑟2

, 𝜃10
𝑟3

, 0, 0, 0, ¤𝜃10
𝑟1

, ¤𝜃10
𝑟2

, ¤𝜃10
𝑟3
]𝑇

Orbit IV Satellite11 𝑟11 (𝑡 ) = [−14.4338, 0, 25, 𝜃11
𝑟1

, 𝜃11
𝑟2

, 𝜃11
𝑟3

, 0, 0, 0, ¤𝜃11
𝑟1

, ¤𝜃11
𝑟2

, ¤𝜃11
𝑟3
]𝑇

Orbit IV Satellite12 𝑟12 (𝑡 ) = [−14.4338, 0, −25, 𝜃12
𝑟1

, 𝜃12
𝑟2

, 𝜃12
𝑟3

, 0, 0, 0, ¤𝜃12
𝑟1

, ¤𝜃12
𝑟2

, ¤𝜃12
𝑟3
]𝑇

follows [41]:

𝜃𝑖𝑟1 (𝑡) =



2𝜋𝑡
𝑡 𝑓
, for 𝑡 < 𝑡 𝑓

4

𝜋 − 2𝜋𝑡
𝑡 𝑓
, for 𝑡 𝑓

4 ≤ 𝑡 <
𝑡 𝑓

2

−𝜋 + 2𝜋𝑡
𝑡 𝑓
, for 𝑡 𝑓

2 ≤ 𝑡 <
3𝑡 𝑓
4

2𝜋 − 2𝜋𝑡
𝑡 𝑓
, for 3𝑡 𝑓

4 ≤ 𝑡 < 𝑡 𝑓

𝜃𝑖𝑟2 (𝑡) = 0, 𝜃𝑖𝑟3 (𝑡) =



2𝜋𝑡
𝑡 𝑓
, for 𝑡 < 𝑡 𝑓

4

𝜋 − 2𝜋𝑡
𝑡 𝑓
, for 𝑡 𝑓

4 ≤ 𝑡 <
𝑡 𝑓

2

−𝜋 + 2𝜋𝑡
𝑡 𝑓
, for 𝑡 𝑓

2 ≤ 𝑡 <
3𝑡 𝑓
4

2𝜋 − 2𝜋𝑡
𝑡 𝑓
, for 3𝑡 𝑓

4 ≤ 𝑡 < 𝑡 𝑓

𝑖 = 1, 2, ..., 12

(39)

According to the above desired reference trajectory of each satellite, based on the desired target reference
trajectory 𝑟𝑖 (𝑡) of 𝑞𝑖 (𝑡) in (4), we can get the reference trajectory 𝑟𝑖 (𝑡) = [𝑟𝑇𝑖 (𝑡), ¤𝑟𝑇𝑖 (𝑡)]𝑇 for the trajectory
𝑞𝑖 (𝑡) = [𝑞𝑇𝑖 (𝑡), ¤𝑞𝑇𝑖 (𝑡)]𝑇 of the 𝑖th satellite to track. The reference state 𝑟𝑖 (𝑡) of each satellite in the team (i.e., the
formation shape (𝑟𝑇1 (𝑡), ...𝑟𝑇𝑖 (𝑡), ...𝑟𝑇12 (𝑡))𝑇 of 12 satellites) are shown in Table 1, and the initial states 𝑞𝑖 (0) of each
satellite are given in Table 2.
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Table 2. The initial states of 12 satellites in team formation

Orbit Satellite The initial conditions 𝑞𝑖 (𝑡 )

Orbit I Satellite1 𝑞1 (0) = [25.1531, 1.2689, 2.0105, −0.4712, 0.2357, −0.1293, 0, 0, 0, 0, 0, 0]𝑇

Orbit I Satellite2 𝑞2 (0) = [−10.0484, −2.2541, 26.0231, −0.2479, −0.3135, −0.5013, 0, 0, 0, 0, 0, 0]𝑇

Orbit I Satellite3 𝑞3 (0) = [−12.5514, 3.0215, −25.5566, 0.3326, 0.2357, 0.0807, 0, 0, 0, 0, 0, 0]𝑇

Orbit II Satellite4 𝑞4 (0) = [30.8913, −1.2643, 2.1234, −0.1268, 0.4411, 0.2266, 0, 0, 0, 0, 0, 0]𝑇

Orbit II Satellite5 𝑞5 (0) = [−11.2922, 0.9527, 26.7523, 0.3331, −0.2748, −0.1056, 0, 0, 0, 0, 0, 0]𝑇

Orbit II Satellite6 𝑞6 (0) = [−17.0031, −3.0274, −27.0018, 0.4090, −0.0156, 0.2348, 0, 0, 0, 0, 0, 0]𝑇

Orbit III Satellite7 𝑞7 (0) = [29.9869, −4.0002, −3.6201, 0.3755, −0.1479, −0.0386, 0, 0, 0, 0, 0, 0]𝑇

Orbit III Satellite8 𝑞8 (0) = [−18.4465, −3.2559, 27.0694, 0.4114, 0.2288, −0.1212, 0, 0, 0, 0, 0, 0]𝑇

Orbit III Satellite9 𝑞9 (0) = [−17.2234, 2.0453, −22.8894, 0.3939, 0.1415, 0.3651, 0, 0, 0, 0, 0, 0]𝑇

Orbit IV Satellite10 𝑞10 (0) = [25.6577, −2.7414, −2.6653, 0.3001, −0.1102, 0.2003, 0, 0, 0, 0, 0, 0]𝑇

Orbit IV Satellite11 𝑞11 (0) = [−10.3051, 2.1556, 22.6096, 0.2513, 0.3209, −0.1889, 0, 0, 0, 0, 0, 0]𝑇

Orbit IV Satellite12 𝑞12 (0) = [−13.1993, 1.8787, −22.9831, 0.2564, 0.4009, 0.1769, 0, 0, 0, 0, 0, 0]𝑇

Figure 7. The equivalent fault signals of actuator 𝑓𝑎,12 (𝑡 ) and their estimations of the 12th satellite NCS in the team.

4.2 Simulation and discussion
Using the above parameter settings and Algorithm 1 to solve the LMI-constrained optimization problem in (34), the
simulation results of the optimal robust H∞ decentralized observer-based PID team formation control design for
NCS of 12 satellites under external disturbance, CCI coupling and attack signals are obtained as follows.

Figure 7 shows the equivalent fault signals of actuator 𝑓𝑎,12 (𝑡) in the 12th satellite and their estimations, and Figure 8
presents the fault signals of sensor 𝑓𝑠,12 (𝑡) in the 12th satellite and their estimations. Due to a large initial state
error, the initial estimation error of the Luenberger observer in (19) is also large. However, after the transient state of
the Luenberger observer, the fault signals can be effectively estimated by the proposed optimal robust decentralized
H∞ observer-based fault-tolerant PID tracking control strategy in (22). Some fluctuations in the estimation of sensor
faults 𝑓𝑠,12 (𝑡) remain, which are caused by the sensor false signal in 𝑦𝑖 (𝑡) that can directly influence the fault signal
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Figure 8. The equivalent fault signals of sensor 𝑓𝑠,12 (𝑡 ) and their estimations of the 12th satellite NCS in the team.
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Figure 9. The relative altitude (𝑥12 (𝑡 ) , 𝑦12 (𝑡 ) , 𝑧12 (𝑡 ) )𝑇 and attitude (𝜃121 (𝑡 ) , 𝜃122 (𝑡 ) , 𝜃123 (𝑡 ) )𝑇 and their desired reference
(𝑟𝑥12 (𝑡 ) , 𝑟𝑦12 (𝑡 ) , 𝑟𝑧12 (𝑡 ) , 𝑟𝜃1 ,12 (𝑡 ) , 𝑟𝜃2 ,12 (𝑡 ) , 𝑟𝜃3 ,12 (𝑡 ) )𝑇 and estimates (𝑥12 (𝑡 ) , 𝑦12 (𝑡 ) , 𝑧̂12 (𝑡 ) , 𝜃121 (𝑡 ) , 𝜃122 (𝑡 ) , 𝜃123 (𝑡 ) )𝑇 of the
12th satellite of the team.

estimation in (19).

The tracking trajectories of the six states, estimated states and desired references of the 12th satellite are shown in
Figure 9. It can be seen that the team formation tracking and estimation of satellites can reach and be maintained at
the desired steady state under the influence of malicious attack signals, external disturbance and CCI coupling.

The relative distance and velocity of the first three follower satellites in orbit I of the team formation are given in
Figure 10 and Figure 11, respectively. We can see that the relative distance of the satellite team formation can be
kept with the desired triangle formation in Figure 6 in the steady state. Figure 12 and Figure 13 show the angle and
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Figure 10. The formation performance of the relative distances of three satellites in orbit I.
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Figure 11. The performance of relative velocity tracking control of three satellites in orbit I.

angle velocity of the first three follower satellites in orbit I, respectively. It can be seen that the angle can be kept
with the desired attitude we designed in (39) at the steady state. The relative distance and velocity of all 12 follower
satellites in four orbits of the team formation are shown in Figure 14 and Figure 15, respectively. The tracking
performance of angle and angle velocity (i.e., the attitude) of all 12 follower satellites in four orbits are shown in
Figure 16 and 17, respectively.

The feedforward reference control inputs of the 12th satellite 𝑢12 (𝑡) = [𝑢12𝑥 (𝑡), 𝑢12𝑦 (𝑡), 𝑢12𝑧 (𝑡),
𝑢12𝜃1 (𝑡), 𝑢12𝜃2 (𝑡), 𝑢12𝜃3 (𝑡)]𝑇 in (3) are given in Figure 18. Due to the large initial trajectory error of each satellite,
the beginning control inputs are large to push each satellite to its desired trajectory. Furthermore, the control inputs
will be adjusted to compensate for the effect of fault signals to maintain the desired formation of each satellite when
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Figure 12. The performance of angular tracking control of three satellites in orbit I.

Figure 13. The performance of angle velocity tracking control of three satellites in orbit I.

these signals appear.

The average optimal 𝜌∗
𝑖
= 34.13, which is the average of 12 LMIs-constrained optimization in (34), i.e., 1

12

12∑
𝑖=1
𝜌∗
𝑖

obtained by the proposed Algorithm 1. The real H∞ decentralized observer-based fault-tolerant PID team formation
tracking control performance 𝜌𝑟

𝑖
, 𝑖 = 1, 2, ..., 12 of 12 satellites in the NCS within [0, 100𝑠] by the computer
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Figure 14. The relative distance tracking performance of all 12 satellites.
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Figure 15. The relative velocity tracking performance of all 12 satellites.

simulation are calculated as follows:∫ 100

0
(𝐸𝑇

𝑖
(𝑡 )𝑄𝑖1𝐸𝑖 (𝑡 )+𝐸𝑇

𝑖
(𝑡 )𝑄𝑖2𝐸𝑖 (𝑡 )+𝑢𝑇𝑝𝑖𝑑,𝑖 (𝑡 )𝑅𝑖𝑢𝑝𝑖𝑑,𝑖 (𝑡 ) )𝑑𝑡−𝑉 (𝑆𝑖 (0) )∫ 100

0
𝑣𝑇
𝑖
(𝑡 )𝑣𝑖 (𝑡 )𝑑𝑡

= 𝜌𝑟
𝑖
2 𝑖 = 1, 2, ..., 12 (40)

As shown in Table 3, the real average attenuation level of the proposed method is calculated as follows:

1
12

12∑
𝑖=1
𝜌𝑟
𝑖
= 1.2979 (41)
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Figure 16. The angular tracking performance of all 12 satellites.

which is much less than the average optimal 𝜌∗
𝑖
= 34.13; i.e., the real result 𝜌𝑟

𝑖
in (40) of the proposed optimal H∞

decentralized fault-tolerant observer-based PID team formation control scheme for NCS of 12 satellites is much
better than the theoretical result 𝜌∗

𝑖
in (34). The reason for the conservative theoretical result is the use of inequalities

in (26) and (27) for the proof of Theorem 1 and the derivation of LMIs in (30) and (31) from Riccati-like inequalities
in (25), the derivation of LMIs for the actuator saturation constraint in (32) and (33),and the solving process of
the LMIs-constrained optimization problem in (34).Further 𝜌∗

𝑖
in (34) is based on the worst-case of all possible

𝑣𝑖 (𝑡) 𝜖 𝐿2 [0, 100] in (22) from the robust 𝐻∞ observer PID team formation tracking control strategy. However, 𝜌𝑟
𝑖

in (40) and (41) is based on a real 𝑣𝑖 (𝑡) and therefore is smaller than 𝜌∗
𝑖
.

According to the simulation results, we can validate that the proposed optimal robust H∞ decentralized fault-tolerant
observer-based PID team formation control strategy in (34) is effective for team formation of NCS of large-scale
LEO satellites under the malicious attack signal, external disturbance, measurement noise, coupling effect and
actuator saturation.

Remark 6 In practice, the communication time between the satellite and the ground station may be only a few
minutes in one cycle. Therefore, our simulation time is considered to be 100 seconds, within which the trajectories
of LEO satellites in the desired team formation could be estimated and tracked precisely by the proposed robust
decentralized observer-based PID team formation control method.

4.3 Simulation comparison and discussion
In this subsection, for comparison, the decentralized robust H∞ T-S fuzzy state feedback team formation control
strategy in [24] is simulated for the satellite formation example with the same scenario. The tracking performance of
altitudes and attitudes for the 1st satellite with fault signals by the proposed robust H∞ fault-tolerant decentralized
observer-based PID team formation control and the robust H∞ T-S fuzzy decentralized state feedback control in [24]

is given for comparison in Figure 19 and Figure 20, respectively. When fault signals appear, the H∞ T-S fuzzy state
feedback method in [24] will experience an offset. Then, the satellite cannot follow the desired trajectories because
the method in [24] lacks the ability to handle FTC. Further, the decentralized H∞ T-S fuzzy state feedback control
method in [24] needs to interpolate 64 local linearized controllers by complicated fuzzy bases at every time instant,
making it difficult to implement and perform in real-time at present. Obviously, the H∞ T-S fuzzy state feedback
team formation tracking control design in [24] is more complicated and its team formation tracking performance is
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Figure 17. The angle velocity tracking performance of all 12 satellites.

Table 3. The real attenuation level 𝜌𝑟
𝑖

of 12 LEO satellites with a desired team formation for a coverage mission via the simulation
within [0,100s]

Satellite The real disturbance attenuation level 𝝆𝒓𝒊
2

Satellite1 𝜌𝑟1
2 = 1.36842

Satellite2 𝜌𝑟2
2 = 0.70512

Satellite3 𝜌𝑟3
2 = 1.25952

Satellite4 𝜌𝑟4
2 = 0.57632

Satellite5 𝜌𝑟5
2 = 1.26372

Satellite6 𝜌𝑟6
2 = 1.51552

Satellite7 𝜌𝑟7
2 = 2.07512

Satellite8 𝜌𝑟8
2 = 1.93652

Satellite9 𝜌𝑟9
2 = 0.95582

Satellite10 𝜌𝑟10
2 = 1.72942

Satellite11 𝜌𝑟11
2 = 1.50262

Satellite12 𝜌𝑟12
2 = 0.68712

more conservative than the proposed method under actuator and sensor fault signals in the NCS of large-scale LEO
satellites.

5. CONCLUSION
In this study, the robust H∞ fault-tolerant decentralized observer-based PID team formation tracking control strategy
is proposed for NCS of large-scale LEO satellites under the external disturbance, measurement noise, co-channel
coupling and malicious attack signal. By using a novel reference-based feedforward linearization tracking control
method, the design problem of nonlinear satellite team formation NCS becomes a linearized reference tracking
control design problem with a corresponding actuator fault signal and measurement fault signal for each satellite.
Then, smoothing models are embedded in a linearized team system to efficaciously estimate actuator and sensor fault
signals for compensation to avoid their effect on the reference tracking estimation and PID tracking performance of
each satellite. Moreover, by the proposed decentralized robust H∞ fault-tolerant observer-based PID team formation
control scheme, we can solve BMI by a two-step LMI design procedure via a simple LMIs-constrained optimization
problem to achieve the optimal H∞ robust fault-tolerant decentralized observer-based PID team formation NCS
control of large-scale LEO satellites. A simulation example of team formation composed of 12 LEO satellites in
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Figure 18. The control inputs 𝑢12 (𝑡 ) = [𝑢12𝑥 (𝑡 ) , 𝑢12𝑦 (𝑡 ) , 𝑢12𝑧 (𝑡 ) , 𝑢12𝜃1 (𝑡 ) , 𝑢12𝜃2 (𝑡 ) , 𝑢12𝜃3 (𝑡 ) ]𝑇 in (4) of feedforward linearization
reference control law of the 12th satellite.
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Figure 19. The attitude and altitude formation tracking performance of the 1st satellites with fault signals by the proposed decentralized
𝐻∞ attack-tolerant observer-based PID team formation method in comparison with the decentralized 𝐻∞ T-S fuzzy state feedback control
method in [24].

four different orbits is given for a task of coverage service to validate a better team formation tracking performance
of the proposed method in comparison with the H∞ T-S fuzzy state feedback control method [24]. In future work, we
will focus on event-trigger design for reserving network resources of the large-scale LEO satellite NCS.
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Figure 20. The relative velocity and angular velocity tracking performance of the 1st satellites with fault signals by the proposed method in
comparison with the T-S fuzzy state feedback control method in [24]
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NOMENCLATURE

𝑑𝑖𝑎𝑔(𝑋1, 𝑋2, . . . , 𝑋𝑛) = a block diagonal matrix with main diagonal blocks 𝑋1 , 𝑋2 , . . . , 𝑋𝑛

𝐴𝑇 = the transpose of 𝐴
𝑂 = zero matrix
(𝑎𝑛) = a sequence
(𝑎𝑘𝑛 ) = a subsequence of a sequence (𝑎𝑛)
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[𝑎 𝑗 ,𝑘] = a matrix with the entries 𝑎 𝑗 ,𝑘 in the 𝑗 th row and 𝑘th column
|𝑍 | = size of a set 𝑍
⊗ = Kronecker product
𝐼𝑛 = n-dimension identity matrix[
𝐴 𝑆

∗ 𝐵

]
= the symmetric matrix

[
𝐴 𝑆

𝑆𝑇 𝐵

]
𝑥(𝑡) ∈ 𝐿2

[
0, 𝑡 𝑓

]
=

∫ 𝑡 𝑓

0
𝑥𝑇 (𝑡)𝑥(𝑡)𝑑𝑡 < ∞
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